[1]
Nations U. Nations U. World Population Prospects. The 2017 Revision.
In: ed.^eds. 2017.
[2]
Parasuraman S. Toxicological screening. J Pharmacol Pharmacother 2011; 2(2): 74-9.
[3]
Varga OE, Hansen AK, Sandøe P, Olsson IA. Validating animal models for preclinical research: A scientific and ethical discussion. Altern Lab Anim 2010; 38(3): 245-8.
[4]
Van Dam D, De Deyn PP. Drug discovery in dementia: the role of rodent models. Nat Rev Drug Discov 2006; 5(11): 956-70.
[5]
van der Staay FJ. Animal models of behavioral dysfunctions: basic concepts and classifications, and an evaluation strategy. Brain Res Brain Res Rev 2006; 52(1): 131-59.
[6]
Esch EW, Bahinski A, Huh D. Organs-on-chips at the frontiers of drug discovery. Nat Rev Drug Discov 2015; 14(4): 248-60.
[7]
Volpatti LR, Yetisen AK. Commercialization of microfluidic devices. Trends Biotechnol 2014; 32(7): 347-50.
[8]
Pelvig DP, Pakkenberg H, Stark AK, Pakkenberg B. Neocortical glial cell numbers in human brains. Neurobiol Aging 2008; 29(11): 1754-62.
[9]
Pelham RJ Jr, Wang Yl. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci USA 1997; 94(25): 13661-5.
[10]
Georges PC, Miller WJ, Meaney DF, Sawyer ES, Janmey PA. Matrices with compliance comparable to that of brain tissue select neuronal over glial growth in mixed cortical cultures. Biophys J 2006; 90(8): 3012-8.
[11]
Liddle JA, Gallatin GM. Lithography, metrology and nanomanufacturing. Nanoscale 2011; 3(7): 2679-88.
[12]
Okazaki S. High resolution optical lithography or high throughput electron beam lithography: The technical struggle from the micro to the nano-fabrication evolution. Microelectron Eng 2015; 133: 23-35.
[13]
Okazaki S. High resolution optical lithography or high throughput electron beam lithography: The technical struggle from the micro to the nano-fabrication evolution. Microelectron Eng 2015; 133: 23-35.
[14]
Xie S, Schurink B, Berenschot EJW, Tiggelaar RM, Gardeniers HJGE, Luttge R. Displacement Talbot lithography nanopatterned microsieve array for directional neuronal network formation in brain-on-chip Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials 2016; 34.
[15]
Tseng AA, Chen K, Chen CD, Ma KJ. Electron beam lithography in nanoscale fabrication: recent development. IEEE Trans Electron Packag Manuf 2003; 26: 141-9.
[16]
Salaita K, Wang Y, Mirkin CA. Applications of dip-pen nanolithography. Nat Nanotechnol 2007; 2(3): 145-55.
[17]
Curran JM, Stokes R, Irvine E, et al. Introducing dip pen nanolithography as a tool for controlling stem cell behaviour: unlocking the potential of the next generation of smart materials in regenerative medicine. Lab Chip 2010; 10(13): 1662-70.
[18]
Qin D, Xia Y, Whitesides GM. Soft lithography for micro- and nanoscale patterning. Nat Protoc 2010; 5(3): 491-502.
[19]
Recknor JB, Sakaguchi DS, Mallapragada SK. Directed growth and selective differentiation of neural progenitor cells on micropatterned polymer substrates. Biomaterials 2006; 27(22): 4098-108.
[20]
Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat Biotechnol 2014; 32(8): 760-72.
[21]
Pennathur S, Meinhart CD, Soh HT. How to exploit the features of microfluidics technology. Lab Chip 2008; 8(1): 20-2.
[22]
Shields CW IV, Reyes CD, López GP. Microfluidic cell sorting: A review of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip 2015; 15(5): 1230-49.
[23]
Kimura H, Sakai Y, Fujii T. Organ/body-on-a-chip based on microfluidic technology for drug discovery. Drug Metab Pharmacokinet 2018; 33(1): 43-8.
[24]
Chen X, Shen J. Review of membranes in microfluidics. J Chem Technol Biotechnol 2017; 92: 271-82.
[25]
Booth R, Kim H. Characterization of a microfluidic in vitro model of the blood-brain barrier (μBBB). Lab Chip 2012; 12(10): 1784-92.
[26]
Xiao RR, Zeng WJ, Li YT, et al. Simultaneous generation of gradients with gradually changed slope in a microfluidic device for quantifying axon response. Anal Chem 2013; 85(16): 7842-50.
[27]
Achyuta AKH, Conway AJ, Crouse RB, et al. A modular approach to create a neurovascular unit-on-a-chip. Lab Chip 2013; 13(4): 542-53.
[28]
Bassoli E, Gatto A, Iuliano L, Violante MG. 3D printing technique applied to rapid casting. Rapid Prototyping J 2007; 13: 148-55.
[29]
Koechlin M, Poberaj G, Günter P. High-resolution laser lithography system based on two-dimensional acousto-optic deflection. Rev Sci Instrum 2009; 80(8): 085105.
[30]
Lantada AD, Romero AD, Schwentenwein M, Jellinek C, Homa J, Garcia-Ruiz JP. Monolithic 3D labs- and organs-on-chips obtained by lithography-based ceramic manufacture. Int J Adv Manuf Technol 2017; 93: 3371-81.
[31]
Tseng HY, Yin S, Subramanian V. Optimization of Inkjet-Based
Process Modules for Printed Transistor Circuits Nip 25: Digital
Fabrication 2009 2009; 603-6.
[32]
Adamski K, Kubicki W, Walczak R. 3D Printed electrophoretic
lab-on-chip for DNA separation. Proceedings of the 30th Anniversary
Eurosensors Conference - Eurosensors 2016, 2016; 168: 1454-
1457.
[33]
Kopplmayr T, Muhlberger M. Inkjet printing of polylactic acid on substrates prepared by fused deposition modeling and its potential for selective surface finishing. J Appl Polym Sci 2016; 133.
[34]
de Gans BJ, Schubert US. Inkjet printing of well-defined polymer dots and arrays. Langmuir 2004; 20(18): 7789-93.
[35]
Mujawar LH, van Amerongen A, Norde W. Influence of Pluronic F127 on the distribution and functionality of inkjet-printed biomolecules in porous nitrocellulose substrates. Talanta 2015; 131: 541-7.
[36]
Muth JT, Vogt DM, Truby RL, et al. Embedded 3D printing of strain sensors within highly stretchable elastomers. Adv Mater 2014; 26(36): 6307-12.
[37]
Wu W, DeConinck A, Lewis JA. Omnidirectional printing of 3D microvascular networks. Adv Mater 2011; 23(24): H178-83.
[38]
Kolesky DB, Homan KA, Skylar-Scott MA, Lewis JA. Three-dimensional bioprinting of thick vascularized tissues. Proc Natl Acad Sci USA 2016; 113(12): 3179-84.
[39]
Homan KA, Kolesky DB, Skylar-Scott MA, et al. Bioprinting of 3D Convoluted Renal Proximal Tubules on Perfusable Chips. Sci Rep 2016; 6: 34845.
[40]
Lee H, Cho DW. One-step fabrication of an organ-on-a-chip with spatial heterogeneity using a 3D bioprinting technology. Lab Chip 2016; 16(14): 2618-25.
[41]
Sohet F, Lin C, Munji RN, et al. LSR/angulin-1 is a tricellular tight junction protein involved in blood-brain barrier formation. J Cell Biol 2015; 208(6): 703-11.
[42]
Banerjee S, Bhat MA. Neuron-glial interactions in blood-brain barrier formation. Annu Rev Neurosci 2007; 30: 235-58.
[43]
Bernacki J, Dobrowolska A, Nierwińska K, Małecki A. Physiology and pharmacological role of the blood-brain barrier. Pharmacol Rep 2008; 60(5): 600-22.
[44]
Patabendige A, Skinner RA, Abbott NJ. Establishment of a simplified in vitro porcine blood-brain barrier model with high transendothelial electrical resistance. Brain Res 2013; 1521: 1-15.
[45]
Hatherell K, Couraud PO, Romero IA, Weksler B, Pilkington GJ. Development of a three-dimensional, all-human in vitro model of the blood-brain barrier using mono-, co-, and tri-cultivation Transwell models. J Neurosci Methods 2011; 199(2): 223-9.
[46]
van der Meer AD, Poot AA, Feijen J, Vermes I. Analyzing shear stress-induced alignment of actin filaments in endothelial cells with a microfluidic assay. Biomicrofluidics 2010; 4(1): 11103.
[47]
Cucullo L, Hossain M, Puvenna V, Marchi N, Janigro D. The role of shear stress in Blood-Brain Barrier endothelial physiology. BMC Neurosci 2011; 12: 40.
[48]
Galbraith CG, Skalak R, Chien S. Shear stress induces spatial reorganization of the endothelial cell cytoskeleton. Cell Motil Cytoskeleton 1998; 40(4): 317-30.
[49]
Griep LM, Wolbers F, de Wagenaar B, et al. BBB on chip: microfluidic platform to mechanically and biochemically modulate blood-brain barrier function. Biomed Microdevices 2013; 15(1): 145-50.
[50]
Brown JA, Pensabene V, Markov DA, et al. Recreating blood-brain barrier physiology and structure on chip: A novel neurovascular microfluidic bioreactor. Biomicrofluidics 2015; 9(5): 054124.
[51]
Alcendor DJ, Block FE III, Cliffel DE, et al. Neurovascular unit on a chip: implications for translational applications. Stem Cell Res Ther 2013; 4(Suppl. 1): S18.
[52]
de Robles P, Fiest KM, Frolkis AD, et al. The worldwide incidence and prevalence of primary brain tumors: A systematic review and meta-analysis. Neuro-oncol 2015; 17(6): 776-83.
[53]
Alieva M, van Rheenen J, Broekman MLD. Potential impact of invasive surgical procedures on primary tumor growth and metastasis. Clin Exp Metastasis 2018; 35(4): 319-31.
[54]
Tagliabue E, Agresti R, Carcangiu ML, et al. Role of HER2 in wound-induced breast carcinoma proliferation. Lancet 2003; 362(9383): 527-33.
[55]
Du X, Li W, Du G, et al. Droplet Array-Based 3D Coculture System for High-Throughput Tumor Angiogenesis Assay. Anal Chem 2018; 90(5): 3253-61.
[56]
Kim S, Lee H, Chung M, Jeon NL. Engineering of functional, perfusable 3D microvascular networks on a chip. Lab Chip 2013; 13(8): 1489-500.
[57]
Torisawa YS, Mosadegh B, Bersano-Begey T, et al. Microfluidic platform for chemotaxis in gradients formed by CXCL12 source-sink cells. Integr Biol 2010; 2(11-12): 680-6.
[58]
Ayuso JM, Monge R, Martínez-González A, et al. Glioblastoma on a microfluidic chip: Generating pseudopalisades and enhancing aggressiveness through blood vessel obstruction events. Neuro-oncol 2017; 19(4): 503-13.
[59]
Zhang Q, Liu T, Qin J. A microfluidic-based device for study of transendothelial invasion of tumor aggregates in realtime. Lab Chip 2012; 12(16): 2837-42.
[60]
Lee DW, Lee SY, Doh I, Ryu GH, Nam DH. High-Dose Compound Heat Map for 3D-Cultured Glioblastoma Multiforme Cells in a Micropillar and Microwell Chip Platform. BioMed Res Int 2017; 2017: 7218707.
[61]
Fan Y, Nguyen DT, Akay Y, Xu F, Akay M. Engineering a Brain Cancer Chip for High-throughput Drug Screening. Sci Rep 2016; 6: 25062.
[62]
Fan Y, Nguyen DT, Akay Y, Xu F, Akay M. Engineering a Brain Cancer Chip for High-throughput Drug Screening. Sci Rep 2016; 6: 25062.
[63]
Park J, Lee BK, Jeong GS, Hyun JK, Lee CJ, Lee SH. Three-dimensional brain-on-a-chip with an interstitial level of flow and its application as an in vitro model of Alzheimer’s disease. Lab Chip 2015; 15(1): 141-50.
[64]
Ren Y, Kunze A, Renaud P. Microfluidic and Compartmentalized Platforms for Neurobiological Research 2015.
[65]
Osaki T, Shin Y, Sivathanu V, Campisi M, Kamm RD. In Vitro Microfluidic Models for Neurodegenerative Disorders. 2018; p. 7.
[66]
Fernandes JT, Chutna O, Chu V, Conde JP, Outeiro TF. A Novel Microfluidic Cell Co-culture Platform for the Study of the Molecular Mechanisms of Parkinson’s Disease and Other Synucleinopathies. Front Neurosci 2016; 10: 511.
[67]
Seidi A, Kaji H, Annabi N, Ostrovidov S, Ramalingam M, Khademhosseini A. A microfluidic-based neurotoxin concentration gradient for the generation of an in vitro model of Parkinson’s disease. Biomicrofluidics 2011; 5(2): 22214.
[68]
Freundt EC, Maynard N, Clancy EK, et al. Neuron-to-neuron transmission of α-synuclein fibrils through axonal transport. Ann Neurol 2012; 72(4): 517-24.
[69]
Rosas-Hernandez H, Cuevas E, Lantz SM, et al. Neurovascular unit components on a chip as a model to study traumatic brain injury. Toxicol Lett 2016; 259: S86-6.
[70]
Prins M, Greco T, Alexander D, Giza CC. The pathophysiology of traumatic brain injury at a glance. Dis Model Mech 2013; 6(6): 1307-15.
[71]
Namjoshi DR, Good C, Cheng WH, et al. Towards clinical management of traumatic brain injury: A review of models and mechanisms from a biomechanical perspective. Dis Model Mech 2013; 6(6): 1325-38.
[72]
Dollé JP, Morrison B III, Schloss RS, Yarmush ML. Brain-on-a-chip microsystem for investigating traumatic brain injury: Axon diameter and mitochondrial membrane changes play a significant role in axonal response to strain injuries. Technology (SingapWorld Sci) 2014; 2(2): 106. [Singap World Sci].
[73]
Stein RA, Strickland TL. A review of the neuropsychological effects of commonly used prescription medications. Arch Clin Neuropsychol 1998; 13(3): 259-84.
[74]
Zhan L, Liang L, Shu Q, Yang S, Zhang Y. Distinct proteins in cortex of rats with closed traumatic brain injury detected by a WCX-2 protein chip. Neural Regen Res 2007; 2: 339-43.
[75]
Dauth S, Maoz BM, Sheehy SP, et al. Neurons derived from different brain regions are inherently different in vitro: A novel multiregional brain-on-a-chip. J Neurophysiol 2017; 117(3): 1320-41.
[76]
Bazarian JJ, Zhong J, Blyth B, Zhu T, Kavcic V, Peterson D. Diffusion tensor imaging detects clinically important axonal damage after mild traumatic brain injury: A pilot study. J Neurotrauma 2007; 24(9): 1447-59.
[77]
Tang-Schomer MD, White JD, Tien LW, et al. Bioengineered functional brain-like cortical tissue. Proc Natl Acad Sci USA 2014; 111(38): 13811-6.
[78]
Faden AI, Demediuk P, Panter SS, Vink R. The role of excitatory amino acids and NMDA receptors in traumatic brain injury. Science 1989; 244(4906): 798-800.
[79]
Katayama Y, Becker DP, Tamura T, Hovda DA. Massive increases in extracellular potassium and the indiscriminate release of glutamate following concussive brain injury. J Neurosurg 1990; 73(6): 889-900.
[80]
Hinzman JM, Thomas TC, Burmeister JJ, et al. Diffuse brain injury elevates tonic glutamate levels and potassium-evoked glutamate release in discrete brain regions at two days post-injury: An enzyme-based microelectrode array study. J Neurotrauma 2010; 27(5): 889-99.
[81]
Menorca RM, Fussell TS, Elfar JC. Nerve physiology: mechanisms of injury and recovery. Hand Clin 2013; 29(3): 317-30.
[82]
Sunderland S. A classification of peripheral nerve injuries producing loss of function. Brain 1951; 74(4): 491-516.
[83]
Ko PY, Yang CC, Kuo YL, et al. Schwann-Cell Autophagy, Functional Recovery, and Scar Reduction After Peripheral Nerve Repair. J Mol Neurosci 2018; 64(4): 601-10.
[84]
Martin M, Benzina O, Szabo V, et al. Morphology and nanomechanics of sensory neurons growth cones following peripheral nerve injury. PLoS One 2013; 8(2): e56286.
[85]
Patel NP, Lyon KA, Huang JH. An update-tissue engineered nerve grafts for the repair of peripheral nerve injuries. Neural Regen Res 2018; 13(5): 764-74.
[86]
Schmidt CE, Leach JB. Neural tissue engineering: strategies for repair and regeneration. Annu Rev Biomed Eng 2003; 5: 293-347.
[87]
Bellamkonda RV. Peripheral nerve regeneration: An opinion on channels, scaffolds and anisotropy. Biomaterials 2006; 27(19): 3515-8.
[88]
Huval RM, Miller OH, Curley JL, Fan Y, Hall BJ, Moore MJ. Microengineered peripheral nerve-on-a-chip for preclinical physiological testing. Lab Chip 2015; 15(10): 2221-32.
[89]
Park J, Kim S, Park SI, Choe Y, Li J, Han A. A microchip for quantitative analysis of CNS axon growth under localized biomolecular treatments. J Neurosci Methods 2014; 221: 166-74.
[90]
Kim YT, Karthikeyan K, Chirvi S, Davé DP. Neuro-optical microfluidic platform to study injury and regeneration of single axons. Lab Chip 2009; 9(17): 2576-81.
[91]
Tong Z, Segura-Feliu M, Seira O, Homs-Corbera A, Río JAD, Samitier J. A microfluidic neuronal platform for neuron axotomy and controlled regenerative studies. RSC Advances 2015; 5: 73457-66.
[92]
Johnson BN, Lancaster KZ, Hogue IB, et al. 3D printed nervous system on a chip. Lab Chip 2016; 16(8): 1393-400.
[93]
Stiles J, Jernigan TL. The basics of brain development. Neuropsychol Rev 2010; 20(4): 327-48.
[94]
McTigue DM, Tripathi RB. The life, death, and replacement of oligodendrocytes in the adult CNS. J Neurochem 2008; 107(1): 1-19.
[95]
Pandey UB, Nichols CD. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev 2011; 63(2): 411-36.
[96]
Kalueff AV, Stewart AM, Gerlai R. Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol Sci 2014; 35(2): 63-75.
[97]
Vaz RL, Outeiro TF, Ferreira JJ. Zebrafish as an Animal Model for Drug Discovery in Parkinson’s Disease and Other Movement Disorders: A Systematic Review. Front Neurol 2018; 9: 347.
[98]
Kilic O, Pamies D, Lavell E, et al. Brain-on-a-chip model enables analysis of human neuronal differentiation and chemotaxis. Lab Chip 2016; 16(21): 4152-62.
[99]
Lancaster MA, Renner M, Martin CA, et al. Cerebral organoids model human brain development and microcephaly. Nature 2013; 501(7467): 373-9.
[100]
Paşca AM, Sloan SA, Clarke LE, et al. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat Methods 2015; 12(7): 671-8.
[101]
Wang Y, Wang L, Zhu Y, Qin J. Human brain organoid-on-a-chip to model prenatal nicotine exposure. Lab Chip 2018; 18(6): 851-60.
[102]
Karzbrun E, Kshirsagar A, Cohen SR, Hanna JH, Reiner O. Human Brain Organoids on a Chip Reveal the Physics of Folding. Nat Phys 2018; 14(5): 515-22.