摘要
可按需给药的红光和近红外光响应聚合物纳米载体因其在癌症治疗中的巨大潜力而受到广泛关注。各种策略已被用于制造这种纳米载体,已证明它们具有显著的治疗效果和对正常组织的最小毒性。在这里,我们将综述目前各种红近红外光响应聚合物纳米载体在按需药物传输中(包括促进药物内化和促进药物在靶向位点的释放)的应用进展。我们总结了它们的组成和设计策略,并强调了光激活变异增强药物摄取和释放的机制。我们试图为制造以按需药物递送的红和近红外光响应聚合物纳米载体提供新的见解。
关键词: 聚合物纳米载体,红光,近红外光,给药,释药,光热治疗,光动力学疗法。
[1]
Zhang, X.Q.; Xu, X.; Bertrand, N.; Pridgen, E.; Swami, A.; Farokhzad, O.C. Interactions of nanomaterials and biological systems: Implications to personalized nanomedicine. Adv. Drug Deliv. Rev., 2012, 64(13), 1363-1384.
[http://dx.doi.org/10.1016/j.addr.2012.08.005] [PMID: 22917779]
[http://dx.doi.org/10.1016/j.addr.2012.08.005] [PMID: 22917779]
[2]
Walkey, C.D.; Olsen, J.B.; Guo, H.; Emili, A.; Chan, W.C.W. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J. Am. Chem. Soc., 2012, 134(4), 2139-2147.
[http://dx.doi.org/10.1021/ja2084338] [PMID: 22191645]
[http://dx.doi.org/10.1021/ja2084338] [PMID: 22191645]
[3]
Hu, Q.; Sun, W.; Lu, Y.; Bomba, H.N.; Ye, Y.; Jiang, T.; Isaacson, A.J.; Gu, Z. Tumor microenvironment-mediated construction and deconstruction of extracellular drug-delivery depots. Nano Lett., 2016, 16(2), 1118-1126.
[http://dx.doi.org/10.1021/acs.nanolett.5b04343] [PMID: 26785163]
[http://dx.doi.org/10.1021/acs.nanolett.5b04343] [PMID: 26785163]
[4]
Wan, S.; Kelly, P.M.; Mahon, E.; Stöckmann, H.; Rudd, P.M.; Caruso, F.; Dawson, K.A.; Yan, Y.; Monopoli, M.P. The “sweet” side of the protein corona: effects of glycosylation on nanoparticle-cell interactions. ACS Nano, 2015, 9(2), 2157-2166.
[http://dx.doi.org/10.1021/nn506060q] [PMID: 25599105]
[http://dx.doi.org/10.1021/nn506060q] [PMID: 25599105]
[5]
Li, D.; Ma, Y.; Du, J.; Tao, W.; Du, X.; Yang, X.; Wang, J. Tumor acidity/NIR controlled interaction of transformable nanoparticle with biological systems for cancer therapy. Nano Lett., 2017, 17(5), 2871-2878.
[http://dx.doi.org/10.1021/acs.nanolett.6b05396] [PMID: 28375632]
[http://dx.doi.org/10.1021/acs.nanolett.6b05396] [PMID: 28375632]
[6]
Jhaveri, A.; Deshpande, P.; Torchilin, V. Stimuli-sensitive nanopreparations for combination cancer therapy. J. Control. Release, 2014, 190, 352-370.
[http://dx.doi.org/10.1016/j.jconrel.2014.05.002] [PMID: 24818767]
[http://dx.doi.org/10.1016/j.jconrel.2014.05.002] [PMID: 24818767]
[7]
Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater., 2013, 12(11), 991-1003.
[http://dx.doi.org/10.1038/nmat3776] [PMID: 24150417]
[http://dx.doi.org/10.1038/nmat3776] [PMID: 24150417]
[8]
Chen, Q.; Ke, H.; Dai, Z.; Liu, Z. Nanoscale theranostics for physical stimulus-responsive cancer therapies. Biomaterials, 2015, 73, 214-230.
[http://dx.doi.org/10.1016/j.biomaterials.2015.09.018] [PMID: 26410788]
[http://dx.doi.org/10.1016/j.biomaterials.2015.09.018] [PMID: 26410788]
[9]
Dai, Y.; Xu, C.; Sun, X.; Chen, X. Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment. Chem. Soc. Rev., 2017, 46(12), 3830-3852.
[http://dx.doi.org/10.1039/C6CS00592F] [PMID: 28516983]
[http://dx.doi.org/10.1039/C6CS00592F] [PMID: 28516983]
[10]
Rwei, A.Y.; Wang, W.; Kohane, D.S. Photoresponsive nanoparticles for drug delivery. Nano Today, 2015, 10(4), 451-467.
[http://dx.doi.org/10.1016/j.nantod.2015.06.004] [PMID: 26644797]
[http://dx.doi.org/10.1016/j.nantod.2015.06.004] [PMID: 26644797]
[11]
Karimi, M.; Sahandi Zangabad, P.; Baghaee-Ravari, S.; Ghazadeh, M.; Mirshekari, H.; Hamblin, M.R. Smart nanostructures for cargo delivery: uncaging and activating by light. J. Am. Chem. Soc., 2017, 139(13), 4584-4610.
[http://dx.doi.org/10.1021/jacs.6b08313] [PMID: 28192672]
[http://dx.doi.org/10.1021/jacs.6b08313] [PMID: 28192672]
[12]
Linsley, C.S.; Wu, B.M. Recent advances in light-responsive on-demand drug-delivery systems. Ther. Deliv., 2017, 8(2), 89-107.
[http://dx.doi.org/10.4155/tde-2016-0060] [PMID: 28088880]
[http://dx.doi.org/10.4155/tde-2016-0060] [PMID: 28088880]
[13]
Yue, X.; Zhang, Q.; Dai, Z. Near-infrared light-activatable polymeric nanoformulations for combined therapy and imaging of cancer. Adv. Drug Deliv. Rev., 2017, 115, 155-170.
[http://dx.doi.org/10.1016/j.addr.2017.04.007] [PMID: 28455188]
[http://dx.doi.org/10.1016/j.addr.2017.04.007] [PMID: 28455188]
[14]
Min, C.; Zou, X.; Yang, Q.; Liao, L.; Zhou, G.; Liu, L. Near-infrared light responsive polymeric nanocomposites for cancer therapy. Curr. Top. Med. Chem., 2017, 17(16), 1805-1814.
[http://dx.doi.org/10.2174/1568026617666161122120153] [PMID: 27875978]
[http://dx.doi.org/10.2174/1568026617666161122120153] [PMID: 27875978]
[15]
Wang, Y.; Deng, Y.; Luo, H.; Zhu, A.; Ke, H.; Yang, H.; Chen, H. Light-responsive nanoparticles for highly efficient cytoplasmic delivery of anticancer agents. ACS Nano, 2017, 11(12), 12134-12144.
[http://dx.doi.org/10.1021/acsnano.7b05214] [PMID: 29141151]
[http://dx.doi.org/10.1021/acsnano.7b05214] [PMID: 29141151]
[16]
Alejo, T.; Andreu, V.; Mendoza, G.; Sebastian, V.; Arruebo, M. Controlled release of bupivacaine using hybrid thermoresponsive nanoparticles activated via photothermal heating. J. Colloid Interface Sci., 2018, 523, 234-244.
[http://dx.doi.org/10.1016/j.jcis.2018.03.107] [PMID: 29626761]
[http://dx.doi.org/10.1016/j.jcis.2018.03.107] [PMID: 29626761]
[17]
Zhou, F.Y.; Feng, B.; Wang, T.T.; Wang, D.G.; Meng, Q.S.; Zeng, J.F.; Zhang, Z.W.; Wang, S.L.; Yu, H.J.; Li, Y.P. Programmed multiresponsive vesicles for enhanced tumor penetration and combination therapy of triple-negative breast cancer. Adv. Funct. Mater., 2017, 27(20) 1606530
[http://dx.doi.org/10.1002/adfm.201606530]
[http://dx.doi.org/10.1002/adfm.201606530]
[18]
Xu, Q.; He, C.; Xiao, C.; Chen, X. Reactive oxygen species (ROS) responsive polymers for biomedical applications. Macromol. Biosci., 2016, 16(5), 635-646.
[http://dx.doi.org/10.1002/mabi.201500440] [PMID: 26891447]
[http://dx.doi.org/10.1002/mabi.201500440] [PMID: 26891447]
[19]
Karimi, M.; Sahandi Zangabad, P.; Ghasemi, A.; Amiri, M.; Bahrami, M.; Malekzad, H.; Ghahramanzadeh Asl, H.; Mahdieh, Z.; Bozorgomid, M.; Ghasemi, A.; Rahmani Taji Boyuk, M.R.; Hamblin, M.R. Temperature-responsive smart nanocarriers for delivery of therapeutic agents: applications and recent advances. ACS Appl. Mater. Interfaces, 2016, 8(33), 21107-21133.
[http://dx.doi.org/10.1021/acsami.6b00371] [PMID: 27349465]
[http://dx.doi.org/10.1021/acsami.6b00371] [PMID: 27349465]
[20]
Cao, Z.Y.; Ma, Y.C.; Sun, C.Y.; Lu, Z.D.; Yao, Z.Y.; Wang, J.X.; Li, D.D.; Yuan, Y.Y.; Yang, X.Z. ROS-Sensitive polymeric nanocarriers with red light-activated size shrinkage for remotely controlled drug release. Chem. Mater., 2018, 30(2), 517-525.
[http://dx.doi.org/10.1021/acs.chemmater.7b04751]
[http://dx.doi.org/10.1021/acs.chemmater.7b04751]
[21]
Dai, L.; Yu, Y.; Luo, Z.; Li, M.; Chen, W.; Shen, X.; Chen, F.; Sun, Q.; Zhang, Q.; Gu, H.; Cai, K. Photosensitizer enhanced disassembly of amphiphilic micelle for ROS-response targeted tumor therapy in vivo. Biomaterials, 2016, 104, 1-17.
[http://dx.doi.org/10.1016/j.biomaterials.2016.07.002] [PMID: 27423095]
[http://dx.doi.org/10.1016/j.biomaterials.2016.07.002] [PMID: 27423095]
[22]
Sun, H.P.; Su, J.H.; Meng, Q.S.; Yin, Q.; Chen, L.L.; Gu, W.W.; Zhang, Z.W.; Yu, H.J.; Zhang, P.C.; Wang, S.L.; Li, Y.P. Cancer cell membrane-coated gold nanocages with hyperthermia-triggered drug release and homotypic target inhibit growth and metastasis of breast cancer. Adv. Funct. Mater., 2017, 27(3) 1604300
[http://dx.doi.org/10.1002/adfm.201604300]
[http://dx.doi.org/10.1002/adfm.201604300]
[23]
Luo, D.; Carter, K.A.; Miranda, D.; Lovell, J.F. Chemophototherapy: an emerging treatment option for solid tumors. Adv. Sci. (Weinh.), 2016, 4(1) 1600106
[http://dx.doi.org/10.1002/advs.201600106] [PMID: 28105389]
[http://dx.doi.org/10.1002/advs.201600106] [PMID: 28105389]
[24]
Su, J.H.; Sun, H.P.; Meng, Q.S.; Yin, Q.; Zhang, P.C.; Zhang, Z.W.; Yu, H.J.; Li, Y.P. Bioinspired nanoparticles with NIR-controlled drug release for synergetic chemophotothermal therapy of metastatic breast cancer. Adv. Funct. Mater., 2016, 26(41), 7495-7506.
[http://dx.doi.org/10.1002/adfm.201603381]
[http://dx.doi.org/10.1002/adfm.201603381]
[25]
Yokoyama, M. Clinical applications of polymeric micelle carrier systems in chemotherapy and image diagnosis of solid tumors. J. Exp. Clin. Med., 2011, 3(4), 151-158.
[http://dx.doi.org/10.1016/j.jecm.2011.06.002]
[http://dx.doi.org/10.1016/j.jecm.2011.06.002]
[26]
Moritz, M.; Geszke-Moritz, M. Recent developments in the application of polymeric nanoparticles as drug carriers. Adv. Clin. Exp. Med., 2015, 24(5), 749-758.
[http://dx.doi.org/10.17219/acem/31802] [PMID: 26768624]
[http://dx.doi.org/10.17219/acem/31802] [PMID: 26768624]
[27]
Kim, K.; Lee, C.S.; Na, K. Light-controlled reactive oxygen species (ROS)-producible polymeric micelles with simultaneous drug-release triggering and endo/lysosomal escape. Chem. Commun. (Camb.), 2016, 52(13), 2839-2842.
[http://dx.doi.org/10.1039/C5CC09239F] [PMID: 26779576]
[http://dx.doi.org/10.1039/C5CC09239F] [PMID: 26779576]
[28]
Wang, J.; He, H.; Xu, X.; Wang, X.; Chen, Y.; Yin, L. Far-red light-mediated programmable anti-cancer gene delivery in cooperation with photodynamic therapy. Biomaterials, 2018, 171, 72-82.
[http://dx.doi.org/10.1016/j.biomaterials.2018.04.020] [PMID: 29680675]
[http://dx.doi.org/10.1016/j.biomaterials.2018.04.020] [PMID: 29680675]
[29]
Xu, L.; Yang, Y.; Zhao, M.; Gao, W.; Zhang, H.; Li, S.; He, B.; Pu, Y. A reactive oxygen species-responsive prodrug micelle with efficient cellular uptake and excellent bioavailability. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(7), 1076-1084.
[http://dx.doi.org/10.1039/C7TB02479G] [PMID: 32254295]
[http://dx.doi.org/10.1039/C7TB02479G] [PMID: 32254295]
[30]
Han, P.; Li, S.; Cao, W.; Li, Y.; Sun, Z.; Wang, Z.; Xu, H. Red light responsive diselenide-containing block copolymer micelles. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(6), 740-743.
[http://dx.doi.org/10.1039/C2TB00186A] [PMID: 32260730]
[http://dx.doi.org/10.1039/C2TB00186A] [PMID: 32260730]
[31]
Cao, W.; Wang, L.; Xu, H.P. Selenium/tellurium containing polymer materials in nanobiotechnology. Nano Today, 2015, 10(6), 717-736.
[http://dx.doi.org/10.1016/j.nantod.2015.11.004]
[http://dx.doi.org/10.1016/j.nantod.2015.11.004]
[32]
Qian, C.; Yu, J.; Chen, Y.; Hu, Q.; Xiao, X.; Sun, W.; Wang, C.; Feng, P.; Shen, Q.D.; Gu, Z. Light-activated hypoxia-responsive nanocarriers for enhanced anticancer therapy. Adv. Mater., 2016, 28(17), 3313-3320.
[http://dx.doi.org/10.1002/adma.201505869] [PMID: 26948067]
[http://dx.doi.org/10.1002/adma.201505869] [PMID: 26948067]
[33]
Thambi, T.; Deepagan, V.G.; Yoon, H.Y.; Han, H.S.; Kim, S.H.; Son, S.; Jo, D.G.; Ahn, C.H.; Suh, Y.D.; Kim, K.; Kwon, I.C.; Lee, D.S.; Park, J.H. Hypoxia-responsive polymeric nanoparticles for tumor-targeted drug delivery. Biomaterials, 2014, 35(5), 1735-1743.
[http://dx.doi.org/10.1016/j.biomaterials.2013.11.022] [PMID: 24290696]
[http://dx.doi.org/10.1016/j.biomaterials.2013.11.022] [PMID: 24290696]
[34]
He, H.; Zhu, R.; Sun, W.; Cai, K.; Chen, Y.; Yin, L. Selective cancer treatment via photodynamic sensitization of hypoxia-responsive drug delivery. Nanoscale, 2018, 10(6), 2856-2865.
[http://dx.doi.org/10.1039/C7NR07677K] [PMID: 29364314]
[http://dx.doi.org/10.1039/C7NR07677K] [PMID: 29364314]
[35]
Thambi, T.; Park, J.H.; Lee, D.S. Hypoxia-responsive nanocarriers for cancer imaging and therapy: recent approaches and future perspectives. Chem. Commun. (Camb.), 2016, 52(55), 8492-8500.
[http://dx.doi.org/10.1039/C6CC02972H] [PMID: 27225824]
[http://dx.doi.org/10.1039/C6CC02972H] [PMID: 27225824]
[36]
Wang, W.; Lin, L.; Ma, X.; Wang, B.; Liu, S.; Yan, X.; Li, S.; Tian, H.; Yu, X. Light-induced hypoxia-triggered living nanocarriers for synergistic cancer therapy. ACS Appl. Mater. Interfaces, 2018, 10(23), 19398-19407.
[http://dx.doi.org/10.1021/acsami.8b03506] [PMID: 29781276]
[http://dx.doi.org/10.1021/acsami.8b03506] [PMID: 29781276]
[37]
Zhang, H.; Guo, S.; Fu, S.; Zhao, Y. A near-infrared light-responsive hybrid hydrogel based on UCST triblock copolymer and gold nanorods. Polymers (Basel), 2017, 9(6), 238.
[http://dx.doi.org/10.3390/polym9060238] [PMID: 30970915]
[http://dx.doi.org/10.3390/polym9060238] [PMID: 30970915]
[38]
Deng, Y.; Käfer, F.; Chen, T.; Jin, Q.; Ji, J.; Agarwal, S. Let there be light: polymeric micelles with upper critical solution temperature as light-triggered heat nanogenerators for combating drug-resistant cancer. Small, 2018, 14(37) e1802420
[http://dx.doi.org/10.1002/smll.201802420] [PMID: 30129095]
[http://dx.doi.org/10.1002/smll.201802420] [PMID: 30129095]
[39]
Zhang, Z.; Wang, J.; Nie, X.; Wen, T.; Ji, Y.; Wu, X.; Zhao, Y.; Chen, C. Near infrared laser-induced targeted cancer therapy using thermoresponsive polymer encapsulated gold nanorods. J. Am. Chem. Soc., 2014, 136(20), 7317-7326.
[http://dx.doi.org/10.1021/ja412735p] [PMID: 24773323]
[http://dx.doi.org/10.1021/ja412735p] [PMID: 24773323]
[40]
Meng, Z.; Wei, F.; Wang, R.; Xia, M.; Chen, Z.; Wang, H.; Zhu, M. NIR-laser-switched in vivo smart nanocapsules for synergic photothermal and chemotherapy of tumors. Adv. Mater., 2016, 28(2), 245-253.
[http://dx.doi.org/10.1002/adma.201502669] [PMID: 26551334]
[http://dx.doi.org/10.1002/adma.201502669] [PMID: 26551334]
[41]
Qin, Y.; Chen, J.; Bi, Y.; Xu, X.; Zhou, H.; Gao, J.; Hu, Y.; Zhao, Y.; Chai, Z. Near-infrared light remote-controlled intracellular anti-cancer drug delivery using thermo/pH sensitive nanovehicle. Acta Biomater., 2015, 17, 201-209.
[http://dx.doi.org/10.1016/j.actbio.2015.01.026] [PMID: 25644449]
[http://dx.doi.org/10.1016/j.actbio.2015.01.026] [PMID: 25644449]
[42]
Aftab, W.; Huang, X.Y.; Wu, W.H.; Liang, Z.B.; Mahmood, A.; Zou, R.Q. Nanoconfined phase change materials for thermal energy applications. Energy Environ. Sci., 2018, 11(6), 1392-1424.
[http://dx.doi.org/10.1039/C7EE03587J]
[http://dx.doi.org/10.1039/C7EE03587J]
[43]
Kauzmann, W.; Eyring, H. The viscous flow of large molecules. J. Am. Chem. Soc., 1940, 62(11), 3113-3125.
[http://dx.doi.org/10.1021/ja01868a059]
[http://dx.doi.org/10.1021/ja01868a059]
[44]
Goodwin, A.P.; Mynar, J.L.; Ma, Y.; Fleming, G.R.; Fréchet, J.M.J. Synthetic micelle sensitive to IR light via a two-photon process. J. Am. Chem. Soc., 2005, 127(28), 9952-9953.
[http://dx.doi.org/10.1021/ja0523035] [PMID: 16011330]
[http://dx.doi.org/10.1021/ja0523035] [PMID: 16011330]
[45]
Sun, L.; Ma, X.; Dong, C.M.; Zhu, B.; Zhu, X. NIR-responsive and lectin-binding doxorubicin-loaded nanomedicine from Janus-type dendritic PAMAM amphiphiles. Biomacromolecules, 2012, 13(11), 3581-3591.
[http://dx.doi.org/10.1021/bm3010325] [PMID: 23017146]
[http://dx.doi.org/10.1021/bm3010325] [PMID: 23017146]
[46]
Kumar, S.; Allard, J.F.; Morris, D.; Dory, Y.L.; Lepage, M.; Zhao, Y. Near-infrared light sensitive polypeptide block copolymer micelles for drug delivery. J. Mater. Chem., 2012, 22(15), 7252-7257.
[http://dx.doi.org/10.1039/c2jm16380b]
[http://dx.doi.org/10.1039/c2jm16380b]
[47]
Yang, Y.; Yang, Y.; Xie, X.; Cai, X.; Wang, Z.; Gong, W.; Zhang, H.; Li, Y.; Mei, X. A near-infrared two-photon-sensitive peptide-mediated liposomal delivery system. Colloids Surf. B Biointerfaces, 2015, 128, 427-438.
[http://dx.doi.org/10.1016/j.colsurfb.2015.02.041] [PMID: 25766920]
[http://dx.doi.org/10.1016/j.colsurfb.2015.02.041] [PMID: 25766920]
[48]
Xie, X.; Yang, Y.; Yang, Y.; Mei, X. Photolabile-caged peptide-conjugated liposomes for siRNA delivery. J. Drug Target., 2015, 23(9), 789-799.
[http://dx.doi.org/10.3109/1061186X.2015.1009077] [PMID: 25675844]
[http://dx.doi.org/10.3109/1061186X.2015.1009077] [PMID: 25675844]
[49]
Wang, S.; Huang, P.; Chen, X. Stimuli-responsive programmed specific targeting in nanomedicine. ACS Nano, 2016, 10(3), 2991-2994.
[http://dx.doi.org/10.1021/acsnano.6b00870] [PMID: 26881288]
[http://dx.doi.org/10.1021/acsnano.6b00870] [PMID: 26881288]
[50]
Shamay, Y.; Adar, L.; Ashkenasy, G.; David, A. Light induced drug delivery into cancer cells. Biomaterials, 2011, 32(5), 1377-1386.
[http://dx.doi.org/10.1016/j.biomaterials.2010.10.029] [PMID: 21074848]
[http://dx.doi.org/10.1016/j.biomaterials.2010.10.029] [PMID: 21074848]
[51]
Yang, Y.; Xie, X.; Yang, Y.; Zhang, H.; Mei, X. Photo-responsive and NGR-mediated multifunctional nanostructured lipid carrier for tumor-specific therapy. J. Pharm. Sci., 2015, 104(4), 1328-1339.
[http://dx.doi.org/10.1002/jps.24333] [PMID: 25630979]
[http://dx.doi.org/10.1002/jps.24333] [PMID: 25630979]
[52]
Chien, Y.H.; Chou, Y.L.; Wang, S.W.; Hung, S.T.; Liau, M.C.; Chao, Y.J.; Su, C.H.; Yeh, C.S. Near-infrared light photocontrolled targeting, bioimaging, and chemotherapy with caged upconversion nanoparticles in vitro and in vivo. ACS Nano, 2013, 7(10), 8516-8528.
[http://dx.doi.org/10.1021/nn402399m] [PMID: 24070408]
[http://dx.doi.org/10.1021/nn402399m] [PMID: 24070408]
[53]
Fan, N.C.; Cheng, F.Y.; Ho, J.A.A.; Yeh, C.S. Photocontrolled targeted drug delivery: photocaged biologically active folic acid as a light-responsive tumor-targeting molecule. Angew. Chem. Int. Ed. Engl., 2012, 51(35), 8806-8810.
[http://dx.doi.org/10.1002/anie.201203339] [PMID: 22833461]
[http://dx.doi.org/10.1002/anie.201203339] [PMID: 22833461]
[54]
Yang, Y.; Xie, X.; Yang, Y.; Li, Z.; Yu, F.; Gong, W.; Li, Y.; Zhang, H.; Wang, Z.; Mei, X. Polymer nanoparticles modified with photo- and pH-dual-responsive polypeptides for enhanced and targeted cancer therapy. Mol. Pharm., 2016, 13(5), 1508-1519.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00977] [PMID: 27043442]
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00977] [PMID: 27043442]
[55]
Wang, J.X.; Shen, S.; Li, D.D.; Zhan, C.Y.; Yuan, Y.Y.; Yang, X.Z. Photoswitchable ultrafast transactivator of transcription (TAT) targeting effect for nanocarrier-based on-demand drug delivery. Adv. Funct. Mater., 2018, 28(3) 1704806
[http://dx.doi.org/10.1002/adfm.201704806]
[http://dx.doi.org/10.1002/adfm.201704806]
[56]
Onoue, S.; Yamada, S.; Chan, H.K. Nanodrugs: pharmacokinetics and safety. Int. J. Nanomedicine, 2014, 9, 1025-1037.
[http://dx.doi.org/10.2147/IJN.S38378] [PMID: 24591825]
[http://dx.doi.org/10.2147/IJN.S38378] [PMID: 24591825]
[57]
des Rieux, A.; Fievez, V.; Garinot, M.; Schneider, Y.J.; Préat, V. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J. Control. Release, 2006, 116(1), 1-27.
[http://dx.doi.org/10.1016/j.jconrel.2006.08.013] [PMID: 17050027]
[http://dx.doi.org/10.1016/j.jconrel.2006.08.013] [PMID: 17050027]
[58]
Kolate, A.; Baradia, D.; Patil, S.; Vhora, I.; Kore, G.; Misra, A. PEG - a versatile conjugating ligand for drugs and drug delivery systems. J. Control. Release, 2014, 192, 67-81.
[http://dx.doi.org/10.1016/j.jconrel.2014.06.046] [PMID: 24997275]
[http://dx.doi.org/10.1016/j.jconrel.2014.06.046] [PMID: 24997275]
[59]
Butcher, N.J.; Mortimer, G.M.; Minchin, R.F. Drug delivery: Unravelling the stealth effect. Nat. Nanotechnol., 2016, 11(4), 310-311.
[http://dx.doi.org/10.1038/nnano.2016.6] [PMID: 26878145]
[http://dx.doi.org/10.1038/nnano.2016.6] [PMID: 26878145]
[60]
Suk, J.S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L.M. PEGylation as a strategy for improving nanoparticle-based drug and gene deliveryAdv. Drug Deliv. Rev., 2016, 99(Pt A), 28-51.
[http://dx.doi.org/10.1016/j.addr.2015.09.012]
[http://dx.doi.org/10.1016/j.addr.2015.09.012]
[61]
Guan, X.; Guo, Z.; Wang, T.; Lin, L.; Chen, J.; Tian, H.; Chen, X. A pH-responsive detachable PEG shielding strategy for gene delivery system in cancer therapy. Biomacromolecules, 2017, 18(4), 1342-1349.
[http://dx.doi.org/10.1021/acs.biomac.7b00080] [PMID: 28272873]
[http://dx.doi.org/10.1021/acs.biomac.7b00080] [PMID: 28272873]
[62]
Yang, X.Z.; Du, J.Z.; Dou, S.; Mao, C.Q.; Long, H.Y.; Wang, J. Sheddable ternary nanoparticles for tumor acidity-targeted siRNA delivery. ACS Nano, 2012, 6(1), 771-781.
[http://dx.doi.org/10.1021/nn204240b] [PMID: 22136582]
[http://dx.doi.org/10.1021/nn204240b] [PMID: 22136582]
[63]
Hama, S.; Itakura, S.; Nakai, M.; Nakayama, K.; Morimoto, S.; Suzuki, S.; Kogure, K. Overcoming the polyethylene glycol dilemma via pathological environment-sensitive change of the surface property of nanoparticles for cellular entry. J. Control. Release, 2015, 206, 67-74.
[http://dx.doi.org/10.1016/j.jconrel.2015.03.011] [PMID: 25770398]
[http://dx.doi.org/10.1016/j.jconrel.2015.03.011] [PMID: 25770398]
[64]
Hatakeyama, H.; Akita, H.; Harashima, H. A multifunctional envelope type nano device (MEND) for gene delivery to tumours based on the EPR effect: a strategy for overcoming the PEG dilemma. Adv. Drug Deliv. Rev., 2011, 63(3), 152-160.
[http://dx.doi.org/10.1016/j.addr.2010.09.001] [PMID: 20840859]
[http://dx.doi.org/10.1016/j.addr.2010.09.001] [PMID: 20840859]
[65]
Li, J.; Sun, C.; Tao, W.; Cao, Z.; Qian, H.; Yang, X.; Wang, J. Photoinduced PEG deshielding from ROS-sensitive linkage-bridged block copolymer-based nanocarriers for on-demand drug delivery. Biomaterials, 2018, 170, 147-155.
[http://dx.doi.org/10.1016/j.biomaterials.2018.04.015] [PMID: 29674231]
[http://dx.doi.org/10.1016/j.biomaterials.2018.04.015] [PMID: 29674231]
[66]
Huang, M.; Li, H.; Ke, W.; Li, J.; Zhao, C.; Ge, Z. Finely tuned thermo-responsive block copolymer micelles for photothermal effect-triggered efficient cellular internalization. Macromol. Biosci., 2016, 16(9), 1265-1272.
[http://dx.doi.org/10.1002/mabi.201600119] [PMID: 27273364]
[http://dx.doi.org/10.1002/mabi.201600119] [PMID: 27273364]
[67]
Tong, R.; Hemmati, H.D.; Langer, R.; Kohane, D.S. Photoswitchable nanoparticles for triggered tissue penetration and drug delivery. J. Am. Chem. Soc., 2012, 134(21), 8848-8855.
[http://dx.doi.org/10.1021/ja211888a] [PMID: 22385538]
[http://dx.doi.org/10.1021/ja211888a] [PMID: 22385538]
[68]
Luo, Z.; Jin, K.; Pang, Q.; Shen, S.; Yan, Z.; Jiang, T.; Zhu, X.; Yu, L.; Pang, Z.; Jiang, X. On-demand drug release from dual-targeting small nanoparticles triggered by high-intensity focused ultrasound enhanced glioblastoma-targeting therapy. ACS Appl. Mater. Interfaces, 2017, 9(37), 31612-31625.
[http://dx.doi.org/10.1021/acsami.7b10866] [PMID: 28861994]
[http://dx.doi.org/10.1021/acsami.7b10866] [PMID: 28861994]
[69]
Zhu, Z.; Gao, N.; Wang, H.; Sukhishvili, S.A. Temperature-triggered on-demand drug release enabled by hydrogen-bonded multilayers of block copolymer micelles. J. Control. Release, 2013, 171(1), 73-80.
[http://dx.doi.org/10.1016/j.jconrel.2013.06.031] [PMID: 23831052]
[http://dx.doi.org/10.1016/j.jconrel.2013.06.031] [PMID: 23831052]
[70]
Lee, J.H.; Chen, K.J.; Noh, S.H.; Garcia, M.A.; Wang, H.; Lin, W.Y.; Jeong, H.; Kong, B.J.; Stout, D.B.; Cheon, J.; Tseng, H.R. On-demand drug release system for in vivo cancer treatment through self-assembled magnetic nanoparticles. Angew. Chem. Int. Ed. Engl., 2013, 52(16), 4384-4388.
[http://dx.doi.org/10.1002/anie.201207721] [PMID: 23519915]
[http://dx.doi.org/10.1002/anie.201207721] [PMID: 23519915]
[71]
Sun, C.Y.; Cao, Z.; Zhang, X.J.; Sun, R.; Yu, C.S.; Yang, X. Cascade-amplifying synergistic effects of chemo-photodynamic therapy using ROS-responsive polymeric nanocarriers. Theranostics, 2018, 8(11), 2939-2953.
[http://dx.doi.org/10.7150/thno.24015] [PMID: 29896295]
[http://dx.doi.org/10.7150/thno.24015] [PMID: 29896295]
[72]
Sheng, W.; He, S.; Seare, W.J.; Almutairi, A. Review of the progress toward achieving heat confinement-the holy grail of photothermal therapy. J. Biomed. Opt., 2017, 22(8), 80901.
[http://dx.doi.org/10.1117/1.JBO.22.8.080901] [PMID: 28776627]
[http://dx.doi.org/10.1117/1.JBO.22.8.080901] [PMID: 28776627]
[73]
Liu, H.; Wang, K.; Yang, C.; Huang, S.; Wang, M. Multifunctional polymeric micelles loaded with doxorubicin and poly(dithienyl-diketopyrrolopyrrole) for near-infrared light-controlled chemo-phototherapy of cancer cells. Colloids Surf. B Biointerfaces, 2017, 157, 398-406.
[http://dx.doi.org/10.1016/j.colsurfb.2017.05.080] [PMID: 28624725]
[http://dx.doi.org/10.1016/j.colsurfb.2017.05.080] [PMID: 28624725]
[74]
He, H.; Zhou, J.; Liu, Y.; Liu, S.; Xie, Z.; Yu, M.; Wang, Y.; Shuai, X. Near-infrared-light-induced morphology transition of poly(ether amine) nanoparticles for supersensitive drug release. ACS Appl. Mater. Interfaces, 2018, 10(8), 7413-7421.
[http://dx.doi.org/10.1021/acsami.8b00194] [PMID: 29405054]
[http://dx.doi.org/10.1021/acsami.8b00194] [PMID: 29405054]
[75]
Wang, C.; Mallela, J.; Garapati, U.S.; Ravi, S.; Chinnasamy, V.; Girard, Y.; Howell, M.; Mohapatra, S. A chitosan-modified graphene nanogel for noninvasive controlled drug release. Nanomedicine (Lond.), 2013, 9(7), 903-911.
[http://dx.doi.org/10.1016/j.nano.2013.01.003] [PMID: 23352802]
[http://dx.doi.org/10.1016/j.nano.2013.01.003] [PMID: 23352802]
[76]
Wang, J.X.; Liu, Y.; Ma, Y.C.; Sun, C.Y.; Tao, W.; Wang, Y.C.; Yang, X.Z.; Wang, J. NIR-activated supersensitive drug release using nanoparticles with a flow core. Adv. Funct. Mater., 2016, 26(41), 7516-7525.
[http://dx.doi.org/10.1002/adfm.201603195]
[http://dx.doi.org/10.1002/adfm.201603195]