Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Red and NIR Light-Responsive Polymeric Nanocarriers for On-Demand Drug Delivery

Author(s): Xinyu He, Xianzhu Yang*, Dongdong Li and Ziyang Cao

Volume 27, Issue 23, 2020

Page: [3877 - 3887] Pages: 11

DOI: 10.2174/0929867326666190215113522

Price: $65

Abstract

Red and NIR light-responsive polymeric nanocarriers capable of on-demand drug delivery have gained tremendous attention for their great potential in cancer therapy. Various strategies have been applied to fabricate such nanocarriers, and they have demonstrated significant therapeutic efficacy and minimal toxicity to normal tissues. Here, we will review the current developments in various red and NIR light-responsive polymeric nanocarriers with respect to their use in on-demand drug delivery, including facilitation of drug internalization and boosting of drug release at targeted sites. We summarize their components and design strategies, and highlight the mechanisms by which the photoactivatable variations enhance drug uptake and drug release. We attempt to provide new insights into the fabrication of red and NIR light-responsive polymeric nanocarriers for on-demand drug delivery.

Keywords: Polymeric nanocarriers, red light, NIR light, drug delivery, drug release, photothermal therapy, photodynamic therapy.

[1]
Zhang, X.Q.; Xu, X.; Bertrand, N.; Pridgen, E.; Swami, A.; Farokhzad, O.C. Interactions of nanomaterials and biological systems: Implications to personalized nanomedicine. Adv. Drug Deliv. Rev., 2012, 64(13), 1363-1384.
[http://dx.doi.org/10.1016/j.addr.2012.08.005] [PMID: 22917779]
[2]
Walkey, C.D.; Olsen, J.B.; Guo, H.; Emili, A.; Chan, W.C.W. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J. Am. Chem. Soc., 2012, 134(4), 2139-2147.
[http://dx.doi.org/10.1021/ja2084338] [PMID: 22191645]
[3]
Hu, Q.; Sun, W.; Lu, Y.; Bomba, H.N.; Ye, Y.; Jiang, T.; Isaacson, A.J.; Gu, Z. Tumor microenvironment-mediated construction and deconstruction of extracellular drug-delivery depots. Nano Lett., 2016, 16(2), 1118-1126.
[http://dx.doi.org/10.1021/acs.nanolett.5b04343] [PMID: 26785163]
[4]
Wan, S.; Kelly, P.M.; Mahon, E.; Stöckmann, H.; Rudd, P.M.; Caruso, F.; Dawson, K.A.; Yan, Y.; Monopoli, M.P. The “sweet” side of the protein corona: effects of glycosylation on nanoparticle-cell interactions. ACS Nano, 2015, 9(2), 2157-2166.
[http://dx.doi.org/10.1021/nn506060q] [PMID: 25599105]
[5]
Li, D.; Ma, Y.; Du, J.; Tao, W.; Du, X.; Yang, X.; Wang, J. Tumor acidity/NIR controlled interaction of transformable nanoparticle with biological systems for cancer therapy. Nano Lett., 2017, 17(5), 2871-2878.
[http://dx.doi.org/10.1021/acs.nanolett.6b05396] [PMID: 28375632]
[6]
Jhaveri, A.; Deshpande, P.; Torchilin, V. Stimuli-sensitive nanopreparations for combination cancer therapy. J. Control. Release, 2014, 190, 352-370.
[http://dx.doi.org/10.1016/j.jconrel.2014.05.002] [PMID: 24818767]
[7]
Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater., 2013, 12(11), 991-1003.
[http://dx.doi.org/10.1038/nmat3776] [PMID: 24150417]
[8]
Chen, Q.; Ke, H.; Dai, Z.; Liu, Z. Nanoscale theranostics for physical stimulus-responsive cancer therapies. Biomaterials, 2015, 73, 214-230.
[http://dx.doi.org/10.1016/j.biomaterials.2015.09.018] [PMID: 26410788]
[9]
Dai, Y.; Xu, C.; Sun, X.; Chen, X. Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment. Chem. Soc. Rev., 2017, 46(12), 3830-3852.
[http://dx.doi.org/10.1039/C6CS00592F] [PMID: 28516983]
[10]
Rwei, A.Y.; Wang, W.; Kohane, D.S. Photoresponsive nanoparticles for drug delivery. Nano Today, 2015, 10(4), 451-467.
[http://dx.doi.org/10.1016/j.nantod.2015.06.004] [PMID: 26644797]
[11]
Karimi, M.; Sahandi Zangabad, P.; Baghaee-Ravari, S.; Ghazadeh, M.; Mirshekari, H.; Hamblin, M.R. Smart nanostructures for cargo delivery: uncaging and activating by light. J. Am. Chem. Soc., 2017, 139(13), 4584-4610.
[http://dx.doi.org/10.1021/jacs.6b08313] [PMID: 28192672]
[12]
Linsley, C.S.; Wu, B.M. Recent advances in light-responsive on-demand drug-delivery systems. Ther. Deliv., 2017, 8(2), 89-107.
[http://dx.doi.org/10.4155/tde-2016-0060] [PMID: 28088880]
[13]
Yue, X.; Zhang, Q.; Dai, Z. Near-infrared light-activatable polymeric nanoformulations for combined therapy and imaging of cancer. Adv. Drug Deliv. Rev., 2017, 115, 155-170.
[http://dx.doi.org/10.1016/j.addr.2017.04.007] [PMID: 28455188]
[14]
Min, C.; Zou, X.; Yang, Q.; Liao, L.; Zhou, G.; Liu, L. Near-infrared light responsive polymeric nanocomposites for cancer therapy. Curr. Top. Med. Chem., 2017, 17(16), 1805-1814.
[http://dx.doi.org/10.2174/1568026617666161122120153] [PMID: 27875978]
[15]
Wang, Y.; Deng, Y.; Luo, H.; Zhu, A.; Ke, H.; Yang, H.; Chen, H. Light-responsive nanoparticles for highly efficient cytoplasmic delivery of anticancer agents. ACS Nano, 2017, 11(12), 12134-12144.
[http://dx.doi.org/10.1021/acsnano.7b05214] [PMID: 29141151]
[16]
Alejo, T.; Andreu, V.; Mendoza, G.; Sebastian, V.; Arruebo, M. Controlled release of bupivacaine using hybrid thermoresponsive nanoparticles activated via photothermal heating. J. Colloid Interface Sci., 2018, 523, 234-244.
[http://dx.doi.org/10.1016/j.jcis.2018.03.107] [PMID: 29626761]
[17]
Zhou, F.Y.; Feng, B.; Wang, T.T.; Wang, D.G.; Meng, Q.S.; Zeng, J.F.; Zhang, Z.W.; Wang, S.L.; Yu, H.J.; Li, Y.P. Programmed multiresponsive vesicles for enhanced tumor penetration and combination therapy of triple-negative breast cancer. Adv. Funct. Mater., 2017, 27(20) 1606530
[http://dx.doi.org/10.1002/adfm.201606530]
[18]
Xu, Q.; He, C.; Xiao, C.; Chen, X. Reactive oxygen species (ROS) responsive polymers for biomedical applications. Macromol. Biosci., 2016, 16(5), 635-646.
[http://dx.doi.org/10.1002/mabi.201500440] [PMID: 26891447]
[19]
Karimi, M.; Sahandi Zangabad, P.; Ghasemi, A.; Amiri, M.; Bahrami, M.; Malekzad, H.; Ghahramanzadeh Asl, H.; Mahdieh, Z.; Bozorgomid, M.; Ghasemi, A.; Rahmani Taji Boyuk, M.R.; Hamblin, M.R. Temperature-responsive smart nanocarriers for delivery of therapeutic agents: applications and recent advances. ACS Appl. Mater. Interfaces, 2016, 8(33), 21107-21133.
[http://dx.doi.org/10.1021/acsami.6b00371] [PMID: 27349465]
[20]
Cao, Z.Y.; Ma, Y.C.; Sun, C.Y.; Lu, Z.D.; Yao, Z.Y.; Wang, J.X.; Li, D.D.; Yuan, Y.Y.; Yang, X.Z. ROS-Sensitive polymeric nanocarriers with red light-activated size shrinkage for remotely controlled drug release. Chem. Mater., 2018, 30(2), 517-525.
[http://dx.doi.org/10.1021/acs.chemmater.7b04751]
[21]
Dai, L.; Yu, Y.; Luo, Z.; Li, M.; Chen, W.; Shen, X.; Chen, F.; Sun, Q.; Zhang, Q.; Gu, H.; Cai, K. Photosensitizer enhanced disassembly of amphiphilic micelle for ROS-response targeted tumor therapy in vivo. Biomaterials, 2016, 104, 1-17.
[http://dx.doi.org/10.1016/j.biomaterials.2016.07.002] [PMID: 27423095]
[22]
Sun, H.P.; Su, J.H.; Meng, Q.S.; Yin, Q.; Chen, L.L.; Gu, W.W.; Zhang, Z.W.; Yu, H.J.; Zhang, P.C.; Wang, S.L.; Li, Y.P. Cancer cell membrane-coated gold nanocages with hyperthermia-triggered drug release and homotypic target inhibit growth and metastasis of breast cancer. Adv. Funct. Mater., 2017, 27(3) 1604300
[http://dx.doi.org/10.1002/adfm.201604300]
[23]
Luo, D.; Carter, K.A.; Miranda, D.; Lovell, J.F. Chemophototherapy: an emerging treatment option for solid tumors. Adv. Sci. (Weinh.), 2016, 4(1) 1600106
[http://dx.doi.org/10.1002/advs.201600106] [PMID: 28105389]
[24]
Su, J.H.; Sun, H.P.; Meng, Q.S.; Yin, Q.; Zhang, P.C.; Zhang, Z.W.; Yu, H.J.; Li, Y.P. Bioinspired nanoparticles with NIR-controlled drug release for synergetic chemophotothermal therapy of metastatic breast cancer. Adv. Funct. Mater., 2016, 26(41), 7495-7506.
[http://dx.doi.org/10.1002/adfm.201603381]
[25]
Yokoyama, M. Clinical applications of polymeric micelle carrier systems in chemotherapy and image diagnosis of solid tumors. J. Exp. Clin. Med., 2011, 3(4), 151-158.
[http://dx.doi.org/10.1016/j.jecm.2011.06.002]
[26]
Moritz, M.; Geszke-Moritz, M. Recent developments in the application of polymeric nanoparticles as drug carriers. Adv. Clin. Exp. Med., 2015, 24(5), 749-758.
[http://dx.doi.org/10.17219/acem/31802] [PMID: 26768624]
[27]
Kim, K.; Lee, C.S.; Na, K. Light-controlled reactive oxygen species (ROS)-producible polymeric micelles with simultaneous drug-release triggering and endo/lysosomal escape. Chem. Commun. (Camb.), 2016, 52(13), 2839-2842.
[http://dx.doi.org/10.1039/C5CC09239F] [PMID: 26779576]
[28]
Wang, J.; He, H.; Xu, X.; Wang, X.; Chen, Y.; Yin, L. Far-red light-mediated programmable anti-cancer gene delivery in cooperation with photodynamic therapy. Biomaterials, 2018, 171, 72-82.
[http://dx.doi.org/10.1016/j.biomaterials.2018.04.020] [PMID: 29680675]
[29]
Xu, L.; Yang, Y.; Zhao, M.; Gao, W.; Zhang, H.; Li, S.; He, B.; Pu, Y. A reactive oxygen species-responsive prodrug micelle with efficient cellular uptake and excellent bioavailability. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(7), 1076-1084.
[http://dx.doi.org/10.1039/C7TB02479G] [PMID: 32254295]
[30]
Han, P.; Li, S.; Cao, W.; Li, Y.; Sun, Z.; Wang, Z.; Xu, H. Red light responsive diselenide-containing block copolymer micelles. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(6), 740-743.
[http://dx.doi.org/10.1039/C2TB00186A] [PMID: 32260730]
[31]
Cao, W.; Wang, L.; Xu, H.P. Selenium/tellurium containing polymer materials in nanobiotechnology. Nano Today, 2015, 10(6), 717-736.
[http://dx.doi.org/10.1016/j.nantod.2015.11.004]
[32]
Qian, C.; Yu, J.; Chen, Y.; Hu, Q.; Xiao, X.; Sun, W.; Wang, C.; Feng, P.; Shen, Q.D.; Gu, Z. Light-activated hypoxia-responsive nanocarriers for enhanced anticancer therapy. Adv. Mater., 2016, 28(17), 3313-3320.
[http://dx.doi.org/10.1002/adma.201505869] [PMID: 26948067]
[33]
Thambi, T.; Deepagan, V.G.; Yoon, H.Y.; Han, H.S.; Kim, S.H.; Son, S.; Jo, D.G.; Ahn, C.H.; Suh, Y.D.; Kim, K.; Kwon, I.C.; Lee, D.S.; Park, J.H. Hypoxia-responsive polymeric nanoparticles for tumor-targeted drug delivery. Biomaterials, 2014, 35(5), 1735-1743.
[http://dx.doi.org/10.1016/j.biomaterials.2013.11.022] [PMID: 24290696]
[34]
He, H.; Zhu, R.; Sun, W.; Cai, K.; Chen, Y.; Yin, L. Selective cancer treatment via photodynamic sensitization of hypoxia-responsive drug delivery. Nanoscale, 2018, 10(6), 2856-2865.
[http://dx.doi.org/10.1039/C7NR07677K] [PMID: 29364314]
[35]
Thambi, T.; Park, J.H.; Lee, D.S. Hypoxia-responsive nanocarriers for cancer imaging and therapy: recent approaches and future perspectives. Chem. Commun. (Camb.), 2016, 52(55), 8492-8500.
[http://dx.doi.org/10.1039/C6CC02972H] [PMID: 27225824]
[36]
Wang, W.; Lin, L.; Ma, X.; Wang, B.; Liu, S.; Yan, X.; Li, S.; Tian, H.; Yu, X. Light-induced hypoxia-triggered living nanocarriers for synergistic cancer therapy. ACS Appl. Mater. Interfaces, 2018, 10(23), 19398-19407.
[http://dx.doi.org/10.1021/acsami.8b03506] [PMID: 29781276]
[37]
Zhang, H.; Guo, S.; Fu, S.; Zhao, Y. A near-infrared light-responsive hybrid hydrogel based on UCST triblock copolymer and gold nanorods. Polymers (Basel), 2017, 9(6), 238.
[http://dx.doi.org/10.3390/polym9060238] [PMID: 30970915]
[38]
Deng, Y.; Käfer, F.; Chen, T.; Jin, Q.; Ji, J.; Agarwal, S. Let there be light: polymeric micelles with upper critical solution temperature as light-triggered heat nanogenerators for combating drug-resistant cancer. Small, 2018, 14(37) e1802420
[http://dx.doi.org/10.1002/smll.201802420] [PMID: 30129095]
[39]
Zhang, Z.; Wang, J.; Nie, X.; Wen, T.; Ji, Y.; Wu, X.; Zhao, Y.; Chen, C. Near infrared laser-induced targeted cancer therapy using thermoresponsive polymer encapsulated gold nanorods. J. Am. Chem. Soc., 2014, 136(20), 7317-7326.
[http://dx.doi.org/10.1021/ja412735p] [PMID: 24773323]
[40]
Meng, Z.; Wei, F.; Wang, R.; Xia, M.; Chen, Z.; Wang, H.; Zhu, M. NIR-laser-switched in vivo smart nanocapsules for synergic photothermal and chemotherapy of tumors. Adv. Mater., 2016, 28(2), 245-253.
[http://dx.doi.org/10.1002/adma.201502669] [PMID: 26551334]
[41]
Qin, Y.; Chen, J.; Bi, Y.; Xu, X.; Zhou, H.; Gao, J.; Hu, Y.; Zhao, Y.; Chai, Z. Near-infrared light remote-controlled intracellular anti-cancer drug delivery using thermo/pH sensitive nanovehicle. Acta Biomater., 2015, 17, 201-209.
[http://dx.doi.org/10.1016/j.actbio.2015.01.026] [PMID: 25644449]
[42]
Aftab, W.; Huang, X.Y.; Wu, W.H.; Liang, Z.B.; Mahmood, A.; Zou, R.Q. Nanoconfined phase change materials for thermal energy applications. Energy Environ. Sci., 2018, 11(6), 1392-1424.
[http://dx.doi.org/10.1039/C7EE03587J]
[43]
Kauzmann, W.; Eyring, H. The viscous flow of large molecules. J. Am. Chem. Soc., 1940, 62(11), 3113-3125.
[http://dx.doi.org/10.1021/ja01868a059]
[44]
Goodwin, A.P.; Mynar, J.L.; Ma, Y.; Fleming, G.R.; Fréchet, J.M.J. Synthetic micelle sensitive to IR light via a two-photon process. J. Am. Chem. Soc., 2005, 127(28), 9952-9953.
[http://dx.doi.org/10.1021/ja0523035] [PMID: 16011330]
[45]
Sun, L.; Ma, X.; Dong, C.M.; Zhu, B.; Zhu, X. NIR-responsive and lectin-binding doxorubicin-loaded nanomedicine from Janus-type dendritic PAMAM amphiphiles. Biomacromolecules, 2012, 13(11), 3581-3591.
[http://dx.doi.org/10.1021/bm3010325] [PMID: 23017146]
[46]
Kumar, S.; Allard, J.F.; Morris, D.; Dory, Y.L.; Lepage, M.; Zhao, Y. Near-infrared light sensitive polypeptide block copolymer micelles for drug delivery. J. Mater. Chem., 2012, 22(15), 7252-7257.
[http://dx.doi.org/10.1039/c2jm16380b]
[47]
Yang, Y.; Yang, Y.; Xie, X.; Cai, X.; Wang, Z.; Gong, W.; Zhang, H.; Li, Y.; Mei, X. A near-infrared two-photon-sensitive peptide-mediated liposomal delivery system. Colloids Surf. B Biointerfaces, 2015, 128, 427-438.
[http://dx.doi.org/10.1016/j.colsurfb.2015.02.041] [PMID: 25766920]
[48]
Xie, X.; Yang, Y.; Yang, Y.; Mei, X. Photolabile-caged peptide-conjugated liposomes for siRNA delivery. J. Drug Target., 2015, 23(9), 789-799.
[http://dx.doi.org/10.3109/1061186X.2015.1009077] [PMID: 25675844]
[49]
Wang, S.; Huang, P.; Chen, X. Stimuli-responsive programmed specific targeting in nanomedicine. ACS Nano, 2016, 10(3), 2991-2994.
[http://dx.doi.org/10.1021/acsnano.6b00870] [PMID: 26881288]
[50]
Shamay, Y.; Adar, L.; Ashkenasy, G.; David, A. Light induced drug delivery into cancer cells. Biomaterials, 2011, 32(5), 1377-1386.
[http://dx.doi.org/10.1016/j.biomaterials.2010.10.029] [PMID: 21074848]
[51]
Yang, Y.; Xie, X.; Yang, Y.; Zhang, H.; Mei, X. Photo-responsive and NGR-mediated multifunctional nanostructured lipid carrier for tumor-specific therapy. J. Pharm. Sci., 2015, 104(4), 1328-1339.
[http://dx.doi.org/10.1002/jps.24333] [PMID: 25630979]
[52]
Chien, Y.H.; Chou, Y.L.; Wang, S.W.; Hung, S.T.; Liau, M.C.; Chao, Y.J.; Su, C.H.; Yeh, C.S. Near-infrared light photocontrolled targeting, bioimaging, and chemotherapy with caged upconversion nanoparticles in vitro and in vivo. ACS Nano, 2013, 7(10), 8516-8528.
[http://dx.doi.org/10.1021/nn402399m] [PMID: 24070408]
[53]
Fan, N.C.; Cheng, F.Y.; Ho, J.A.A.; Yeh, C.S. Photocontrolled targeted drug delivery: photocaged biologically active folic acid as a light-responsive tumor-targeting molecule. Angew. Chem. Int. Ed. Engl., 2012, 51(35), 8806-8810.
[http://dx.doi.org/10.1002/anie.201203339] [PMID: 22833461]
[54]
Yang, Y.; Xie, X.; Yang, Y.; Li, Z.; Yu, F.; Gong, W.; Li, Y.; Zhang, H.; Wang, Z.; Mei, X. Polymer nanoparticles modified with photo- and pH-dual-responsive polypeptides for enhanced and targeted cancer therapy. Mol. Pharm., 2016, 13(5), 1508-1519.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00977] [PMID: 27043442]
[55]
Wang, J.X.; Shen, S.; Li, D.D.; Zhan, C.Y.; Yuan, Y.Y.; Yang, X.Z. Photoswitchable ultrafast transactivator of transcription (TAT) targeting effect for nanocarrier-based on-demand drug delivery. Adv. Funct. Mater., 2018, 28(3) 1704806
[http://dx.doi.org/10.1002/adfm.201704806]
[56]
Onoue, S.; Yamada, S.; Chan, H.K. Nanodrugs: pharmacokinetics and safety. Int. J. Nanomedicine, 2014, 9, 1025-1037.
[http://dx.doi.org/10.2147/IJN.S38378] [PMID: 24591825]
[57]
des Rieux, A.; Fievez, V.; Garinot, M.; Schneider, Y.J.; Préat, V. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J. Control. Release, 2006, 116(1), 1-27.
[http://dx.doi.org/10.1016/j.jconrel.2006.08.013] [PMID: 17050027]
[58]
Kolate, A.; Baradia, D.; Patil, S.; Vhora, I.; Kore, G.; Misra, A. PEG - a versatile conjugating ligand for drugs and drug delivery systems. J. Control. Release, 2014, 192, 67-81.
[http://dx.doi.org/10.1016/j.jconrel.2014.06.046] [PMID: 24997275]
[59]
Butcher, N.J.; Mortimer, G.M.; Minchin, R.F. Drug delivery: Unravelling the stealth effect. Nat. Nanotechnol., 2016, 11(4), 310-311.
[http://dx.doi.org/10.1038/nnano.2016.6] [PMID: 26878145]
[60]
Suk, J.S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L.M. PEGylation as a strategy for improving nanoparticle-based drug and gene deliveryAdv. Drug Deliv. Rev., 2016, 99(Pt A), 28-51.
[http://dx.doi.org/10.1016/j.addr.2015.09.012]
[61]
Guan, X.; Guo, Z.; Wang, T.; Lin, L.; Chen, J.; Tian, H.; Chen, X. A pH-responsive detachable PEG shielding strategy for gene delivery system in cancer therapy. Biomacromolecules, 2017, 18(4), 1342-1349.
[http://dx.doi.org/10.1021/acs.biomac.7b00080] [PMID: 28272873]
[62]
Yang, X.Z.; Du, J.Z.; Dou, S.; Mao, C.Q.; Long, H.Y.; Wang, J. Sheddable ternary nanoparticles for tumor acidity-targeted siRNA delivery. ACS Nano, 2012, 6(1), 771-781.
[http://dx.doi.org/10.1021/nn204240b] [PMID: 22136582]
[63]
Hama, S.; Itakura, S.; Nakai, M.; Nakayama, K.; Morimoto, S.; Suzuki, S.; Kogure, K. Overcoming the polyethylene glycol dilemma via pathological environment-sensitive change of the surface property of nanoparticles for cellular entry. J. Control. Release, 2015, 206, 67-74.
[http://dx.doi.org/10.1016/j.jconrel.2015.03.011] [PMID: 25770398]
[64]
Hatakeyama, H.; Akita, H.; Harashima, H. A multifunctional envelope type nano device (MEND) for gene delivery to tumours based on the EPR effect: a strategy for overcoming the PEG dilemma. Adv. Drug Deliv. Rev., 2011, 63(3), 152-160.
[http://dx.doi.org/10.1016/j.addr.2010.09.001] [PMID: 20840859]
[65]
Li, J.; Sun, C.; Tao, W.; Cao, Z.; Qian, H.; Yang, X.; Wang, J. Photoinduced PEG deshielding from ROS-sensitive linkage-bridged block copolymer-based nanocarriers for on-demand drug delivery. Biomaterials, 2018, 170, 147-155.
[http://dx.doi.org/10.1016/j.biomaterials.2018.04.015] [PMID: 29674231]
[66]
Huang, M.; Li, H.; Ke, W.; Li, J.; Zhao, C.; Ge, Z. Finely tuned thermo-responsive block copolymer micelles for photothermal effect-triggered efficient cellular internalization. Macromol. Biosci., 2016, 16(9), 1265-1272.
[http://dx.doi.org/10.1002/mabi.201600119] [PMID: 27273364]
[67]
Tong, R.; Hemmati, H.D.; Langer, R.; Kohane, D.S. Photoswitchable nanoparticles for triggered tissue penetration and drug delivery. J. Am. Chem. Soc., 2012, 134(21), 8848-8855.
[http://dx.doi.org/10.1021/ja211888a] [PMID: 22385538]
[68]
Luo, Z.; Jin, K.; Pang, Q.; Shen, S.; Yan, Z.; Jiang, T.; Zhu, X.; Yu, L.; Pang, Z.; Jiang, X. On-demand drug release from dual-targeting small nanoparticles triggered by high-intensity focused ultrasound enhanced glioblastoma-targeting therapy. ACS Appl. Mater. Interfaces, 2017, 9(37), 31612-31625.
[http://dx.doi.org/10.1021/acsami.7b10866] [PMID: 28861994]
[69]
Zhu, Z.; Gao, N.; Wang, H.; Sukhishvili, S.A. Temperature-triggered on-demand drug release enabled by hydrogen-bonded multilayers of block copolymer micelles. J. Control. Release, 2013, 171(1), 73-80.
[http://dx.doi.org/10.1016/j.jconrel.2013.06.031] [PMID: 23831052]
[70]
Lee, J.H.; Chen, K.J.; Noh, S.H.; Garcia, M.A.; Wang, H.; Lin, W.Y.; Jeong, H.; Kong, B.J.; Stout, D.B.; Cheon, J.; Tseng, H.R. On-demand drug release system for in vivo cancer treatment through self-assembled magnetic nanoparticles. Angew. Chem. Int. Ed. Engl., 2013, 52(16), 4384-4388.
[http://dx.doi.org/10.1002/anie.201207721] [PMID: 23519915]
[71]
Sun, C.Y.; Cao, Z.; Zhang, X.J.; Sun, R.; Yu, C.S.; Yang, X. Cascade-amplifying synergistic effects of chemo-photodynamic therapy using ROS-responsive polymeric nanocarriers. Theranostics, 2018, 8(11), 2939-2953.
[http://dx.doi.org/10.7150/thno.24015] [PMID: 29896295]
[72]
Sheng, W.; He, S.; Seare, W.J.; Almutairi, A. Review of the progress toward achieving heat confinement-the holy grail of photothermal therapy. J. Biomed. Opt., 2017, 22(8), 80901.
[http://dx.doi.org/10.1117/1.JBO.22.8.080901] [PMID: 28776627]
[73]
Liu, H.; Wang, K.; Yang, C.; Huang, S.; Wang, M. Multifunctional polymeric micelles loaded with doxorubicin and poly(dithienyl-diketopyrrolopyrrole) for near-infrared light-controlled chemo-phototherapy of cancer cells. Colloids Surf. B Biointerfaces, 2017, 157, 398-406.
[http://dx.doi.org/10.1016/j.colsurfb.2017.05.080] [PMID: 28624725]
[74]
He, H.; Zhou, J.; Liu, Y.; Liu, S.; Xie, Z.; Yu, M.; Wang, Y.; Shuai, X. Near-infrared-light-induced morphology transition of poly(ether amine) nanoparticles for supersensitive drug release. ACS Appl. Mater. Interfaces, 2018, 10(8), 7413-7421.
[http://dx.doi.org/10.1021/acsami.8b00194] [PMID: 29405054]
[75]
Wang, C.; Mallela, J.; Garapati, U.S.; Ravi, S.; Chinnasamy, V.; Girard, Y.; Howell, M.; Mohapatra, S. A chitosan-modified graphene nanogel for noninvasive controlled drug release. Nanomedicine (Lond.), 2013, 9(7), 903-911.
[http://dx.doi.org/10.1016/j.nano.2013.01.003] [PMID: 23352802]
[76]
Wang, J.X.; Liu, Y.; Ma, Y.C.; Sun, C.Y.; Tao, W.; Wang, Y.C.; Yang, X.Z.; Wang, J. NIR-activated supersensitive drug release using nanoparticles with a flow core. Adv. Funct. Mater., 2016, 26(41), 7516-7525.
[http://dx.doi.org/10.1002/adfm.201603195]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy