[1]
Masoli, M.; Fabian, D.; Holt, S.; Beasley, R. Global Initiative for Asthma, P. The global burden of asthma: Executive summary of the GINA Dissemination Committee report. Allergy, 2004, 59(5), 469-478.
[2]
Tattersfield, A.E.; Postma, D.S.; Barnes, P.J.; Svensson, K.; Bauer, C.A.; O’Byrne, P.M.; Lofdahl, C.G.; Pauwels, R.A.; Ullman, A. Exacerbations of asthma: A descriptive study of 425 severe exacerbations. The FACET International Study Group. Am. J. Respir. Crit. Care Med., 1999, 160(2), 594-599.
[3]
Miller, M.K.; Lee, J.H.; Miller, D.P.; Wenzel, S.E.; Group, T.S. Recent asthma exacerbations: A key predictor of future exacerbations. Respir. Med., 2007, 101(3), 481-489.
[4]
ten Brinke, A.; Sterk, P.J.; Masclee, A.A.; Spinhoven, P.; Schmidt, J.T.; Zwinderman, A.H.; Rabe, K.F.; Bel, E.H. Risk factors of frequent exacerbations in difficult-to-treat asthma. Eur. Respir. J., 2005, 26(5), 812-818.
[5]
Seemungal, T.; Harper-Owen, R.; Bhowmik, A.; Moric, I.; Sanderson, G.; Message, S.; Maccallum, P.; Meade, T.W.; Jeffries, D.J.; Johnston, S.L.; Wedzicha, J.A. Respiratory viruses, symptoms, and inflammatory markers in acute exacerbations and stable chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med., 2001, 164(9), 1618-1623.
[6]
Green, R.M.; Custovic, A.; Sanderson, G.; Hunter, J.; Johnston, S.L.; Woodcock, A. Synergism between allergens and viruses and risk of hospital admission with asthma: Case-control study. BMJ, 2002, 324(7340), 763.
[7]
Rodrigo, G.J.; Rodrigo, C.; Hall, J.B. Acute asthma in adults: A review. Chest, 2004, 125(3), 1081-1102.
[8]
Cooper, V.; Metcalf, L.; Versnel, J.; Upton, J.; Walker, S.; Horne, R. Patient-reported side effects, concerns and adherence to corticosteroid treatment for asthma, and comparison with physician estimates of side-effect prevalence: A UK-wide, cross-sectional study. NPJ Prim. Care Respir. Med., 2015, 25, 15026.
[9]
Doull, I.J.; Lampe, F.C.; Smith, S.; Schreiber, J.; Freezer, N.J.; Holgate, S.T. Effect of inhaled corticosteroids on episodes of wheezing associated with viral infection in school age children: Randomised double blind placebo controlled trial. BMJ, 1997, 315(7112), 858-862.
[10]
Kaba, R.A.; Ahmed, O.; Cannie, D. Response to ‘Lack of reversibility for NOACs’. Glob. Cardiol. Sci. Pract., 2014, 2014(1), 2.
[11]
Hayward, G.; Thompson, M.J.; Perera, R.; Del Mar, C.B.; Glasziou, P.P.; Heneghan, C.J. Corticosteroids for the common cold. Cochrane Database Syst. Rev., 2015, (10), CD008116.
[12]
Reichelt, K.L.; Edminson, P.D.; Kvamme, E. The formation of peptido-amines from constituent amino acids and histamine in hypothalamic tissue. J. Neurochem., 1976, 26(4), 811-815.
[13]
McCaman, M.W.; Stetzler, J.; Clark, B. Synthesis of gamma-glutamyldopamine and other peptidoamines in the nervous system of Aplysia californica. J. Neurochem., 1985, 45(6), 1828-1835.
[14]
Stein, C.; Weinreich, D. An in vitro characterization of gamma-glutamylhistamine synthetase: A novel enzyme catalyzing histamine metabolism in the central nervous system of the marine mollusk, Aplysia californica. J. Neurochem., 1982, 38(1), 204-214.
[15]
Sloley, B.D.; Juorio, A.V.; Durden, D.A. High-performance liquid chromatographic analysis of monoamines and some of their gamma-glutamyl conjugates produced by the brain and other tissues of Helix aspersa (Gastropoda). Cell. Mol. Neurobiol., 1990, 10(2), 175-192.
[16]
Battelle, B.A.; Hart, M.K. Histamine metabolism in the visual system of the horseshoe crab Limulus polyphemus. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 2002, 133(1), 135-142.
[17]
Kovaleva, V.L.; Nebol’sin, V.E.; Karabinenko, A.A.; Zheltukhina, G.A.; Uteshev, D.B. The protector properties of a pseudopeptide drug ingamine studied on a model of bronchospasm in guinea pigs. Eksp. Klin. Farmakol., 2005, 68(2), 21-24.
[18]
Kovaleva, V.L.; Nebol’sin, V.E.; Makarova, O.V.; Noseikina, E.M.; Mikhailova, L.P. The effect of a potential drug ingamine on a model of noninfectious pneumonia. Eksp. Klin. Farmakol., 2004, 67(4), 30-34.
[19]
Nebol’sin, V.E.; Zheltukhina, G.A.; Krzhechkovskaia, V.V.; Kovaleva, V.L.; Evstigneeva, R.P. The effect of gamma-L-glutamylhistamine analogues on the severity of experimental anaphylactic reaction, hormonal status and liver cytochrome P450 system. Vopr. Med. Khim., 2001, 47(3), 301-307.
[20]
Finsnes, F.; Lyberg, T.; Christensen, G.; Skjonsberg, O.H. Leukotriene antagonism reduces the generation of endothelin-1 and interferon-gamma and inhibits eosinophilic airway inflammation. Respir. Med., 2002, 96(11), 901-906.
[21]
Mojtabavi, N.; Dekan, G.; Stingl, G.; Epstein, M.M. Long-lived Th2 memory in experimental allergic asthma. J. Immunol., 2002, 169(9), 4788-4796.
[23]
Meurs, H.; Santing, R.E.; Remie, R.; van der Mark, T.W.; Westerhof, F.J.; Zuidhof, A.B.; Bos, I.S.; Zaagsma, J. A guinea pig model of acute and chronic asthma using permanently instrumented and unrestrained animals. Nat. Protoc., 2006, 1(2), 840-847.
[24]
Maarsingh, H.; Dekkers, B.G.; Zuidhof, A.B.; Bos, I.S.; Menzen, M.H.; Klein, T.; Flik, G.; Zaagsma, J.; Meurs, H. Increased arginase activity contributes to airway remodelling in chronic allergic asthma. Eur. Respir. J., 2011, 38(2), 318-328.
[25]
Lee, J.Y.; Lee, J.G.; Sim, S.S.; Whang, W.K.; Kim, C.J. Anti-asthmatic effects of phenylpropanoid glycosides from Clerodendron trichotomum leaves and Rumex gmelini herbes in conscious guinea-pigs challenged with aerosolized ovalbumin. Phytomedicine, 2011, 18(2-3), 134-142.
[26]
Hirasawa, M.; Ito, Y.; Shibata, M.A.; Otsuki, Y. Mechanism of inflammation in murine eosinophilic myocarditis produced by adoptive transfer with ovalbumin challenge. Int. Arch. Allergy Immunol., 2007, 142(1), 28-39.
[27]
Ellis, R.; Leigh, R.; Southam, D.; O’Byrne, P.M.; Inman, M.D. Morphometric analysis of mouse airways after chronic allergen challenge. Lab. Invest., 2003, 83(9), 1285-1291.
[28]
Hamelmann, E.; Schwarze, J.; Takeda, K.; Oshiba, A.; Larsen, G.L.; Irvin, C.G.; Gelfand, E.W. Noninvasive measurement of airway responsiveness in allergic mice using barometric plethysmography. Am. J. Respir. Crit. Care Med., 1997, 156(3 Pt 1), 766-775.
[29]
Cotgreave, I.A.; Duddy, S.K.; Kass, G.E.; Thompson, D.; Moldeus, P. Studies on the anti-inflammatory activity of ebselen. Ebselen interferes with granulocyte oxidative burst by dual inhibition of NADPH oxidase and protein kinase C? Biochem. Pharmacol., 1989, 38(4), 649-656.
[30]
Kallos, P.; Kallos, L. Experimental asthma in guinea pigs revisited. Int. Arch. Allergy Appl. Immunol., 1984, 73(1), 77-85.
[31]
Aun, M.V.; Bonamichi-Santos, R.; Arantes-Costa, F.M.; Kalil, J.; Giavina-Bianchi, P. Animal models of asthma: Utility and limitations. J. Asthma Allergy, 2017, 10, 293-301.
[32]
Chen, Z.; Bai, F.F.; Han, L.; Zhu, J.; Zheng, T.; Zhu, Z.; Zhou, L.F. Targeting neutrophils in severe asthma via Siglec-9. Int. Arch. Allergy Immunol., 2018.
[33]
Bruijnzeel, P.L.; Uddin, M.; Koenderman, L. Targeting neutrophilic inflammation in severe neutrophilic asthma: Can we target the disease-relevant neutrophil phenotype? J. Leukoc. Biol., 2015, 98(4), 549-556.
[34]
Pesci, A.; Rossi, G.A.; Bertorelli, G.; Aufiero, A.; Zanon, P.; Olivieri, D. Mast cells in the airway lumen and bronchial mucosa of patients with chronic bronchitis. Am. J. Respir. Crit. Care Med., 1994, 149(5), 1311-1316.
[35]
Carroll, N.G.; Mutavdzic, S.; James, A.L. Distribution and degranulation of airway mast cells in normal and asthmatic subjects. Eur. Respir. J., 2002, 19(5), 879-885.
[36]
Kandeel, M.; Balaha, M.; Inagaki, N.; Kitade, Y. Current and future asthma therapies. Drugs Today (Barc), 2013, 49(5), 325-339.
[37]
British Thoracic. S.; Scottish Intercollegiate Guidelines, N. British guideline on the management of asthma. Thorax, 2014, 69(Suppl. 1), 1-192.
[38]
Lane, N.E. An update on glucocorticoid-induced osteoporosis. Rheum. Dis. Clin. North Am., 2001, 27(1), 235-253.
[39]
Busby, W.H., Jr; Quackenbush, G.E.; Humm, J.; Youngblood, W.W.; Kizer, J.S. An enzyme(s) that converts glutaminyl-peptides into pyroglutamyl-peptides. Presence in pituitary, brain, adrenal medulla, and lymphocytes. J. Biol. Chem., 1987, 262(18), 8532-8536.
[40]
Shahabuddin, S.; Ponath, P.; Schleimer, R.P. Migration of eosinophils across endothelial cell monolayers: Interactions among IL-5, endothelial-activating cytokines, and C-C chemokines. J. Immunol., 2000, 164(7), 3847-3854.
[41]
Palmqvist, C.; Wardlaw, A.J.; Bradding, P. Chemokines and their receptors as potential targets for the treatment of asthma. Br. J. Pharmacol., 2007, 151(6), 725-736.
[42]
Wang, A.; Wang, Z.; Cao, Y.; Cheng, S.; Chen, H.; Bunjhoo, H.; Xie, J.; Wang, C.; Xu, Y.; Xiong, W. CCL2/CCR2-dependent recruitment of Th17 cells but not Tc17 cells to the lung in a murine asthma model. Int. Arch. Allergy Immunol., 2015, 166(1), 52-62.
[43]
Castro, M.; Wenzel, S.E.; Bleecker, E.R.; Pizzichini, E.; Kuna, P.; Busse, W.W.; Gossage, D.L.; Ward, C.K.; Wu, Y.; Wang, B.; Khatry, D.B.; van der Merwe, R.; Kolbeck, R.; Molfino, N.A.; Raible, D.G. Benralizumab, an anti-interleukin 5 receptor alpha monoclonal antibody, versus placebo for uncontrolled eosinophilic asthma: A phase 2b randomised dose-ranging study. Lancet Respir. Med., 2014, 2(11), 879-890.
[44]
de Oliveira Henriques, M.D.; Penido, C. γδ T lymphocytes coordinate eosinophil influx during allergic responses. Front. Pharmacol., 2012, 3, 200.