[1]
Tam, P.P.; Loebel, D.A. Gene function in mouse embryogenesis: Get set for gastrulation. Nat. Rev. Genet., 2007, 8, 368-381.
[2]
Nedergaard, M.; Takano, T.; Hansen, A.J. Beyond the role of glutamate as a neurotransmitter. Nat. Rev. Neurosci., 2002, 3, 748-755.
[3]
Fallarino, F.; Volpi, C.; Fazio, F.; Notartomaso, S.; Vacca, C.; Busceti, C.; Bicciato, S.; Battaglia, G.; Bruno, V.; Puccetti, P.; Fioretti, M.C.; Nicoletti, F.; Grohmann, U.; Di Marco, R. Metabotropic glutamate receptor-4 modulates adaptive immunity andrestrains neuroinflammation. Nat. Med., 2010, 16, 897-902.
[4]
Cabrera, O.; Jacques-Silva, M.C.; Speier, S.; Yang, S.N.; Kohler, M.; Fachado, A. Vieira. E.; Zierath, J.R.; Kibbey, R.; Berman, D.M.; Kenyon, N.S.; Ricordi, C.; Caicedo, A.; Berggren, P.O. Glutamate is a positive autocrine signal for glucagon release. Cell Metab., 2008, 7, 545-554.
[5]
LoTurco, J.J.; Owens, D.F.; Heath, M.J.; Davis, M.B.; Kriegstein, A.R. GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron, 1995, 15, 1287-1298.
[6]
Fernando, R.N.; Eleuteri, B.; Abdelhady, S.; Nussenzweig, A.; Andang, M.; Ernfors, P. Cell cycle restriction by histone H2AX limits proliferation of adult neural stem cells. Proc. Natl. Acad. Sci. USA, 2011, 108, 5837-5842.
[7]
Hayashi, M.; Yamada, H.; Uehara, S.; Morimoto, R.; Muroyama, A.; Yatsushiro, S.; Takeda, J.; Yamamoto, A.; Moriyama, Y. Secretory granule-mediated co-secretion of L-glutamate and glucagon triggers glutamatergic signal transmission in islets of Langerhans. J. Biol. Chem., 2003, 278(3), 1966-1974.
[8]
Morimoto, R.; Uehara, S.; Yatsushiro, S.; Juge, N.; Hua, Z.; Senoh, S.; Echigo, N.; Hayashi, M.; Mizoguchi, T.; Ninomiya, T.; Udagawa, N.; Omote, H.; Yamamoto, A.; Edwards, R.H.; Moriyama, Y. Secretion of L-glutamate from osteoclasts through transcytosis. EMBO J., 2006, 25, 4175-4186.
[9]
Andang, M.; Hjerling-Leffler, J.; Moliner, A.; Lundgren, T.K.; Castelo-Branco, G.; Nanou, E.; Pozas, E.; Bryja, V.; Halliez, S.; Nishimaru, H.; Wilbertz, J.; Arenas, E.; Koltzenburg, M.; Charnay, P.; Manira, A.E.; Ibanez, C.F.; Ernfors, P. Histone H2AX-dependent GABA(A) receptor regulation of stem cell proliferation. Nature, 2008, 451, 460-464.
[10]
Schwirtlich, M.; Emri, Z.; Antal, K.; Mate, Z.; Katarova, Z.; Szabo, G. GABA(A) and GABA(B) receptors of distinct properties affect oppositely the proliferation of mouse embryonic stem cells through synergistic elevation of intracellular Ca(2+). FASEB, 2010, 24, 1218-1228.
[11]
Teng, L.; Tang, Y.B.; Sun, F.; An, S.M.; Zhang, C.; Yang, X.J.; Lv, H.Y.; Lu, Q.; Cui, Y.Y.; Hu, J.J.; Zhu, L.; Chen, H.Z. Non-Neuronal Release of Gamma-Aminobutyric Acid by Embryonic Pluripotent Stem Cells. Stem Cells Dev., 2013, 22, 2944-2953.
[12]
Teng, L.; Lei, H.M.; Sun, F.; An, S.M.; Tang, Y.B.; Meng, S.; Wang, C.H.; Shen, Y.; Chen, H.Z.; Zhu, L. Autocrine glutamatergic transmission for the regulation of embryonal carcinoma stem cells. Oncotarget, 2016, 7(31), 49552-49564.
[13]
Macinnes, N.; Duty, S. Group III metabotropic glutamate receptors act as heteroreceptors modulating evoked GABA release in the globuspallidus in vivo. Eur. J. Pharmacol., 2008, 580, 95-99.
[14]
Bianchi, L.; Della, C.L.; Tipton, K.F. Simultaneous determination of basal and evoked output levels of aspartate, glutamate, taurine and 4-aminobutyric acid during microdialysis and from superfused brain slices. J. Chromatogr. B Biomed. Sci. Appl., 1999, 723, 47-59.
[15]
Ma, D.; Zhang, J.; Sugahara, K.; Ageta, T.; Nakayama, K.; Kodama, H. Simultaneous determination of gamma-aminobutyric acid and glutamic acid in the brain of 3- mercaptopropionic acid-treated rats using liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl., 1999, 726, 285-290.
[16]
Eckstein, J.A.; Ammerman, G.M.; Reveles, J.M.; Ackermann, B.L. Analysis of glutamine, glutamate, pyroglutamate, and GABA in cerebrospinal fluid using ion pairing HPLC with positive electrospray LC/MS/MS. J. Neurosci. Methods, 2008, 171, 190-196.
[17]
Zhang, X.; Rauch, A.; Lee, H.; Xiao, H.; Rainer, G.; Logothetis, N.K. Capillary hydrophilic interaction chromatography/mass spectrometry for simultaneous determination of multiple neurotransmitters in primate cerebral cortex. Rapid Commun. Mass Spectrom., 2007, 21, 3621-3628.
[18]
Buck, K.; Voehringer, K.; Ferger, B. Rapid analysis of GABA and glutamate in microdialysis samples using high performance liquid chromatography and tandem mass spectrometry. J. Neurosci. Methods, 2009, 182, 78-84.
[19]
Stokvis, E.; Rosing, H.; Beijnen, J.H. Stable isotopically labeled internal standards in quantitative bioanalysis using liquid chromatography/mass spectrometry: necessity or not? Rapid Commun. Mass Spectrom., 2005, 19, 401-407.
[20]
Peng, L.; Jiang, T.; Rong, Z.X.; Liu, T.; Wang, H.; Shao, B.Y.; Ma, J.; Yang, L.; Kang, L.; Shen, Y.F.; Li, H.F.; Qi, H.; Chen, H.Z. Surrogate based accurate quantification of endogenous acetylcholine in murinebrain by hydrophilic interaction liquid chromatography–tandem massspectrometry. J. Chromatogr. B, 2011, 879, 3927-3931.