Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Nanotechnology: Revolutionizing the Science of Drug Delivery

Author(s): Mohini Mishra, Pramod Kumar*, Jitendra Singh Rajawat, Ruchi Malik, Gitanjali Sharma and Amit Modgil*

Volume 24, Issue 43, 2018

Page: [5086 - 5107] Pages: 22

DOI: 10.2174/1381612825666190206222415

Price: $65

Abstract

Growing interest in the field of nanotechnology has led to its emergence in the field of medicine too. Nanomedicines encompass the various medical tools, diagnostic agents and the drug delivery vehicles being evolved with the advancements in the aura of nanotechnology. This review emphasizes on providing a cursory literature on the past events that led to the procession of nanomedicines, various novel drug delivery systems describing their structural features along with the pros and cons associated with them and the nanodrugs that made a move to the clinical practice. It also focuses on the need of the novel drug delivery systems and the challenges faced by the conventional drug delivery systems.

Keywords: Aquasomes, bilosomes, dendrimers, inorganic nanoparticles, liposomes, micelles, nanomedicine.

[1]
Porter AL, Youtie J. How interdisciplinary is nanotechnology? J Nanopart Res 2009; 11(5): 1023-41.
[2]
Robinson JR, Lee VHL. Controlled drug delivery: Fundamentals and applications 1987.
[3]
Raza K, Kumar M, Kumar P, et al. Topical delivery of aceclofenac: challenges and promises of novel drug delivery systems. BioMed Res Int 2014; 2014: 406731.
[4]
Katare OP, Raza K, Singh B, Dogra S. Novel drug delivery systems in topical treatment of psoriasis: rigors and vigors. Indian J Dermatol Venereol Leprol 2010; 76(6): 612-21.
[5]
Kumar P, Raza K, Kaushik L, Malik R, Arora S, Katare OP. Role of colloidal drug delivery carriers in taxane-mediated chemotherapy: a review. Curr Pharm Des 2016; 22(33): 5127-43.
[6]
Patil M, Mehta DS, Guvva S. Future impact of nanotechnology on medicine and dentistry. J Indian Soc Periodontol 2008; 12(2): 34-40.
[7]
2013.
[8]
Yun YH, Lee BK, Park K. Controlled drug delivery: Historical perspective for the next generation. J Control Release 2015; 219: 2-7.
[9]
Shah RB, Patel M, Maahs DM, Shah VN. Insulin delivery methods: Past, present and future. Int J Pharm Investig 2016; 6(1): 1-9.
[10]
Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 2010; 148(2): 135-46.
[11]
Panel M, Yokoyama M, Miyauchi N, et al. Polymer micelles as novel drug carrier: Adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer. J Control Release 1990; 11: 269-78.
[12]
Nishiyama N, Kataoka K. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther 2006; 112(3): 630-48.
[13]
Kabanov AV, Chekhonin VP, Alakhov VYu, et al. The neuroleptic activity of haloperidol increases after its solubilization in surfactant micelles. Micelles as microcontainers for drug targeting. FEBS Lett 1989; 258(2): 343-5.
[14]
Behr JP. 34 CHIMIA 5/ (1997) Nr. 1/2 (Jonuor/Februor) The Proton Sponge: a Trick to Enter Cells the Viruses Did Not Exploit. n.d.
[15]
Harada A, Kataoka K. Chain length recognition: core-shell supramolecular assembly from oppositely charged block copolymers. Science 1999; 283(5398): 65-7.
[16]
Bumcrot D, Manoharan M, Koteliansky V, Sah DWY. RNAi therapeutics: A potential new class of pharmaceutical drugs. Nat Chem Biol 2006; 2(12): 711-9.
[17]
Chemmanur AT, Wu GY. Drug evaluation: Albuferon-alpha--an antiviral interferon-alpha/albumin fusion protein. Curr Opin Investig Drugs 2006; 7(8): 750-8.
[18]
Hoffman AS. The origins and evolution of “controlled” drug delivery systems. J Control Release 2008; 132(3): 153-63.
[19]
Malik DK, Baboota S, Ahuja A, Hasan S, Ali J. Recent advances in protein and peptide drug delivery systems. Curr Drug Deliv 2007; 4(2): 141-51.
[20]
Gupta H, Bhandari D, Sharma A. Recent trends in oral drug delivery: a review. Recent Pat Drug Deliv Formul 2009; 3(2): 162-73.
[21]
Viswanathan P, Muralidaran Y, Ragavan G. Challenges in oral drug delivery: a nano-based strategy to overcome 2017; 173-201.
[22]
Liechty WB, Kryscio DR, Slaughter BV, Peppas NA. Polymers for drug delivery systems. Annu Rev Chem Biomol Eng 2010; 1: 149-73.
[23]
Langer R. New methods of drug delivery Science (80). 1990; 249: 1527-33.
[24]
Bhatia S. Nanoparticles Types. Classification, Characterization, Fabrication Methods and Drug Delivery Applications Nat Polym Drug Deliv Syst 2016; pp. 33-93.
[25]
Raza K, Singh B, Negi P. Design and evaluation of flexible membrane vesicles (FMVs) for enhanced topical delivery of capsaicin 2011.
[26]
Raza K, Singh B, Singal P, Wadhwa S, Katare OP. Systematically optimized biocompatible isotretinoin-loaded solid lipid nanoparticles (SLNs) for topical treatment of acne. Colloids Surf B Biointerfaces 2013; 105: 67-74.
[27]
Puri A, Kaur A, Raza K, Goindi S, Katare OP. Development and evaluation of topical microemulsion of dibenzoylmethane for treatment of UV induced photoaging. J Drug Deliv Sci Technol 2017; 37: 1-12.
[28]
Gursoy RN, Benita S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed Pharmacother 2004; 58(3): 173-82.
[29]
Gregoriadis G. Liposome research in drug delivery: The early days. J Drug Target 2008; 16(7): 520-4.
[30]
Pattni BS, Chupin VV, Torchilin VP. New Developments in Liposomal Drug Delivery. Chem Rev 2015; 115(19): 10938-66.
[31]
Róg T, Pasenkiewicz-Gierula M. Effects of epicholesterol on the phosphatidylcholine bilayer: A molecular simulation study. Biophys J 2003; 84(3): 1818-26.
[32]
Vemuri S, Rhodes CT. Preparation and characterization of liposomes as therapeutic delivery systems: A review. Pharm Acta Helv 1995; 70(2): 95-111.
[33]
Cortesi R, Esposito E, Gambarin S, Telloli P, Menegatti E, Nastruzzi C. Preparation of liposomes by reverse-phase evaporation using alternative organic solvents. J Microencapsul 1999; 16(2): 251-6.
[34]
Kirby C, Clarke J, Gregoriadis G. Effect of the cholesterol content of small unilamellar liposomes on their stability in vivo and in vitro. Biochem J 1980; 186(2): 591-8.
[35]
López-Pinto JM, González-Rodríguez ML, Rabasco AM. Effect of cholesterol and ethanol on dermal delivery from DPPC liposomes. Int J Pharm 2005; 298(1): 1-12.
[36]
Juliano RL, Stamp D. The effect of particle size and charge on the clearance rates of liposomes and liposome encapsulated drugs. Biochem Biophys Res Commun 1975; 63(3): 651-8.
[37]
Miller CR, Bondurant B, McLean SD, McGovern KA, O’Brien DF. Liposome-cell interactions in vitro: effect of liposome surface charge on the binding and endocytosis of conventional and sterically stabilized liposomes. Biochemistry 1998; 37(37): 12875-83.
[38]
Campbell RB, Fukumura D, Brown EB, et al. Cationic charge determines the distribution of liposomes between the vascular and extravascular compartments of tumors. Cancer Res 2002; 62(23): 6831-6.
[39]
Benech R-O, Kheadr EE, Laridi R, Lacroix C, Fliss I. Inhibition of Listeria innocua in cheddar cheese by addition of nisin Z in liposomes or by in situ production in mixed culture. Appl Environ Microbiol 2002; 68(8): 3683-90.
[40]
Shehata T, Ogawara K, Higaki K, Kimura T. Prolongation of residence time of liposome by surface-modification with mixture of hydrophilic polymers. Int J Pharm 2008; 359(1-2): 272-9.
[41]
Akbarzadeh A, Rezaei-Sadabady R, Davaran S, et al. Liposome: Classification, preparation, and applications. Nanoscale Res Lett 2013; 8(1): 102.
[42]
Reeves JP, Dowben RM. Formation and properties of thin-walled phospholipid vesicles. J Cell Physiol 1969; 73(1): 49-60.
[43]
Szoka F Jr, Papahadjopoulos D, Papahadjopoulos D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc Natl Acad Sci USA 1978; 75(9): 4194-8.
[44]
Stano P, Bufali S, Pisano C, et al. Novel camptothecin analogue (gimatecan)-containing liposomes prepared by the ethanol injection method. J Liposome Res 2004; 14(1-2): 87-109.
[45]
Deamer DW. Preparation and properties of ether-injection liposomes. Ann N Y Acad Sci 1978; 308: 250-8.
[46]
Schieren H, Rudolph S, Finkelstein M, Coleman P, Weissmann G. Comparison of large unilamellar vesicles prepared by a petroleum ether vaporization method with multilamellar vesicles: ESR, diffusion and entrapment analyses. Biochim Biophys Acta 1978; 542(1): 137-53.
[47]
Batzri S, Korn ED. Single bilayer liposomes prepared without sonication. Biochim Biophys Acta 1973; 298(4): 1015-9.
[48]
And HGE, Strittmatter P. Formation and properties of 1000-Adiameter,single-bilayer phospholipid vesicles (liposomes/deoxycholate/enzyme entrapment). vol. 76. In: 1979.
[49]
Nayar R, Schroit AJ. Generation of pH-sensitive liposomes: Use of large unilamellar vesicles containing N-succinyldioleoylphosphatidylethanolamine. Biochemistry 1985; 24(21): 5967-71.
[50]
Paolino D, Muzzalupo R, Ricciardi A, Celia C, Picci N, Fresta M. In vitro and in vivo evaluation of Bola-surfactant containing niosomes for transdermal delivery. Biomed Microdevices 2007; 9(4): 421-33.
[51]
Cosco D, Paolino D, Muzzalupo R, et al. Novel PEG-coated niosomes based on bola-surfactant as drug carriers for 5-fluorouracil. Biomed Microdevices 2009; 11(5): 1115-25.
[52]
Kazi KM, Mandal AS, Biswas N, et al. Niosome: A future of targeted drug delivery systems. J Adv Pharm Technol Res 2010; 1(4): 374-80.
[53]
Hofland HEJ, Bouwstra JA, Verhoef JC, et al. Safety aspects of non-ionic surfactant vesicles: a toxicity study related to the physicochemical characteristics of non-ionic surfactants. J Pharm Pharmacol 1992; 44(4): 287-94.
[54]
Sezgin-Bayindir Z, Yuksel N. Investigation of formulation variables and excipient interaction on the production of niosomes. AAPS PharmSciTech 2012; 13(3): 826-35.
[55]
Sahin NO. Niosomes as nanocarrier systems nanomater nanosyst Biomed Appl 2007; 67-81.
[56]
Hu C, Rhodes DG. Proniosomes: a novel drug carrier preparation. Int J Pharm 1999; 185(1): 23-35.
[57]
Cevc G, Blume G. Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. Biochim Biophys Acta 1992; 1104(1): 226-32.
[58]
Rajan R, Jose S, Mukund VPB, Vasudevan DT. Transferosomes - A vesicular transdermal delivery system for enhanced drug permeation. J Adv Pharm Technol Res 2011; 2(3): 138-43.
[59]
Sharma G, Goyal H, Thakur K, Raza K, Katare OP. Novel elastic membrane vesicles (EMVs) and ethosomes-mediated effective topical delivery of aceclofenac: A new therapeutic approach for pain and inflammation. Drug Deliv 2016; 23(8): 3135-45.
[60]
Benson HA. Transfersomes for transdermal drug delivery. Expert Opin Drug Deliv 2006; 3(6): 727-37.
[61]
Honeywell-Nguyen PL, Gooris GS, Bouwstra JA. Quantitative assessment of the transport of elastic and rigid vesicle components and a model drug from these vesicle formulations into human skin in vivo. J Invest Dermatol 2004; 123(5): 902-10.
[62]
Honeywell-Nguyen PL, Bouwstra JA. The in vitro transport of pergolide from surfactant-based elastic vesicles through human skin: A suggested mechanism of action. J Control Release 2003; 86(1): 145-56.
[63]
Cevc G. Transfersomes, liposomes and other lipid suspensions on the skin: Permeation enhancement, vesicle penetration, and transdermal drug delivery. Crit Rev Ther Drug Carrier Syst 1996; 13(3-4): 257-388.
[64]
Cevc G, Schätzlein A, Blume G. Transdermal drug carriers: Basic properties, optimization and transfer efficiency in the case of epicutaneously applied peptides. J Control Release 1995; 36: 3-16.
[65]
Sachan R, Parashar T, Singh V, et al. Drug carrier transfersomes: A novel tool for transdermal drug delivery system. IJRDPL 2013; 2(2): 309-16.
[66]
Verma P, Pathak K. Therapeutic and cosmeceutical potential of ethosomes: An overview. J Adv Pharm Technol Res 2010; 1(3): 274-82.
[67]
Bendas ER, Tadros MI. Enhanced transdermal delivery of salbutamol sulfate via ethosomes. AAPS PharmSciTech 2007; 8(4): E107.
[68]
Jodar L, Duclos P, Milstien JB, Griffiths E, Aguado MT, Clements CJ. Ensuring vaccine safety in immunization programmes--a WHO perspective. Vaccine 2001; 19(13-14): 1594-605.
[69]
State of the world’s vaccines and immunization. 3rd ed. 2013.
[70]
Shukla A, Katare OP, Singh B, Vyas SP. M-cell targeted delivery of recombinant hepatitis B surface antigen using cholera toxin B subunit conjugated bilosomes. Int J Pharm 2010; 385(1-2): 47-52.
[71]
Shukla A, Khatri K, Gupta PN, Goyal AK, Mehta A, Vyas SP. Oral immunization against hepatitis B using bile salt stabilized vesicles (bilosomes). J Pharm Pharm Sci 2008; 11(1): 59-66.
[72]
Oyewumi MO, Kumar A, Cui Z. Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune responses. Expert Rev Vaccines 2010; 9(9): 1095-107.
[73]
De Temmerman M-L, Rejman J, Demeester J, Irvine DJ, Gander B, De Smedt SC. Particulate vaccines: on the quest for optimal delivery and immune response. Drug Discov Today 2011; 16(13-14): 569-82.
[74]
Clark MA, Blair H, Liang L, Brey RN, Brayden D, Hirst BH. Targeting polymerised liposome vaccine carriers to intestinal M cells. Vaccine 2001; 20(1-2): 208-17.
[75]
Shukla A, Singh B, Katare OP. Significant systemic and mucosal immune response induced on oral delivery of diphtheria toxoid using nano-bilosomes. Br J Pharmacol 2011; 164(2b): 820-7.
[76]
Wilkhu JS, McNeil SE, Anderson DE, Perrie Y. Characterization and optimization of bilosomes for oral vaccine delivery. J Drug Target 2013; 21: 291-9.
[77]
Shukla A, Mishra V, Kesharwani P. Bilosomes in the context of oral immunization: Development, challenges and opportunities. Drug Discov Today 2016; 21(6): 888-99.
[78]
Tripathy S, Patel DK, Barob L, Naira SK. A review on phytosomes, their characterization, advancement & potential for transdermal application. J Drug Deliv Ther 2013; 3: 147-52.
[79]
Maiti K, Mukherjee K, Gantait A, Saha BP, Mukherjee PK. Enhanced therapeutic potential of naringenin-phospholipid complex in rats. J Pharm Pharmacol 2006; 58(9): 1227-33.
[80]
Maiti K, Mukherjee K, Gantait A, Saha BP, Mukherjee PK. Curcumin-phospholipid complex: Preparation, therapeutic evaluation and pharmacokinetic study in rats. Int J Pharm 2007; 330(1-2): 155-63.
[81]
Yanyu X, Yunmei S, Zhipeng C, Qineng P. The preparation of silybin-phospholipid complex and the study on its pharmacokinetics in rats. Int J Pharm 2006; 307(1): 77-82.
[82]
Kidd P, Head K. A review of the bioavailability and clinical efficacy of milk thistle phytosome: A silybin-phosphatidylcholine complex (Siliphos). Altern Med Rev 2005; 10(3): 193-203.
[83]
Jitendra, Sharma PK, Bansal S, Banik A. Noninvasive routes of proteins and peptides drug delivery. Indian J Pharm Sci 2011; 73(4): 367-75.
[84]
Veuillez F, Kalia YN, Jacques Y, Deshusses J, Buri P. Factors and strategies for improving buccal absorption of peptides. Eur J Pharm Biopharm 2001; 51(2): 93-109.
[85]
Agu RU, Ugwoke MI, Armand M, Kinget R, Verbeke N. The lung as a route for systemic delivery of therapeutic proteins and peptides. Respir Res 2001; 2(4): 198-209.
[86]
Lee VH. Enzymatic barriers to peptide and protein absorption. Crit Rev Ther Drug Carrier Syst 1988; 5(2): 69-97.
[87]
Al-Tahami K, Singh J. Smart polymer based delivery systems for peptides and proteins. Recent Pat Drug Deliv Formul 2007; 1(1): 65-71.
[88]
Rawat M, Singh D, Saraf S. Nanocarriers: Promising vehicle for bioactive drugs manju. Biol Pharm Bull 2006; 29(9): 1790-8.
[89]
Umashankar MS, Sachdeva RK, Gulati M. Aquasomes: a promising carrier for peptides and protein delivery. Nanomedicine (Lond) 2010; 6(3): 419-26.
[90]
Jain NKUR. Jain NK UR. Controlled And Novel Drug Delivery Jain N. K. New Delhi: CBS Publishers & Distributors; . 2006.
[91]
Cherian AK, Rana AC, Jain SK. Self-assembled carbohydrate-stabilized ceramic nanoparticles for the parenteral delivery of insulin. Drug Dev Ind Pharm 2000; 26(4): 459-63.
[92]
Kossovsky N, Gelman A, Hnatyszyn HJ, et al. Surface-modified diamond nanoparticles as antigen delivery vehicles. Bioconjug Chem 1995; 6(5): 507-11.
[93]
Goyal AK, Khatri K, Mishra N, et al. Aquasomes--a nanoparticulate approach for the delivery of antigen. Drug Dev Ind Pharm 2008; 34(12): 1297-305.
[94]
Rawat M, Singh D, Saraf S, Saraf S. Development and in vitro evaluation of alginate gel-encapsulated, chitosan-coated ceramic nanocores for oral delivery of enzyme. Drug Dev Ind Pharm 2008; 34(2): 181-8.
[95]
Khopade AJ, Khopade S, Jain NK. Development of hemoglobin aquasomes from spherical hydroxyapatite cores precipitated in the presence of half-generation poly(amidoamine) dendrimer. Int J Pharm 2002; 241(1): 145-54.
[96]
Mizushima Y, Ikoma T, Tanaka J, et al. Injectable porous hydroxyapatite microparticles as a new carrier for protein and lipophilic drugs. J Control Release 2006; 110(2): 260-5.
[97]
Rojas-Oviedo I, Salazar-López RA, Reyes-Gasga J, Quirino-Barreda CT. Elaboration and structural analysis of aquasomes loaded with indomethacin. Eur J Pharm Sci 2007; 32(3): 223-30.
[98]
Patel T, Zhou J, Piepmeier JM, Saltzman WM. Polymeric nanoparticles for drug delivery to the central nervous system. Adv Drug Deliv Rev 2012; 64(7): 701-5.
[99]
Crucho CIC. Stimuli-responsive polymeric nanoparticles for nanomedicine. ChemMedChem 2015; 10(1): 24-38.
[100]
Lin G, Zhang H, Huang L. Smart polymeric nanoparticles for cancer gene delivery. Mol Pharm 2015; 12(2): 314-21.
[101]
Zhong Y, Meng F, Deng C, Zhong Z. Ligand-directed active tumor-targeting polymeric nanoparticles for cancer chemotherapy. Biomacromolecules 2014; 15(6): 1955-69.
[102]
Kamaly N, Xiao Z, Valencia PM, Radovic-Moreno AF, Farokhzad OC. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev 2012; 41(7): 2971-3010.
[103]
Krasia-Christoforou T, Georgiou TK. Polymeric theranostics: using polymer-based systems for simultaneous imaging and therapy. J Mater Chem B Mater Biol Med 2013; 1: 3002.
[104]
Marin E, Briceño MI, Caballero-George C. Critical evaluation of biodegradable polymers used in nanodrugs. Int J Nanomedicine 2013; 8: 3071-90.
[105]
Madhwi KR, Kumar R, Kumar P, et al. In vivo pharmacokinetic studies and intracellular delivery of methotrexate by means of glycine-tethered PLGA-based polymeric micelles. Int J Pharm 2017; 519(1-2): 138-44.
[106]
Crucho CIC, Barros MT. Polymeric nanoparticles: A study on the preparation variables and characterization methods. Mater Sci Eng C 2017; 80: 771-84.
[107]
Thakur CK, Thotakura N, Kumar R, et al. Chitosan-modified PLGA polymeric nanocarriers with better delivery potential for tamoxifen Int J Biol Macromol. 2016. 93(Pt A): 381-9
[108]
Kumar P, Sharma G, Kumar R, et al. Enhanced brain delivery of dimethyl fumarate employing tocopherol-acetate-based nanolipidic carriers: Evidence from pharmacokinetic, biodistribution, and cellular uptake studies. ACS Chem Neurosci 2017; 8(4): 860-5.
[109]
Raza K, Singh B, Lohan S, et al. Nano-lipoidal carriers of tretinoin with enhanced percutaneous absorption, photostability, biocompatibility and anti-psoriatic activity. Int J Pharm 2013; 456(1): 65-72.
[110]
Raza K, Singh B, Singla N, Negi P, Singal P, Katare OP. Nano-lipoidal carriers of isotretinoin with anti-aging potential: formulation, characterization and biochemical evaluation. J Drug Target 2013; 21(5): 435-42.
[111]
Beloqui A, Solinís MA, des Rieux A, Préat V, Rodríguez-Gascón A. Dextran-protamine coated nanostructured lipid carriers as mucus-penetrating nanoparticles for lipophilic drugs. Int J Pharm 2014; 468(1-2): 105-11.
[112]
Sharma G, Thakur K, Raza K, Singh B, Katare OP. Nanostructured lipid carriers: A new paradigm in topical delivery for dermal and transdermal applications. Crit Rev Ther Drug Carrier Syst 2017; 34(4): 355-86.
[113]
Kumar P, Sharma G, Gupta V, et al. Preclinical explorative assessment of dimethyl fumarate-based biocompatible nanolipoidal carriers for the management of multiple sclerosis. ACS Chem Neurosci 2018; 9(5): 1152-8.
[114]
Kumar P, Sharma G, Kumar R, et al. Vitamin-derived nanolipoidal carriers for brain delivery of dimethyl fumarate: A novel approach with preclinical evidence. ACS Chem Neurosci 2017; 8(6): 1390-6.
[115]
Kumar P, Sharma G, Kumar R, et al. Stearic acid based, systematically designed oral lipid nanoparticles for enhanced brain delivery of dimethyl fumarate. Nanomedicine (Lond) 2017; 12(23): 2607-21.
[116]
Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. Eur J Pharm Biopharm n.d.
[117]
Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application. Adv Pharm Bull 2015; 5(3): 305-13.
[118]
Kumar M, Sharma G, Kumar R, Singh B, Katare OP, Raza K. Lysine-based C 60 -fullerene nanoconjugates for monomethyl fumarate delivery: A novel nanomedicine for brain cancer cells. ACS Biomater Sci Eng 2018; 4: 2134-42.
[119]
Raza K, Kumar D, Kiran C, et al. Conjugation of docetaxel with multiwalled carbon nanotubes and codelivery with piperine: Implications on Pharmacokinetic Profile and Anticancer Activity. Mol Pharm 2016; 13(7): 2423-32.
[120]
Geodesic Domes | The Buckminster Fuller Institute n.d. https://www.bfi.org/about-fuller/big-ideas/geodesic-domes (accessed December 1, 2018).
[121]
Joshi M, Kumar P, Kumar R, et al. Aminated carbon-based “cargo vehicles” for improved delivery of methotrexate to breast cancer cells. Mater Sci Eng C 2017; 75: 1376-88.
[122]
Kumar M, Raza K. C60-fullerenes as drug delivery carriers for anticancer agents: Promises and hurdles. Pharm Nanotechnol 2017; 5(3): 169-79.
[123]
Thotakura N, Sharma G, Singh B, Kumar V, Raza K. Aspartic acid derivatized hydroxylated fullerenes as drug delivery vehicles for docetaxel: an explorative study. Artif Cells Nanomed Biotechnol 2018; 46(8): 1763-72.
[124]
Lohan S, Raza K, Mehta SK, Bhatti GK, Saini S, Singh B. Anti-Alzheimer’s potential of berberine using surface decorated multi-walled carbon nanotubes: A preclinical evidence. Int J Pharm 2017; 530(1-2): 263-78.
[125]
Misra C, Kumar M, Sharma G, et al. Glycinated fullerenes for tamoxifen intracellular delivery with improved anticancer activity and pharmacokinetics. Nanomedicine (Lond) 2017; 12(9): 1011-23.
[126]
Misra C, Thotakura N, Kumar R, et al. Improved cellular uptake, enhanced efficacy and promising pharmacokinetic profile of docetaxel employing glycine-tethered C60-fullerenes. Mater Sci Eng C 2017; 76: 501-8.
[127]
Kumar M, Sharma G, Misra C, et al. N-desmethyl tamoxifen and quercetin-loaded multiwalled CNTs: A synergistic approach to overcome MDR in cancer cells. Mater Sci Eng C 2018; 89: 274-82.
[128]
Mody VV, Siwale R, Singh A, Mody HR. Introduction to metallic nanoparticles. J Pharm Bioallied Sci 2010; 2(4): 282-9.
[129]
Pandey PK, Sharma AK, Rani S, Mishra G, Kandasamy G, Patra AK, et al. MCM-41 Nanoparticles for Brain Delivery: Better Choline-Esterase and Amyloid Formation Inhibition with Improved Kinetics. ACS Biomater Sci Eng 2018; 4: 2860-9.
[130]
Eatemadi A, Daraee H, Karimkhanloo H, et al. Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res Lett 2014; 9(1): 393.
[131]
Sharma AK, Gothwal A, Kesharwani P, Alsaab H, Iyer AK, Gupta U. Dendrimer nanoarchitectures for cancer diagnosis and anticancer drug delivery. Drug Discov Today 2017; 22(2): 314-26.
[132]
Boas U, Heegaard PMH. Dendrimers in drug research. Chem Soc Rev 2004; 33(1): 43-63.
[133]
Caminade AM, Laurent R, Majoral JP. Characterization of dendrimers. Adv Drug Deliv Rev 2005; 57(15): 2130-46.
[134]
Abbasi E, Aval SF, Akbarzadeh A, et al. Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett 2014; 9(1): 247.
[135]
Gothwal A, Kesharwani P, Gupta U, et al. Dendrimers as an effective nanocarrier in cardiovascular disease. Curr Pharm Des 2015; 21(30): 4519-26.
[136]
Agarwal A, Asthana A, Gupta U, Jain NK. Tumour and dendrimers: a review on drug delivery aspects. J Pharm Pharmacol 2008; 60(6): 671-88.
[137]
Singh A, Chaudhary S, Rani S, Sharma A, Gupta L, Gupta U. Dendrimer-drug conjugates in drug delivery and targeting. Pharm Nanotechnol 2016; 3: 239-60.
[138]
Gothwal A, Khan I, Kumar P, et al. Bendamustine-PAMAM conjugates for improved apoptosis, efficacy, and in vivo pharmacokinetics: a sustainable delivery tactic. Mol Pharm 2018; 15(6): 2084-97.
[139]
Cherniakov I, Domb AJ, Hoffman A. Self-nano-emulsifying drug delivery systems: an update of the biopharmaceutical aspects. Expert Opin Drug Deliv 2015; 12(7): 1121-33.
[140]
Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev 2000; 45(1): 89-121.
[141]
Patel V, Kukadiya H, Mashru R, Surti N, Mandal S. Development of microemulsion for solubility enhancement of clopidogrel. Iran J Pharm Res 2010; 9(4): 327-34.
[142]
Aboofazeli R, Patel N, Thomas M, Lawrence MJ. Investigations into the formation and characterization of phospholipid microemulsions. IV. Pseudo-ternary phase diagrams of systems containing water-lecithin-alcohol and oil; The influence of oil. Int J Pharm 1995; 125: 107-16.
[143]
Raza K, Negi P, Takyar S, Shukla A, Amarji B, Katare OP. Novel dithranol phospholipid microemulsion for topical application: development, characterization and percutaneous absorption studies. J Microencapsul 2011; 28(3): 190-9.
[144]
Raza K, Katare OP, Setia A, Bhatia A, Singh B. Improved therapeutic performance of dithranol against psoriasis employing systematically optimized nanoemulsomes. J Microencapsul 2013; 30(3): 225-36.
[145]
Sharma G, Dhankar G, Thakur K, Raza K, Katare OP. Benzyl benzoate-loaded microemulsion for topical applications: Enhanced dermatokinetic profile and better delivery promises. AAPS PharmSciTech 2016; 17(5): 1221-31.
[146]
Pouton CW. Formulation of self-emulsifying drug delivery systems. Adv Drug Deliv Rev 1997; 25: 47-58.
[147]
Mittal KK and S. Self emulsifying drug delivery system: a review |international journal of pharmaceutical sciences and research n.d http://ijpsr.com/bft-article/self-emulsifying-drug-delivery-system-a-review/?view=fulltext (accessed August 31, 2018).
[148]
Singh B, Khurana L, Bandyopadhyay S, Kapil R, Katare OOP. Development of optimized self-nano-emulsifying drug delivery systems (SNEDDS) of carvedilol with enhanced bioavailability potential. Drug Deliv 2011; 18(8): 599-612.
[149]
Beg S, Jena SS, Patra ChN, et al. Development of solid self-nanoemulsifying granules (SSNEGs) of ondansetron hydrochloride with enhanced bioavailability potential. Colloids Surf B Biointerfaces 2013; 101: 414-23.
[150]
Bandyopadhyay S, Katare OP, Singh B. Optimized self nano-emulsifying systems of ezetimibe with enhanced bioavailability potential using long chain and medium chain triglycerides. Colloids Surf B Biointerfaces 2012; 100: 50-61.
[151]
Singh B, Bandopadhyay S, Kapil R, Singh R, Katare O. Self-emulsifying drug delivery systems (SEDDS): Formulation development, characterization, and applications. Crit Rev Ther Drug Carrier Syst 2009; 26(5): 427-521.
[152]
Dokania S, Joshi AK. Self-microemulsifying drug delivery system (SMEDDS)--challenges and road ahead. Drug Deliv 2015; 22(6): 675-90.
[153]
Dokania S, Joshi AK. Self-microemulsifying drug delivery system (SMEDDS)--challenges and road ahead. Drug Deliv 2015; 22(6): 675-90.
[154]
Moretton MA, Glisoni RJ, Chiappetta DA, Sosnik A. Molecular implications in the nanoencapsulation of the anti-tuberculosis drug rifampicin within flower-like polymeric micelles. Colloids Surf B Biointerfaces 2010; 79(2): 467-79.
[155]
Ebrahim Attia AB, Ong ZY, Hedrick JL, Lee PP, Ee PLR, Hammond PT, et al. Mixed micelles self-assembled from block copolymers for drug delivery. Curr Opin Colloid Interface Sci 2011; 16: 182-94.
[156]
Chiappetta DA, Sosnik A. Poly(ethylene oxide)-poly(propylene oxide) block copolymer micelles as drug delivery agents: Improved hydrosolubility, stability and bioavailability of drugs. Eur J Pharm Biopharm 2007; 66(3): 303-17.
[157]
Kahraman E, Karagöz A, Dinçer S. özsoy Y. Polyethylenimine Modified and Non-Modified Polymeric Micelles Used for Nasal Administration of Carvedilol. J Biomed Nanotechnol 2015; 11: 890-9.
[158]
Cagel M, Tesan FC, Bernabeu E, et al. Polymeric mixed micelles as nanomedicines: Achievements and perspectives. Eur J Pharm Biopharm 2017; 113: 211-28.
[159]
Kumar P, Kumar R, Singh B, et al. Biocompatible phospholipid-based mixed micelles for tamoxifen delivery: Promising evidences from in - vitro anticancer activity and dermatokinetic studies. AAPS PharmSciTech 2017; 18(6): 2037-44.
[160]
Singh A, Thotakura N, Kumar R, et al. PLGA-soya lecithin based micelles for enhanced delivery of methotrexate: Cellular uptake, cytotoxic and pharmacokinetic evidences. Int J Biol Macromol 2017; 95: 750-6.
[161]
Kedar U, Phutane P, Shidhaye S, Kadam V. Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine (Lond) 2010; 6(6): 714-29.
[162]
Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date. Pharm Res 2016; 33(10): 2373-87.
[163]
Havel H, Finch G, Strode P, et al. Nanomedicines: From Bench to Bedside and Beyond. AAPS J 2016; 18(6): 1373-8.
[164]
Sainz V, Conniot J, Matos AI, et al. Regulatory aspects on nanomedicines. Biochem Biophys Res Commun 2015; 468(3): 504-10.
[165]
Ventola CL. Progress in nanomedicine: Approved and investigational nanodrugs. P&T 2017; 42(12): 742-55.
[166]
Elsaesser A, Howard CV. Toxicology of nanoparticles. Adv Drug Deliv Rev 2012; 64(2): 129-37.
[167]
Sharma HS, Sharma A. Nanoparticles aggravate heat stress induced cognitive deficits, blood-brain barrier disruption, edema formation and brain pathology. Prog Brain Res 2007; 162: 245-73.
[168]
Wolfram J, Zhu M, Yang Y, et al. Safety of Nanoparticles in Medicine. Curr Drug Targets 2015; 16(14): 1671-81.
[170]
Havel HA. Where Are the Nanodrugs? An Industry Perspective on Development of Drug Products Containing Nanomaterials. AAPS J 2016; 18(6): 1351-3.
[171]
Research C for DE and. Drug Innovation - Novel Drug Approvals for 2017 n.d.
[172]
[173]
] Research C for DE and. Drug Innovation - Novel Drug Approvals for 2017 n.d.
[174]
Sainz V, Conniot J, Matos AI, et al. Regulatory aspects on nanomedicines. Biochem Biophys Res Commun 2015; 468(3): 504-10.
[175]
Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharm Res 2016; 33(10): 2373-87.
[176]
Caster JM, Patel AN, Zhang T, Wang A. Investigational nanomedicines in 2016: a review of nanotherapeutics currently undergoing clinical trials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2017; 9(1): e1416.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy