[1]
Porter AL, Youtie J. How interdisciplinary is nanotechnology? J Nanopart Res 2009; 11(5): 1023-41.
[2]
Robinson JR, Lee VHL. Controlled drug delivery: Fundamentals and applications 1987.
[3]
Raza K, Kumar M, Kumar P, et al. Topical delivery of aceclofenac: challenges and promises of novel drug delivery systems. BioMed Res Int 2014; 2014: 406731.
[4]
Katare OP, Raza K, Singh B, Dogra S. Novel drug delivery systems in topical treatment of psoriasis: rigors and vigors. Indian J Dermatol Venereol Leprol 2010; 76(6): 612-21.
[5]
Kumar P, Raza K, Kaushik L, Malik R, Arora S, Katare OP. Role of colloidal drug delivery carriers in taxane-mediated chemotherapy: a review. Curr Pharm Des 2016; 22(33): 5127-43.
[6]
Patil M, Mehta DS, Guvva S. Future impact of nanotechnology on medicine and dentistry. J Indian Soc Periodontol 2008; 12(2): 34-40.
[8]
Yun YH, Lee BK, Park K. Controlled drug delivery: Historical perspective for the next generation. J Control Release 2015; 219: 2-7.
[9]
Shah RB, Patel M, Maahs DM, Shah VN. Insulin delivery methods: Past, present and future. Int J Pharm Investig 2016; 6(1): 1-9.
[10]
Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 2010; 148(2): 135-46.
[11]
Panel M, Yokoyama M, Miyauchi N, et al. Polymer micelles as novel drug carrier: Adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer. J Control Release 1990; 11: 269-78.
[12]
Nishiyama N, Kataoka K. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther 2006; 112(3): 630-48.
[13]
Kabanov AV, Chekhonin VP, Alakhov VYu, et al. The neuroleptic activity of haloperidol increases after its solubilization in surfactant micelles. Micelles as microcontainers for drug targeting. FEBS Lett 1989; 258(2): 343-5.
[14]
Behr JP. 34 CHIMIA 5/ (1997) Nr. 1/2 (Jonuor/Februor) The Proton Sponge: a Trick to Enter Cells the Viruses Did Not Exploit. n.d.
[15]
Harada A, Kataoka K. Chain length recognition: core-shell supramolecular assembly from oppositely charged block copolymers. Science 1999; 283(5398): 65-7.
[16]
Bumcrot D, Manoharan M, Koteliansky V, Sah DWY. RNAi therapeutics: A potential new class of pharmaceutical drugs. Nat Chem Biol 2006; 2(12): 711-9.
[17]
Chemmanur AT, Wu GY. Drug evaluation: Albuferon-alpha--an antiviral interferon-alpha/albumin fusion protein. Curr Opin Investig Drugs 2006; 7(8): 750-8.
[18]
Hoffman AS. The origins and evolution of “controlled” drug delivery systems. J Control Release 2008; 132(3): 153-63.
[19]
Malik DK, Baboota S, Ahuja A, Hasan S, Ali J. Recent advances in protein and peptide drug delivery systems. Curr Drug Deliv 2007; 4(2): 141-51.
[20]
Gupta H, Bhandari D, Sharma A. Recent trends in oral drug delivery: a review. Recent Pat Drug Deliv Formul 2009; 3(2): 162-73.
[21]
Viswanathan P, Muralidaran Y, Ragavan G. Challenges in oral drug delivery: a nano-based strategy to overcome 2017; 173-201.
[22]
Liechty WB, Kryscio DR, Slaughter BV, Peppas NA. Polymers for drug delivery systems. Annu Rev Chem Biomol Eng 2010; 1: 149-73.
[23]
Langer R. New methods of drug delivery Science (80). 1990; 249: 1527-33.
[24]
Bhatia S. Nanoparticles Types. Classification, Characterization, Fabrication Methods and Drug Delivery Applications Nat Polym Drug Deliv Syst 2016; pp. 33-93.
[25]
Raza K, Singh B, Negi P. Design and evaluation of flexible membrane vesicles (FMVs) for enhanced topical delivery of capsaicin 2011.
[26]
Raza K, Singh B, Singal P, Wadhwa S, Katare OP. Systematically optimized biocompatible isotretinoin-loaded solid lipid nanoparticles (SLNs) for topical treatment of acne. Colloids Surf B Biointerfaces 2013; 105: 67-74.
[27]
Puri A, Kaur A, Raza K, Goindi S, Katare OP. Development and evaluation of topical microemulsion of dibenzoylmethane for treatment of UV induced photoaging. J Drug Deliv Sci Technol 2017; 37: 1-12.
[28]
Gursoy RN, Benita S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed Pharmacother 2004; 58(3): 173-82.
[29]
Gregoriadis G. Liposome research in drug delivery: The early days. J Drug Target 2008; 16(7): 520-4.
[30]
Pattni BS, Chupin VV, Torchilin VP. New Developments in Liposomal Drug Delivery. Chem Rev 2015; 115(19): 10938-66.
[31]
Róg T, Pasenkiewicz-Gierula M. Effects of epicholesterol on the phosphatidylcholine bilayer: A molecular simulation study. Biophys J 2003; 84(3): 1818-26.
[32]
Vemuri S, Rhodes CT. Preparation and characterization of liposomes as therapeutic delivery systems: A review. Pharm Acta Helv 1995; 70(2): 95-111.
[33]
Cortesi R, Esposito E, Gambarin S, Telloli P, Menegatti E, Nastruzzi C. Preparation of liposomes by reverse-phase evaporation using alternative organic solvents. J Microencapsul 1999; 16(2): 251-6.
[34]
Kirby C, Clarke J, Gregoriadis G. Effect of the cholesterol content of small unilamellar liposomes on their stability in vivo and in vitro. Biochem J 1980; 186(2): 591-8.
[35]
López-Pinto JM, González-Rodríguez ML, Rabasco AM. Effect of cholesterol and ethanol on dermal delivery from DPPC liposomes. Int J Pharm 2005; 298(1): 1-12.
[36]
Juliano RL, Stamp D. The effect of particle size and charge on the clearance rates of liposomes and liposome encapsulated drugs. Biochem Biophys Res Commun 1975; 63(3): 651-8.
[37]
Miller CR, Bondurant B, McLean SD, McGovern KA, O’Brien DF. Liposome-cell interactions in vitro: effect of liposome surface charge on the binding and endocytosis of conventional and sterically stabilized liposomes. Biochemistry 1998; 37(37): 12875-83.
[38]
Campbell RB, Fukumura D, Brown EB, et al. Cationic charge determines the distribution of liposomes between the vascular and extravascular compartments of tumors. Cancer Res 2002; 62(23): 6831-6.
[39]
Benech R-O, Kheadr EE, Laridi R, Lacroix C, Fliss I. Inhibition of Listeria innocua in cheddar cheese by addition of nisin Z in liposomes or by in situ production in mixed culture. Appl Environ Microbiol 2002; 68(8): 3683-90.
[40]
Shehata T, Ogawara K, Higaki K, Kimura T. Prolongation of residence time of liposome by surface-modification with mixture of hydrophilic polymers. Int J Pharm 2008; 359(1-2): 272-9.
[41]
Akbarzadeh A, Rezaei-Sadabady R, Davaran S, et al. Liposome: Classification, preparation, and applications. Nanoscale Res Lett 2013; 8(1): 102.
[42]
Reeves JP, Dowben RM. Formation and properties of thin-walled phospholipid vesicles. J Cell Physiol 1969; 73(1): 49-60.
[43]
Szoka F Jr, Papahadjopoulos D, Papahadjopoulos D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc Natl Acad Sci USA 1978; 75(9): 4194-8.
[44]
Stano P, Bufali S, Pisano C, et al. Novel camptothecin analogue (gimatecan)-containing liposomes prepared by the ethanol injection method. J Liposome Res 2004; 14(1-2): 87-109.
[45]
Deamer DW. Preparation and properties of ether-injection liposomes. Ann N Y Acad Sci 1978; 308: 250-8.
[46]
Schieren H, Rudolph S, Finkelstein M, Coleman P, Weissmann G. Comparison of large unilamellar vesicles prepared by a petroleum ether vaporization method with multilamellar vesicles: ESR, diffusion and entrapment analyses. Biochim Biophys Acta 1978; 542(1): 137-53.
[47]
Batzri S, Korn ED. Single bilayer liposomes prepared without sonication. Biochim Biophys Acta 1973; 298(4): 1015-9.
[48]
And HGE, Strittmatter P. Formation and properties of 1000-Adiameter,single-bilayer phospholipid vesicles (liposomes/deoxycholate/enzyme entrapment). vol. 76. In: 1979.
[49]
Nayar R, Schroit AJ. Generation of pH-sensitive liposomes: Use of large unilamellar vesicles containing N-succinyldioleoylphosphatidylethanolamine. Biochemistry 1985; 24(21): 5967-71.
[50]
Paolino D, Muzzalupo R, Ricciardi A, Celia C, Picci N, Fresta M. In vitro and in vivo evaluation of Bola-surfactant containing niosomes for transdermal delivery. Biomed Microdevices 2007; 9(4): 421-33.
[51]
Cosco D, Paolino D, Muzzalupo R, et al. Novel PEG-coated niosomes based on bola-surfactant as drug carriers for 5-fluorouracil. Biomed Microdevices 2009; 11(5): 1115-25.
[52]
Kazi KM, Mandal AS, Biswas N, et al. Niosome: A future of targeted drug delivery systems. J Adv Pharm Technol Res 2010; 1(4): 374-80.
[53]
Hofland HEJ, Bouwstra JA, Verhoef JC, et al. Safety aspects of non-ionic surfactant vesicles: a toxicity study related to the physicochemical characteristics of non-ionic surfactants. J Pharm Pharmacol 1992; 44(4): 287-94.
[54]
Sezgin-Bayindir Z, Yuksel N. Investigation of formulation variables and excipient interaction on the production of niosomes. AAPS PharmSciTech 2012; 13(3): 826-35.
[55]
Sahin NO. Niosomes as nanocarrier systems nanomater nanosyst Biomed Appl 2007; 67-81.
[56]
Hu C, Rhodes DG. Proniosomes: a novel drug carrier preparation. Int J Pharm 1999; 185(1): 23-35.
[57]
Cevc G, Blume G. Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. Biochim Biophys Acta 1992; 1104(1): 226-32.
[58]
Rajan R, Jose S, Mukund VPB, Vasudevan DT. Transferosomes - A vesicular transdermal delivery system for enhanced drug permeation. J Adv Pharm Technol Res 2011; 2(3): 138-43.
[59]
Sharma G, Goyal H, Thakur K, Raza K, Katare OP. Novel elastic membrane vesicles (EMVs) and ethosomes-mediated effective topical delivery of aceclofenac: A new therapeutic approach for pain and inflammation. Drug Deliv 2016; 23(8): 3135-45.
[60]
Benson HA. Transfersomes for transdermal drug delivery. Expert Opin Drug Deliv 2006; 3(6): 727-37.
[61]
Honeywell-Nguyen PL, Gooris GS, Bouwstra JA. Quantitative assessment of the transport of elastic and rigid vesicle components and a model drug from these vesicle formulations into human skin in vivo. J Invest Dermatol 2004; 123(5): 902-10.
[62]
Honeywell-Nguyen PL, Bouwstra JA. The in vitro transport of pergolide from surfactant-based elastic vesicles through human skin: A suggested mechanism of action. J Control Release 2003; 86(1): 145-56.
[63]
Cevc G. Transfersomes, liposomes and other lipid suspensions on the skin: Permeation enhancement, vesicle penetration, and transdermal drug delivery. Crit Rev Ther Drug Carrier Syst 1996; 13(3-4): 257-388.
[64]
Cevc G, Schätzlein A, Blume G. Transdermal drug carriers: Basic properties, optimization and transfer efficiency in the case of epicutaneously applied peptides. J Control Release 1995; 36: 3-16.
[65]
Sachan R, Parashar T, Singh V, et al. Drug carrier transfersomes: A novel tool for transdermal drug delivery system. IJRDPL 2013; 2(2): 309-16.
[66]
Verma P, Pathak K. Therapeutic and cosmeceutical potential of ethosomes: An overview. J Adv Pharm Technol Res 2010; 1(3): 274-82.
[67]
Bendas ER, Tadros MI. Enhanced transdermal delivery of salbutamol sulfate via ethosomes. AAPS PharmSciTech 2007; 8(4): E107.
[68]
Jodar L, Duclos P, Milstien JB, Griffiths E, Aguado MT, Clements CJ. Ensuring vaccine safety in immunization programmes--a WHO perspective. Vaccine 2001; 19(13-14): 1594-605.
[69]
State of the world’s vaccines and immunization. 3rd ed. 2013.
[70]
Shukla A, Katare OP, Singh B, Vyas SP. M-cell targeted delivery of recombinant hepatitis B surface antigen using cholera toxin B subunit conjugated bilosomes. Int J Pharm 2010; 385(1-2): 47-52.
[71]
Shukla A, Khatri K, Gupta PN, Goyal AK, Mehta A, Vyas SP. Oral immunization against hepatitis B using bile salt stabilized vesicles (bilosomes). J Pharm Pharm Sci 2008; 11(1): 59-66.
[72]
Oyewumi MO, Kumar A, Cui Z. Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune responses. Expert Rev Vaccines 2010; 9(9): 1095-107.
[73]
De Temmerman M-L, Rejman J, Demeester J, Irvine DJ, Gander B, De Smedt SC. Particulate vaccines: on the quest for optimal delivery and immune response. Drug Discov Today 2011; 16(13-14): 569-82.
[74]
Clark MA, Blair H, Liang L, Brey RN, Brayden D, Hirst BH. Targeting polymerised liposome vaccine carriers to intestinal M cells. Vaccine 2001; 20(1-2): 208-17.
[75]
Shukla A, Singh B, Katare OP. Significant systemic and mucosal immune response induced on oral delivery of diphtheria toxoid using nano-bilosomes. Br J Pharmacol 2011; 164(2b): 820-7.
[76]
Wilkhu JS, McNeil SE, Anderson DE, Perrie Y. Characterization and optimization of bilosomes for oral vaccine delivery. J Drug Target 2013; 21: 291-9.
[77]
Shukla A, Mishra V, Kesharwani P. Bilosomes in the context of oral immunization: Development, challenges and opportunities. Drug Discov Today 2016; 21(6): 888-99.
[78]
Tripathy S, Patel DK, Barob L, Naira SK. A review on phytosomes, their characterization, advancement & potential for transdermal application. J Drug Deliv Ther 2013; 3: 147-52.
[79]
Maiti K, Mukherjee K, Gantait A, Saha BP, Mukherjee PK. Enhanced therapeutic potential of naringenin-phospholipid complex in rats. J Pharm Pharmacol 2006; 58(9): 1227-33.
[80]
Maiti K, Mukherjee K, Gantait A, Saha BP, Mukherjee PK. Curcumin-phospholipid complex: Preparation, therapeutic evaluation and pharmacokinetic study in rats. Int J Pharm 2007; 330(1-2): 155-63.
[81]
Yanyu X, Yunmei S, Zhipeng C, Qineng P. The preparation of silybin-phospholipid complex and the study on its pharmacokinetics in rats. Int J Pharm 2006; 307(1): 77-82.
[82]
Kidd P, Head K. A review of the bioavailability and clinical efficacy of milk thistle phytosome: A silybin-phosphatidylcholine complex (Siliphos). Altern Med Rev 2005; 10(3): 193-203.
[83]
Jitendra, Sharma PK, Bansal S, Banik A. Noninvasive routes of proteins and peptides drug delivery. Indian J Pharm Sci 2011; 73(4): 367-75.
[84]
Veuillez F, Kalia YN, Jacques Y, Deshusses J, Buri P. Factors and strategies for improving buccal absorption of peptides. Eur J Pharm Biopharm 2001; 51(2): 93-109.
[85]
Agu RU, Ugwoke MI, Armand M, Kinget R, Verbeke N. The lung as a route for systemic delivery of therapeutic proteins and peptides. Respir Res 2001; 2(4): 198-209.
[86]
Lee VH. Enzymatic barriers to peptide and protein absorption. Crit Rev Ther Drug Carrier Syst 1988; 5(2): 69-97.
[87]
Al-Tahami K, Singh J. Smart polymer based delivery systems for peptides and proteins. Recent Pat Drug Deliv Formul 2007; 1(1): 65-71.
[88]
Rawat M, Singh D, Saraf S. Nanocarriers: Promising vehicle for bioactive drugs manju. Biol Pharm Bull 2006; 29(9): 1790-8.
[89]
Umashankar MS, Sachdeva RK, Gulati M. Aquasomes: a promising carrier for peptides and protein delivery. Nanomedicine (Lond) 2010; 6(3): 419-26.
[90]
Jain NKUR. Jain NK UR. Controlled And Novel Drug Delivery Jain N. K. New Delhi: CBS Publishers & Distributors; . 2006.
[91]
Cherian AK, Rana AC, Jain SK. Self-assembled carbohydrate-stabilized ceramic nanoparticles for the parenteral delivery of insulin. Drug Dev Ind Pharm 2000; 26(4): 459-63.
[92]
Kossovsky N, Gelman A, Hnatyszyn HJ, et al. Surface-modified diamond nanoparticles as antigen delivery vehicles. Bioconjug Chem 1995; 6(5): 507-11.
[93]
Goyal AK, Khatri K, Mishra N, et al. Aquasomes--a nanoparticulate approach for the delivery of antigen. Drug Dev Ind Pharm 2008; 34(12): 1297-305.
[94]
Rawat M, Singh D, Saraf S, Saraf S. Development and in vitro evaluation of alginate gel-encapsulated, chitosan-coated ceramic nanocores for oral delivery of enzyme. Drug Dev Ind Pharm 2008; 34(2): 181-8.
[95]
Khopade AJ, Khopade S, Jain NK. Development of hemoglobin aquasomes from spherical hydroxyapatite cores precipitated in the presence of half-generation poly(amidoamine) dendrimer. Int J Pharm 2002; 241(1): 145-54.
[96]
Mizushima Y, Ikoma T, Tanaka J, et al. Injectable porous hydroxyapatite microparticles as a new carrier for protein and lipophilic drugs. J Control Release 2006; 110(2): 260-5.
[97]
Rojas-Oviedo I, Salazar-López RA, Reyes-Gasga J, Quirino-Barreda CT. Elaboration and structural analysis of aquasomes loaded with indomethacin. Eur J Pharm Sci 2007; 32(3): 223-30.
[98]
Patel T, Zhou J, Piepmeier JM, Saltzman WM. Polymeric nanoparticles for drug delivery to the central nervous system. Adv Drug Deliv Rev 2012; 64(7): 701-5.
[99]
Crucho CIC. Stimuli-responsive polymeric nanoparticles for nanomedicine. ChemMedChem 2015; 10(1): 24-38.
[100]
Lin G, Zhang H, Huang L. Smart polymeric nanoparticles for cancer gene delivery. Mol Pharm 2015; 12(2): 314-21.
[101]
Zhong Y, Meng F, Deng C, Zhong Z. Ligand-directed active tumor-targeting polymeric nanoparticles for cancer chemotherapy. Biomacromolecules 2014; 15(6): 1955-69.
[102]
Kamaly N, Xiao Z, Valencia PM, Radovic-Moreno AF, Farokhzad OC. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev 2012; 41(7): 2971-3010.
[103]
Krasia-Christoforou T, Georgiou TK. Polymeric theranostics: using polymer-based systems for simultaneous imaging and therapy. J Mater Chem B Mater Biol Med 2013; 1: 3002.
[104]
Marin E, Briceño MI, Caballero-George C. Critical evaluation of biodegradable polymers used in nanodrugs. Int J Nanomedicine 2013; 8: 3071-90.
[105]
Madhwi KR, Kumar R, Kumar P, et al. In vivo pharmacokinetic studies and intracellular delivery of methotrexate by means of glycine-tethered PLGA-based polymeric micelles. Int J Pharm 2017; 519(1-2): 138-44.
[106]
Crucho CIC, Barros MT. Polymeric nanoparticles: A study on the preparation variables and characterization methods. Mater Sci Eng C 2017; 80: 771-84.
[107]
Thakur CK, Thotakura N, Kumar R, et al. Chitosan-modified PLGA polymeric nanocarriers with better delivery potential for tamoxifen Int J Biol Macromol. 2016. 93(Pt A): 381-9
[108]
Kumar P, Sharma G, Kumar R, et al. Enhanced brain delivery of dimethyl fumarate employing tocopherol-acetate-based nanolipidic carriers: Evidence from pharmacokinetic, biodistribution, and cellular uptake studies. ACS Chem Neurosci 2017; 8(4): 860-5.
[109]
Raza K, Singh B, Lohan S, et al. Nano-lipoidal carriers of tretinoin with enhanced percutaneous absorption, photostability, biocompatibility and anti-psoriatic activity. Int J Pharm 2013; 456(1): 65-72.
[110]
Raza K, Singh B, Singla N, Negi P, Singal P, Katare OP. Nano-lipoidal carriers of isotretinoin with anti-aging potential: formulation, characterization and biochemical evaluation. J Drug Target 2013; 21(5): 435-42.
[111]
Beloqui A, Solinís MA, des Rieux A, Préat V, Rodríguez-Gascón A. Dextran-protamine coated nanostructured lipid carriers as mucus-penetrating nanoparticles for lipophilic drugs. Int J Pharm 2014; 468(1-2): 105-11.
[112]
Sharma G, Thakur K, Raza K, Singh B, Katare OP. Nanostructured lipid carriers: A new paradigm in topical delivery for dermal and transdermal applications. Crit Rev Ther Drug Carrier Syst 2017; 34(4): 355-86.
[113]
Kumar P, Sharma G, Gupta V, et al. Preclinical explorative assessment of dimethyl fumarate-based biocompatible nanolipoidal carriers for the management of multiple sclerosis. ACS Chem Neurosci 2018; 9(5): 1152-8.
[114]
Kumar P, Sharma G, Kumar R, et al. Vitamin-derived nanolipoidal carriers for brain delivery of dimethyl fumarate: A novel approach with preclinical evidence. ACS Chem Neurosci 2017; 8(6): 1390-6.
[115]
Kumar P, Sharma G, Kumar R, et al. Stearic acid based, systematically designed oral lipid nanoparticles for enhanced brain delivery of dimethyl fumarate. Nanomedicine (Lond) 2017; 12(23): 2607-21.
[116]
Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. Eur J Pharm Biopharm n.d.
[117]
Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application. Adv Pharm Bull 2015; 5(3): 305-13.
[118]
Kumar M, Sharma G, Kumar R, Singh B, Katare OP, Raza K. Lysine-based C 60 -fullerene nanoconjugates for monomethyl fumarate delivery: A novel nanomedicine for brain cancer cells. ACS Biomater Sci Eng 2018; 4: 2134-42.
[119]
Raza K, Kumar D, Kiran C, et al. Conjugation of docetaxel with multiwalled carbon nanotubes and codelivery with piperine: Implications on Pharmacokinetic Profile and Anticancer Activity. Mol Pharm 2016; 13(7): 2423-32.
[121]
Joshi M, Kumar P, Kumar R, et al. Aminated carbon-based “cargo vehicles” for improved delivery of methotrexate to breast cancer cells. Mater Sci Eng C 2017; 75: 1376-88.
[122]
Kumar M, Raza K. C60-fullerenes as drug delivery carriers for anticancer agents: Promises and hurdles. Pharm Nanotechnol 2017; 5(3): 169-79.
[123]
Thotakura N, Sharma G, Singh B, Kumar V, Raza K. Aspartic acid derivatized hydroxylated fullerenes as drug delivery vehicles for docetaxel: an explorative study. Artif Cells Nanomed Biotechnol 2018; 46(8): 1763-72.
[124]
Lohan S, Raza K, Mehta SK, Bhatti GK, Saini S, Singh B. Anti-Alzheimer’s potential of berberine using surface decorated multi-walled carbon nanotubes: A preclinical evidence. Int J Pharm 2017; 530(1-2): 263-78.
[125]
Misra C, Kumar M, Sharma G, et al. Glycinated fullerenes for tamoxifen intracellular delivery with improved anticancer activity and pharmacokinetics. Nanomedicine (Lond) 2017; 12(9): 1011-23.
[126]
Misra C, Thotakura N, Kumar R, et al. Improved cellular uptake, enhanced efficacy and promising pharmacokinetic profile of docetaxel employing glycine-tethered C60-fullerenes. Mater Sci Eng C 2017; 76: 501-8.
[127]
Kumar M, Sharma G, Misra C, et al. N-desmethyl tamoxifen and quercetin-loaded multiwalled CNTs: A synergistic approach to overcome MDR in cancer cells. Mater Sci Eng C 2018; 89: 274-82.
[128]
Mody VV, Siwale R, Singh A, Mody HR. Introduction to metallic nanoparticles. J Pharm Bioallied Sci 2010; 2(4): 282-9.
[129]
Pandey PK, Sharma AK, Rani S, Mishra G, Kandasamy G, Patra AK, et al. MCM-41 Nanoparticles for Brain Delivery: Better Choline-Esterase and Amyloid Formation Inhibition with Improved Kinetics. ACS Biomater Sci Eng 2018; 4: 2860-9.
[130]
Eatemadi A, Daraee H, Karimkhanloo H, et al. Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res Lett 2014; 9(1): 393.
[131]
Sharma AK, Gothwal A, Kesharwani P, Alsaab H, Iyer AK, Gupta U. Dendrimer nanoarchitectures for cancer diagnosis and anticancer drug delivery. Drug Discov Today 2017; 22(2): 314-26.
[132]
Boas U, Heegaard PMH. Dendrimers in drug research. Chem Soc Rev 2004; 33(1): 43-63.
[133]
Caminade AM, Laurent R, Majoral JP. Characterization of dendrimers. Adv Drug Deliv Rev 2005; 57(15): 2130-46.
[134]
Abbasi E, Aval SF, Akbarzadeh A, et al. Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett 2014; 9(1): 247.
[135]
Gothwal A, Kesharwani P, Gupta U, et al. Dendrimers as an effective nanocarrier in cardiovascular disease. Curr Pharm Des 2015; 21(30): 4519-26.
[136]
Agarwal A, Asthana A, Gupta U, Jain NK. Tumour and dendrimers: a review on drug delivery aspects. J Pharm Pharmacol 2008; 60(6): 671-88.
[137]
Singh A, Chaudhary S, Rani S, Sharma A, Gupta L, Gupta U. Dendrimer-drug conjugates in drug delivery and targeting. Pharm Nanotechnol 2016; 3: 239-60.
[138]
Gothwal A, Khan I, Kumar P, et al. Bendamustine-PAMAM conjugates for improved apoptosis, efficacy, and in vivo pharmacokinetics: a sustainable delivery tactic. Mol Pharm 2018; 15(6): 2084-97.
[139]
Cherniakov I, Domb AJ, Hoffman A. Self-nano-emulsifying drug delivery systems: an update of the biopharmaceutical aspects. Expert Opin Drug Deliv 2015; 12(7): 1121-33.
[140]
Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev 2000; 45(1): 89-121.
[141]
Patel V, Kukadiya H, Mashru R, Surti N, Mandal S. Development of microemulsion for solubility enhancement of clopidogrel. Iran J Pharm Res 2010; 9(4): 327-34.
[142]
Aboofazeli R, Patel N, Thomas M, Lawrence MJ. Investigations into the formation and characterization of phospholipid microemulsions. IV. Pseudo-ternary phase diagrams of systems containing water-lecithin-alcohol and oil; The influence of oil. Int J Pharm 1995; 125: 107-16.
[143]
Raza K, Negi P, Takyar S, Shukla A, Amarji B, Katare OP. Novel dithranol phospholipid microemulsion for topical application: development, characterization and percutaneous absorption studies. J Microencapsul 2011; 28(3): 190-9.
[144]
Raza K, Katare OP, Setia A, Bhatia A, Singh B. Improved therapeutic performance of dithranol against psoriasis employing systematically optimized nanoemulsomes. J Microencapsul 2013; 30(3): 225-36.
[145]
Sharma G, Dhankar G, Thakur K, Raza K, Katare OP. Benzyl benzoate-loaded microemulsion for topical applications: Enhanced dermatokinetic profile and better delivery promises. AAPS PharmSciTech 2016; 17(5): 1221-31.
[146]
Pouton CW. Formulation of self-emulsifying drug delivery systems. Adv Drug Deliv Rev 1997; 25: 47-58.
[148]
Singh B, Khurana L, Bandyopadhyay S, Kapil R, Katare OOP. Development of optimized self-nano-emulsifying drug delivery systems (SNEDDS) of carvedilol with enhanced bioavailability potential. Drug Deliv 2011; 18(8): 599-612.
[149]
Beg S, Jena SS, Patra ChN, et al. Development of solid self-nanoemulsifying granules (SSNEGs) of ondansetron hydrochloride with enhanced bioavailability potential. Colloids Surf B Biointerfaces 2013; 101: 414-23.
[150]
Bandyopadhyay S, Katare OP, Singh B. Optimized self nano-emulsifying systems of ezetimibe with enhanced bioavailability potential using long chain and medium chain triglycerides. Colloids Surf B Biointerfaces 2012; 100: 50-61.
[151]
Singh B, Bandopadhyay S, Kapil R, Singh R, Katare O. Self-emulsifying drug delivery systems (SEDDS): Formulation development, characterization, and applications. Crit Rev Ther Drug Carrier Syst 2009; 26(5): 427-521.
[152]
Dokania S, Joshi AK. Self-microemulsifying drug delivery system (SMEDDS)--challenges and road ahead. Drug Deliv 2015; 22(6): 675-90.
[153]
Dokania S, Joshi AK. Self-microemulsifying drug delivery system (SMEDDS)--challenges and road ahead. Drug Deliv 2015; 22(6): 675-90.
[154]
Moretton MA, Glisoni RJ, Chiappetta DA, Sosnik A. Molecular implications in the nanoencapsulation of the anti-tuberculosis drug rifampicin within flower-like polymeric micelles. Colloids Surf B Biointerfaces 2010; 79(2): 467-79.
[155]
Ebrahim Attia AB, Ong ZY, Hedrick JL, Lee PP, Ee PLR, Hammond PT, et al. Mixed micelles self-assembled from block copolymers for drug delivery. Curr Opin Colloid Interface Sci 2011; 16: 182-94.
[156]
Chiappetta DA, Sosnik A. Poly(ethylene oxide)-poly(propylene oxide) block copolymer micelles as drug delivery agents: Improved hydrosolubility, stability and bioavailability of drugs. Eur J Pharm Biopharm 2007; 66(3): 303-17.
[157]
Kahraman E, Karagöz A, Dinçer S. özsoy Y. Polyethylenimine Modified and Non-Modified Polymeric Micelles Used for Nasal Administration of Carvedilol. J Biomed Nanotechnol 2015; 11: 890-9.
[158]
Cagel M, Tesan FC, Bernabeu E, et al. Polymeric mixed micelles as nanomedicines: Achievements and perspectives. Eur J Pharm Biopharm 2017; 113: 211-28.
[159]
Kumar P, Kumar R, Singh B, et al. Biocompatible phospholipid-based mixed micelles for tamoxifen delivery: Promising evidences from in - vitro anticancer activity and dermatokinetic studies. AAPS PharmSciTech 2017; 18(6): 2037-44.
[160]
Singh A, Thotakura N, Kumar R, et al. PLGA-soya lecithin based micelles for enhanced delivery of methotrexate: Cellular uptake, cytotoxic and pharmacokinetic evidences. Int J Biol Macromol 2017; 95: 750-6.
[161]
Kedar U, Phutane P, Shidhaye S, Kadam V. Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine (Lond) 2010; 6(6): 714-29.
[162]
Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date. Pharm Res 2016; 33(10): 2373-87.
[163]
Havel H, Finch G, Strode P, et al. Nanomedicines: From Bench to Bedside and Beyond. AAPS J 2016; 18(6): 1373-8.
[164]
Sainz V, Conniot J, Matos AI, et al. Regulatory aspects on nanomedicines. Biochem Biophys Res Commun 2015; 468(3): 504-10.
[165]
Ventola CL. Progress in nanomedicine: Approved and investigational nanodrugs. P&T 2017; 42(12): 742-55.
[166]
Elsaesser A, Howard CV. Toxicology of nanoparticles. Adv Drug Deliv Rev 2012; 64(2): 129-37.
[167]
Sharma HS, Sharma A. Nanoparticles aggravate heat stress induced cognitive deficits, blood-brain barrier disruption, edema formation and brain pathology. Prog Brain Res 2007; 162: 245-73.
[168]
Wolfram J, Zhu M, Yang Y, et al. Safety of Nanoparticles in Medicine. Curr Drug Targets 2015; 16(14): 1671-81.
[170]
Havel HA. Where Are the Nanodrugs? An Industry Perspective on Development of Drug Products Containing Nanomaterials. AAPS J 2016; 18(6): 1351-3.
[171]
Research C for DE and. Drug Innovation - Novel Drug Approvals for 2017 n.d.
[173]
] Research C for DE and. Drug Innovation - Novel Drug Approvals for 2017 n.d.
[174]
Sainz V, Conniot J, Matos AI, et al. Regulatory aspects on nanomedicines. Biochem Biophys Res Commun 2015; 468(3): 504-10.
[175]
Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharm Res 2016; 33(10): 2373-87.
[176]
Caster JM, Patel AN, Zhang T, Wang A. Investigational nanomedicines in 2016: a review of nanotherapeutics currently undergoing clinical trials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2017; 9(1): e1416.