[1]
Thakur K, Sharma G, Singh B, Chhibber S, Katare OP. Current State of Nanomedicines in the Treatment of Topical Infectious Disorders. Recent Pat Antiinfect Drug Discov 2018.
[2]
Akhtar N, Verma A, Pathak K. Topical delivery of drugs for the effective treatment of fungal infections of skin. Curr Pharm Des 2015; 21(20): 2892-913.
[3]
Lam PL, Lee KKH, Wong RSM, et al. Recent advances on topical antimicrobials for skin and soft tissue infections and their safety concerns. Crit Rev Microbiol 2018; 44(1): 40-78.
[4]
Roberts MS, Mohammed Y, Pastore MN, et al. Topical and cutaneous delivery using nanosystems. J Control Release 2017; 247: 86-105.
[5]
Sharma G, Devi N, Thakur K, Jain A, Katare OP. Lanolin-based organogel of salicylic acid: evidences of better dermatokinetic profile in imiquimod-induced keratolytic therapy in BALB/c mice model. Drug Deliv Transl Res 2018; 8(2): 398-413.
[6]
Sharma G, Thakur K, Raza K, Singh B, Katare OP. Nanostructured lipid carriers: A new paradigm in topical delivery for dermal and transdermal applications. Crit Rev Ther Drug Carrier Syst 2017; 34(4): 355-86.
[7]
Lalani R, Misra A, Amrutiya J, Patel H, Bhatt P, Patel V. Challenges in dermal delivery of therapeutic antimicrobial protein and peptides. Curr Drug Metab 2017; 18(5): 426-36.
[8]
Hsu CY, Yang SC, Sung CT, Weng YH, Fang JY. Anti-MRSA malleable liposomes carrying chloramphenicol for ameliorating hair follicle targeting. Int J Nanomedicine 2017; 12: 8227-38.
[9]
Prabhu P, Patravale V, Joshi M. Nanocarriers for effective topical delivery of anti-infectives. Curr Nanosci 2012; 8: 491-503.
[10]
Bseiso EA, Nasr M, Sammour O, Abd El Gawad NA. Recent advances in topical formulation carriers of antifungal agents. Indian J Dermatol Venereol Leprol 2015; 81(5): 457-63.
[11]
Desai P, Patlolla RR, Singh M. Interaction of nanoparticles and cell-penetrating peptides with skin for transdermal drug delivery. Mol Membr Biol 2010; 27(7): 247-59.
[12]
Cox NH, Colver GB, Paterson WD. Management and morbidity of cellulitis of the leg. J R Soc Med 1998; 91(12): 634-7.
[13]
Ko WT, Adal KA, Tomecki KJ. Infectious diseases. Med Clin North Am 1998; 82(5): 1001-31.
[14]
Brook I, Frazier EH. Clinical and microbiological features of necrotizing fasciitis. J Clin Microbiol 1995; 33(9): 2382-7.
[15]
Bisno AL, Stevens DL. Streptococcal infections of skin and soft tissues. N Engl J Med 1996; 334(4): 240-5.
[16]
Hay RJ. Overview of studies of fluconazole in oropharyngeal candidiasis. Rev Infect Dis 1990; 12(Suppl. 3): S334-7.
[17]
Drake LA, Dinehart SM, Farmer ER, et al. Guidelines of care for superficial mycotic infections of the skin: Pityriasis (tinea) versicolor. J Am Acad Dermatol 1996; 34(2 Pt 1): 287-9.
[18]
O’Dell ML. Skin and wound infections: An overview. Am Fam Physician 1998; 57(10): 2424-32.
[19]
Cevc G, Vierl U. Nanotechnology and the transdermal route: A state of the art review and critical appraisal. J Control Release 2010; 141(3): 277-99.
[20]
Gray GM, White RJ, Williams RH, Yardley HJ. Lipid composition of the superficial stratum corneum cells of pig epidermis. Br J Dermatol 1982; 106(1): 59-63.
[21]
Wertz PW, Swartzendruber DC, Kitko DJ, Madison KC, Downing DT. The role of the corneocyte lipid envelopes in cohesion of the stratum corneum. J Invest Dermatol 1989; 93(1): 169-72.
[22]
Burgeson RE, Christiano AM. The dermal-epidermal junction. Curr Opin Cell Biol 1997; 9(5): 651-8.
[23]
Kanikkannan N, Singh J, Ramarao P. Transdermal iontophoretic delivery of timolol maleate in albino rabbits. Int J Pharm 2000; 197(1-2): 69-76.
[24]
Sharma G, Thakur K, Setia A, et al. Fabrication of acyclovir-loaded flexible membrane vesicles (FMVs): evidence of preclinical efficacy of antiviral activity in murine model of cutaneous HSV-1 infection. Drug Deliv Transl Res 2017; 7(5): 683-94.
[25]
Katare OP, Raza K, Singh B, Dogra S. Novel drug delivery systems in topical treatment of psoriasis: Rigors and vigors. Indian J Dermatol Venereol Leprol 2010; 76(6): 612-21.
[26]
Sharma G, Goyal H, Thakur K, Raza K, Katare OP. Novel elastic membrane vesicles (EMVs) and ethosomes-mediated effective topical delivery of aceclofenac: A new therapeutic approach for pain and inflammation. Drug Deliv 2016; 23(8): 3135-45.
[27]
Sharma G, Saini MK, Thakur K, et al. Aceclofenac cocrystal nanoliposomes for rheumatoid arthritis with better dermatokinetic attributes: A preclinical study. Nanomedicine (Lond) 2017; 12(6): 615-38.
[28]
Jain A, Garg NK, Jain A, et al. A synergistic approach of adapalene-loaded nanostructured lipid carriers, and vitamin C co-administration for treating acne. Drug Dev Ind Pharm 2016; 42(6): 897-905.
[29]
Bragagni M, Mennini N, Maestrelli F, Cirri M, Mura P. Comparative study of liposomes, transfersomes and ethosomes as carriers for improving topical delivery of celecoxib. Drug Deliv 2012; 19(7): 354-61.
[30]
Touitou E, Ainbinde D. 7. Ethosomes - an innovative carrier for enhanced delivery into and across the skin: Original research article: Ethosomes - novel vesicular carriers for enhanced delivery: characterization skin penetration properties, 2000. J Control Release 2014; 190: 44-6.
[31]
Rukavina Z, Vanić Ž. Current trends in development of liposomes for targeting bacterial biofilms. Pharmaceutics 2016; 8(2): E18.
[32]
Nunes PS, Rabelo AS, Souza JC, et al. Gelatin-based membrane containing usnic acid-loaded liposome improves dermal burn healing in a porcine model. Int J Pharm 2016; 513(1-2): 473-82.
[33]
Jøraholmen MW, Škalko-Basnet N, Acharya G, Basnet P. Resveratrol-loaded liposomes for topical treatment of the vaginal inflammation and infections. Eur J Pharm Sci 2015; 79: 112-21.
[34]
Wadhwa S, Singh B, Sharma G, Raza K, Katare OP. Liposomal fusidic acid as a potential delivery system: A new paradigm in the treatment of chronic plaque psoriasis. Drug Deliv 2016; 23(4): 1204-13.
[35]
Varikuti S, Oghumu S, Saljoughian N, et al. Topical treatment with nanoliposomal Amphotericin B reduces early lesion growth but fails to induce cure in an experimental model of cutaneous leishmaniasis caused by Leishmania mexicana. Acta Trop 2017; 173: 102-8.
[36]
Tanrıverdi ST, Özer Ö. Novel topical formulations of Terbinafine-HCl for treatment of onychomycosis. Eur J Pharm Sci 2013; 48(4-5): 628-36.
[37]
Benson HA. Transfersomes for transdermal drug delivery. Expert Opin Drug Deliv 2006; 3(6): 727-37.
[38]
Cevc G, Blume G. New, highly efficient formulation of diclofenac for the topical, transdermal administration in ultradeformable drug carriers, Transfersomes. Biochim Biophys Acta 2001; 1514(2): 191-205.
[39]
Hussain A, Singh S, Webster TJ, Ahmad FJ. New perspectives in the topical delivery of optimized amphotericin B loaded nanoemulsions using excipients with innate anti-fungal activities: A mechanistic and histopathological investigation. Nanomedicine (Lond) 2017; 13(3): 1117-26.
[40]
Hussain A, Singh S, Sharma D, Webster TJ, Shafaat K, Faruk A. Elastic liposomes as novel carriers: recent advances in drug delivery. Int J Nanomedicine 2017; 12: 5087-108.
[41]
Li C, Zhang X, Huang X, Wang X, Liao G, Chen Z. Preparation and characterization of flexible nanoliposomes loaded with daptomycin, a novel antibiotic, for topical skin therapy. Int J Nanomedicine 2013; 8: 1285-92.
[42]
Pandit J, Garg M, Jain NK. Miconazole nitrate bearing ultraflexible liposomes for the treatment of fungal infection. J Liposome Res 2014; 24(2): 163-9.
[43]
Qushawy M, Nasr A, Abd-Alhaseeb M, Swidan S. Design, optimization and characterization of a transfersomal gel using miconazole nitrate for the treatment of candida skin infections. Pharmaceutics 2018; 10(1): E26.
[44]
Chhibber S, Shukla A, Kaur S. Transfersomal phage cocktail is an effective treatment against methicillin-resistant Staphylococcus aureus-mediated skin and soft tissue infections. Antimicrob Agents Chemother 2017; 61(10): e02146-16.
[45]
Bavarsad N, Fazly Bazzaz BS, Khamesipour A, Jaafari MR. Colloidal, in vitro and in vivo anti-leishmanial properties of transfersomes containing paromomycin sulfate in susceptible BALB/c mice. Acta Trop 2012; 124(1): 33-41.
[46]
Park H, Lee J, Jeong S, et al. Lipase-sensitive transfersomes based on photosensitizer/polymerizable lipid conjugate for selective antimicrobial photodynamic therapy of acne. Adv Healthc Mater 2016; 5(24): 3139-47.
[47]
Hamishehkar H, Rahimpour Y, Kouhsoltani M. Niosomes as a propitious carrier for topical drug delivery. Expert Opin Drug Deliv 2013; 10(2): 261-72.
[48]
Azeem A, Anwer MK, Talegaonkar S. Niosomes in sustained and targeted drug delivery: Some recent advances. J Drug Target 2009; 17(9): 671-89.
[49]
Sohrabi S, Haeri A, Mahboubi A, Mortazavi A, Dadashzadeh S. Chitosan gel-embedded moxifloxacin niosomes: An efficient antimicrobial hybrid system for burn infection. Int J Biol Macromol 2016; 85: 625-33.
[50]
Khalil RM, Abdelbary GA, Basha M, Awad GE, El-Hashemy HA. Design and evaluation of proniosomes as a carrier for ocular delivery of lomefloxacin HCl. J Liposome Res 2017; 27(2): 118-29.
[51]
Jain S, Jain S, Khare P, Gulbake A, Bansal D, Jain SK. Design and development of solid lipid nanoparticles for topical delivery of an anti-fungal agent. Drug Deliv 2010; 17(6): 443-51.
[52]
Kaur L, Jain SK, Manhas RK, Sharma D. Nanoethosomal formulation for skin targeting of amphotericin B: An in vitro and in vivo assessment. J Liposome Res 2015; 25(4): 294-307.
[53]
Griseofulvin DM. Ann Dermatol Venereol 2001; 128: 1317-25.
[54]
Marto J, Vitor C, Guerreiro A, et al. Ethosomes for enhanced skin delivery of griseofulvin. Colloids Surf B Biointerfaces 2016; 146: 616-23.
[56]
Guo F, Wang J, Ma M, Tan F, Li N. Skin targeted lipid vesicles as novel nano-carrier of ketoconazole: Characterization, in vitro and in vivo evaluation. J Mater Sci Mater Med 2015; 26(4): 175.
[57]
Abdellatif MM, Khalil IA, Khalil MAF. Sertaconazole nitrate loaded nanovesicular systems for targeting skin fungal infection: In-vitro, ex-vivo and in-vivo evaluation. Int J Pharm 2017; 527(1-2): 1-11.
[58]
Godin B, Touitou E. Erythromycin ethosomal systems: Physicochemical characterization and enhanced antibacterial activity. Curr Drug Deliv 2005; 2(3): 269-75.
[59]
Gupta M, Vyas SP. Development, characterization and in vivo assessment of effective lipidic nanoparticles for dermal delivery of fluconazole against cutaneous candidiasis. Chem Phys Lipids 2012; 165(4): 454-61.
[60]
Raza K, Singh B, Singal P, Wadhwa S, Katare OP. Systematically optimized biocompatible isotretinoin-loaded solid lipid nanoparticles (SLNs) for topical treatment of acne. Colloids Surf B Biointerfaces 2013; 105: 67-74.
[61]
Trombino S, Mellace S, Cassano R. Solid lipid nanoparticles for antifungal drugs delivery for topical applications. Ther Deliv 2016; 7(9): 639-47.
[62]
Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Adv Pharm Bull 2015; 5(3): 305-13.
[63]
Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur J Pharm Biopharm 2000; 50(1): 161-77.
[64]
Saupe A, Gordon KC, Rades T. Structural investigations on nanoemulsions, solid lipid nanoparticles and nanostructured lipid carriers by cryo-field emission scanning electron microscopy and Raman spectroscopy. Int J Pharm 2006; 314(1): 56-62.
[65]
Prow TW, Grice JE, Lin LL, et al. Nanoparticles and microparticles for skin drug delivery. Adv Drug Deliv Rev 2011; 63(6): 470-91.
[66]
Papakostas D, Rancan F, Sterry W, Blume-Peytavi U, Vogt A. Nanoparticles in dermatology. Arch Dermatol Res 2011; 303(8): 533-50.
[67]
El-Housiny S, Shams Eldeen MA, El-Attar YA, et al. Fluconazole-loaded solid lipid nanoparticles topical gel for treatment of pityriasis versicolor: Formulation and clinical study. Drug Deliv 2018; 25(1): 78-90.
[68]
Chetoni P, Burgalassi S, Monti D, et al. Solid lipid nanoparticles as promising tool for intraocular tobramycin delivery: Pharmacokinetic studies on rabbits. Eur J Pharm Biopharm 2016; 109: 214-23.
[69]
Vaghasiya H, Kumar A, Sawant K. Development of solid lipid nanoparticles based controlled release system for topical delivery of terbinafine hydrochloride. Eur J Pharm Sci 2013; 49(2): 311-22.
[70]
Reinke JM, Sorg H. Wound repair and regeneration. Eur Surg Res 2012; 49(1): 35-43.
[71]
Fumakia M, Ho EA. Nanoparticles encapsulated with LL37 and serpin A1 promotes wound healing and synergistically enhances antibacterial activity. Mol Pharm 2016; 13(7): 2318-31.
[72]
Kalhapure RS, Sikwal DR, Rambharose S, et al. Enhancing targeted antibiotic therapy via pH responsive solid lipid nanoparticles from an acid cleavable lipid. Nanomedicine (Lond) 2017; 13(6): 2067-77.
[73]
Fazly Bazzaz BS, Khameneh B, Zarei H, Golmohammadzadeh S. Antibacterial efficacy of rifampin loaded solid lipid nanoparticles against Staphylococcus epidermidis biofilm. Microb Pathog 2016; 93: 137-44.
[74]
Zhu L, Cao X, Xu Q, Su J, Li X, Zhou W. Evaluation of the antibacterial activity of tilmicosin-SLN against Streptococcus agalactiae: in vitro and in vivo studies. Int J Nanomedicine 2018; 13: 4747-55.
[75]
Müller RH, Petersen RD, Hommoss A, Pardeike J. Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv Drug Deliv Rev 2007; 59(6): 522-30.
[76]
Müller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev 2002; 54(Suppl. 1): S131-55.
[77]
Yong CS, Li DX, Prabagar B, et al. The effect of beta-cyclodextrin complexation on the bioavailability and hepatotoxicity of clotrimazole. Pharmazie 2007; 62(10): 756-9.
[78]
Souto EB, Wissing SA, Barbosa CM, Müller RH. Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery. Int J Pharm 2004; 278(1): 71-7.
[79]
Das S, Ng WK, Tan RB. Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): Development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs? Eur J Pharm Sci 2012; 47(1): 139-51.
[80]
Souto EB, Müller RH. SLN and NLC for topical delivery of ketoconazole. J Microencapsul 2005; 22(5): 501-10.
[81]
Ravani L, Esposito E, Bories C, et al. Clotrimazole-loaded nanostructured lipid carrier hydrogels: Thermal analysis and in vitro studies. Int J Pharm 2013; 454(2): 695-702.
[82]
Singh S, Singh M, Tripathi CB, Arya M, Saraf SA. Development and evaluation of ultra-small nanostructured lipid carriers: novel topical delivery system for athlete’s foot. Drug Deliv Transl Res 2016; 6(1): 38-47.
[83]
Stecová J, Mehnert W, Blaschke T, et al. Cyproterone acetate loading to lipid nanoparticles for topical acne treatment: Particle characterisation and skin uptake. Pharm Res 2007; 24(5): 991-1000.
[84]
Raza K, Singh B, Lohan S, et al. Nano-lipoidal carriers of tretinoin with enhanced percutaneous absorption, photostability, biocompatibility and anti-psoriatic activity. Int J Pharm 2013; 456(1): 65-72.
[85]
Bose S, Michniak-Kohn B. Preparation and characterization of lipid based nanosystems for topical delivery of quercetin. Eur J Pharm Sci 2013; 48(3): 442-52.
[86]
Charoenputtakhun P, Opanasopit P, Rojanarata T, Ngawhirunpat T. All-trans retinoic acid-loaded lipid nanoparticles as a transdermal drug delivery carrier. Pharm Dev Technol 2014; 19(2): 164-72.
[87]
Lin YK, Huang ZR, Zhuo RZ, Fang JY. Combination of calcipotriol and methotrexate in nanostructured lipid carriers for topical delivery. Int J Nanomedicine 2010; 5: 117-28.
[88]
Lewies A, Wentzel JF, Jordaan A, Bezuidenhout C, Du Plessis LH. Interactions of the antimicrobial peptide nisin Z with conventional antibiotics and the use of nanostructured lipid carriers to enhance antimicrobial activity. Int J Pharm 2017; 526(1-2): 244-53.
[89]
Alalaiwe A, Wang PW, Lu PL, Chen YP, Fang JY, Yang SC. Synergistic Anti-MRSA activity of cationic nanostructured lipid carriers in combination with oxacillin for cutaneous application. Front Microbiol 2018; 9: 1493.
[90]
Song SH, Lee KM, Kang JB, Lee SG, Kang MJ, Choi YW. Improved skin delivery of voriconazole with a nanostructured lipid carrier-based hydrogel formulation. Chem Pharm Bull (Tokyo) 2014; 62(8): 793-8.
[91]
Moreno-Sastre M, Pastor M, Esquisabel A, et al. Pulmonary delivery of tobramycin-loaded nanostructured lipid carriers for Pseudomonas aeruginosa infections associated with cystic fibrosis. Int J Pharm 2016; 498(1-2): 263-73.
[92]
Fu T, Yi J, Lv S, Zhang B. Ocular amphotericin B delivery by chitosan-modified nanostructured lipid carriers for fungal keratitis-targeted therapy. J Liposome Res 2017; 27(3): 228-33.
[93]
Dave V, Kushwaha K, Yadav RB, Agrawal U. Hybrid nanoparticles for the topical delivery of norfloxacin for the effective treatment of bacterial infection produced after burn. J Microencapsul 2017; 34(4): 351-65.
[94]
Forier K, Raemdonck K, De Smedt SC, Demeester J, Coenye T, Braeckmans K. Lipid and polymer nanoparticles for drug delivery to bacterial biofilms. J Control Release 2014; 190: 607-23.
[95]
Thakur K, Sharma G, Singh B, Chhibber S, Patil AB, Katare OP. Chitosan-tailored lipidic nanoconstructs of Fusidic acid as promising vehicle for wound infections: An explorative study. Int J Biol Macromol 2018; 115: 1012-25.
[96]
Seedat N, Kalhapure RS, Mocktar C, et al. Co-encapsulation of multi-lipids and polymers enhances the performance of vancomycin in lipid-polymer hybrid nanoparticles: in vitro and in silico studies. Mater Sci Eng C 2016; 61: 616-30.
[97]
Sonawane SJ, Kalhapure RS, Rambharose S, et al. Ultra-small lipid-dendrimer hybrid nanoparticles as a promising strategy for antibiotic delivery: in vitro and in silico studies. Int J Pharm 2016; 504(1-2): 1-10.
[98]
Cao S, Jiang Y, Zhang H, Kondza N, Woodrow KA. Core-shell nanoparticles for targeted and combination antiretroviral activity in gut-homing T cells. Nanomedicine (Lond) 2018; 14(7): 2143-53.
[99]
Boonme P, Kaewbanjong J, Amnuaikit T, Andreani T, Silva AM, Souto EB. Microemulsion and microemulsion-based gels for topical antifungal therapy with phytochemicals. Curr Pharm Des 2016; 22(27): 4257-63.
[100]
Negi P, Singh B, Sharma G, Beg S, Raza K, Katare OP. Phospholipid microemulsion-based hydrogel for enhanced topical delivery of lidocaine and prilocaine: QbD-based development and evaluation. Drug Deliv 2016; 23(3): 951-67.
[101]
Sharma G, Dhankar G, Thakur K, Raza K, Katare OP. Benzyl benzoate-loaded microemulsion for topical applications: Enhanced dermatokinetic profile and better delivery promises. AAPS PharmSciTech 2016; 17(5): 1221-31.
[102]
Hussain A, Samad A, Singh SK, et al. Nanoemulsion gel-based topical delivery of an antifungal drug: In vitro activity and in vivo evaluation. Drug Deliv 2016; 23(2): 642-7.
[103]
Thakur K, Sharma G, Singh B, et al. Cationic-bilayered nanoemulsion of fusidic acid: An investigation on eradication of methicillin-resistant Staphylococcus aureus 33591 infection in burn wound. Nanomedicine (Lond) 2018; 13(8): 825-47.
[104]
Choudhury H, Gorain B, Pandey M, et al. Recent update on nanoemulgel as topical drug delivery system. J Pharm Sci 2017; 106(7): 1736-51.
[105]
Calderilla-Fajardo SB, Cázares-Delgadillo J, Villalobos-García R, Quintanar-Guerrero D, Ganem-Quintanar A, Robles R. Influence of sucrose esters on the in vivo percutaneous penetration of octyl methoxycinnamate formulated in nanocapsules, nanoemulsion, and emulsion. Drug Dev Ind Pharm 2006; 32(1): 107-13.
[106]
Wan T, Xu T, Pan J, et al. Microemulsion based gel for topical dermal delivery of pseudolaric acid B: In vitro and in vivo evaluation. Int J Pharm 2015; 493(1-2): 111-20.
[107]
Kumar N. Shishu. D-optimal experimental approach for designing topical microemulsion of itraconazole: Characterization and evaluation of antifungal efficacy against a standardized Tinea pedis infection model in Wistar rats. Eur J Pharm Sci 2015; 67: 97-112.
[108]
Chhibber T, Wadhwa S, Chadha P, Sharma G, Katare OP. Phospholipid structured microemulsion as effective carrier system with potential in methicillin sensitive Staphylococcus aureus (MSSA) involved burn wound infection. J Drug Target 2015; 23(10): 943-52.
[109]
Kaur A, Sharma G, Gupta V, Ratho RK, Katare OP. Enhanced acyclovir delivery using w/o type microemulsion: Preclinical assessment of antiviral activity using murine model of zosteriform cutaneous HSV-1 infection. Artif Cells Nanomed Biotechnol 2018; 46(2): 346-54.
[110]
Rastogi V, Yadav P, Verma A, Pandit JK. Ex vivo and in vivo evaluation of microemulsion based transdermal delivery of E. coli specific T4 bacteriophage: A rationale approach to treat bacterial infection. Eur J Pharm Sci 2017; 107: 168-82.
[111]
Bharti SK, Kesavan K. Phase-transition W/O microemulsions for ocular delivery: Evaluation of antibacterial activity in the treatment of bacterial keratitis. Ocul Immunol Inflamm 2017; 25(4): 463-74.
[112]
Sosa L, Clares B, Alvarado HL, Bozal N, Domenech O, Calpena AC. Amphotericin B releasing topical nanoemulsion for the treatment of candidiasis and aspergillosis. Nanomedicine (Lond) 2017; 13(7): 2303-12.
[113]
Cao Z, Spilker T, Fan Y, et al. Nanoemulsion is an effective antimicrobial for methicillin-resistant Staphylococcus aureus in infected wounds. Nanomedicine (Lond) 2017; 12(10): 1177-85.
[114]
Fan Y, Ciotti S, Cao Z, Eisma R, Baker J Jr, Wang SH. Screening of nanoemulsion formulations and identification of NB-201 as an effective topical antimicrobial for Staphylococcus aureus in a mouse model of infected wounds. Mil Med 2016; 181(5)(Suppl.): 259-64.
[115]
Dolgachev VA, Ciotti SM, Eisma R, et al. Nanoemulsion therapy for burn wounds is effective as a topical antimicrobial against gram-negative and gram-positive bacteria. J Burn Care Res 2016; 37(2): e104-14.
[116]
Mahtab A, Anwar M, Mallick N, Naz Z, Jain GK, Ahmad FJ. Transungual delivery of ketoconazole nanoemulgel for the effective management of onychomycosis. AAPS PharmSciTech 2016; 17(6): 1477-90.
[117]
Kelmann RG, Colombo M, De Araújo Lopes SC, et al. Pentyl gallate nanoemulsions as potential topical treatment of herpes labialis. J Pharm Sci 2016; 105(7): 2194-203.
[118]
Song Z, Sun H, Yang Y, et al. Enhanced efficacy and anti-biofilm activity of novel nanoemulsions against skin burn wound multi-drug resistant MRSA infections. Nanomedicine (Lond) 2016; 12(6): 1543-55.
[119]
Connell S, Li J, Durkes A, Zaroura M, Shi R. Nondermal irritating hyperosmotic nanoemulsions reduce treatment times in a contamination model of wound healing. Wound Repair Regen 2016; 24(4): 669-78.
[120]
Nair A, Jacob IIS, Al-DhubiabI B, Attimarad IM, Harsha IS. Basic considerations in the dermatokinetics of topical formulations. Braz J Pharm Sci 2013; 49(3): 423-34.
[121]
Thotakura N, Kumar P, Wadhwa S, Raza K, Katare P. Dermatokinetics as an important tool to assess the bioavailability of drugs by topical nanocarriers. Curr Drug Metab 2017; 18(5): 404-11.
[122]
Industry Gf. Topical dermatologic corticosteroids: in vivo bioequivalence.administration USDoHaHSRFad 1995; 1-36.
[123]
Shah VP. opical dermatological drug product NDAs and ANDAsin vivo bioavailability, bioequivalence, in vitro release and associated studies.Services RUDoHaH 1998; 1-19.
[124]
Yedgar S, Ojcius D. Use of lipid conjugates in the treatment of infection. Yissum Research Development Co of Hebrew University 2009.
[125]
Touitou E. Stable compositions for nail onychomycosis treatment. Galderma Pharma SaYissum Research Development Company Of The Hebrew University Of Jerusalem 2009.
[126]
Soll MD, Kumar K, Waranis RP, Shub N. Topical anthelmintic veterinary formulation 2006.
[127]
Shenoy D, Lee R, Wright C. Nanostructured compositions having antibacterial, anti-fungal, anti-yeast, and/or anti-viral properties. Novavax, Inc 2007.
[128]
Seabra CL. Nanostructurated lipid carriers, methods and uses thereof. Ineb - Instituto Nacional De Engenharia BiomédicaUniversidade Do Porto 2018.
[129]
Reghal A, Potel G, Caillon J, Jacqueline C, Asehoune K, Gonnet MTP. Lipid nanoparticles comprising an antibiotic and their use in therapy. Atlangram 2015.
[130]
Baker JR, Flack MR, Ciotti SM, Sutcliffe JA. Methods of treating fungal, yeast and mold infections. Nanobio Corp 2008.
[131]
Venugopalarao G, Lakshmipathy R, Sarada NC. Preparation and characterization of cefditoren pivoxil-loaded liposomes for controlled in vitroand in vivo drug release. Int J Nanomedicine 2015; 10(Suppl. 1): 149-57.
[132]
El-Ridy MS, Abdelbary A, Essam T, El-Salam RM, Kassem AA. Niosomes as a potential drug delivery system for increasing the efficacy and safety of nystatin. Drug Dev Ind Pharm 2011; 37(12): 1491-508.
[133]
Rajinikanth PS, Chellian J. Development and evaluation of nanostructured lipid carrier-based hydrogel for topical delivery of 5-fluorouracil. Int J Nanomedicine 2016; 11: 5067-77.
[134]
Pastor M, Moreno-Sastre M, Esquisabel A, et al. Sodium colistimethate loaded lipid nanocarriers for the treatment of Pseudomonas aeruginosa infections associated with cystic fibrosis. Int J Pharm 2014; 477(1-2): 485-94.
[135]
Fernández-Campos F, Clares Naveros B, López Serrano O, Alonso Merino C, Calpena Campmany AC. Evaluation of novel nystatin nanoemulsion for skin candidosis infections. Mycoses 2013; 56(1): 70-81.
[136]
Quatrin PM, Verdi CM, de Souza ME, et al. Antimicrobial and antibiofilm activities of nanoemulsions containing Eucalyptus globulus oil against Pseudomonas aeruginosa and Candida spp. Microb Pathog 2017; 112: 230-42.
[137]
Sugumar S, Ghosh V, Nirmala MJ, Mukherjee A, Chandrasekaran N. Ultrasonic emulsification of eucalyptus oil nanoemulsion: Antibacterial activity against Staphylococcus aureus and wound healing activity in Wistar rats. Ultrason Sonochem 2014; 21(3): 1044-9.
[138]
Abd-Elsalam WH, El-Zahaby SA, Al-Mahallawi AM. Formulation and in vivo assessment of terconazole-loaded polymeric mixed micelles enriched with Cremophor EL as dual functioning mediator for augmenting physical stability and skin delivery. Drug Deliv 2018; 25(1): 484-92.