Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Systematic Review Article

A Systematic Review of Reliability Issues in RF-MEMS Switches

Author(s): Muhammad Mubasher Saleem* and Hamid Nawaz

Volume 11, Issue 1, 2019

Page: [11 - 33] Pages: 23

DOI: 10.2174/1876402911666190204113856

Abstract

The main challenge in the commercialization of the RF-MEMS switches is their reliability, related to both the electrical and mechanical domains. The development of test standards and understanding the underlying physics of different failure modes has always been of major concern for the RF-MEMS designers. This paper reviews the different failure modes in the RF-MEMS switches like stiction, residual stress, cyclic fatigue, creep, wear and packaging in detail. The origin of these failure modes, their characterization procedure and respective solutions presented in the literature are presented to get a better understanding of the state of the art work done in the field RF-MEMS reliability for nearly past two decades.

Keywords: Reliability, RF MEMS switch, stiction, adhesion, dielectric charging, residual stress, fatigue, creep, delamination, wear, packaging.

Graphical Abstract

[1]
Stark, B. MEMS reliability assurance guidelines for space applications., 1999.
[2]
Miao, C.X.; Cao, J.J.; Ou, Y.B. MEMS-SINS/GPS/Magnetometer integrated navigation system for small unmanned aerial vehicles. Appl. Mech. Mater., 2014, 568, 976-986.
[3]
Saleem, M.M.; Bazaz, S.A. Design and robustness analysis of structurally decoupled 3-DoF MEMS gyroscope in the presence of worst-case process tolerances. Microsyst. Technol., 2011, 17(8), 1381-1391.
[4]
Eaton, W.P.; James, H.S. Micromachined pressure sensors: Review and recent developments. Smart Mater. Struct., 1997, 6(5), 530.
[5]
Kim, K.H.; Ko, J.S.; Cho, Y.H.; Lee, K.; Kwak, B.M.; Park, K. A skew-symmetric cantilever accelerometer for automotive airbag applications. Sens. Actuators A Phys., 1995, 50(1-2), 121-126.
[6]
Lu, Y.; Mapili, G.; Suhali, G.; Chen, S.; Roy, K. A digital micro‐mirror device‐based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds. J. Biomed. Mater. Res. Part A., , 2006, 77(2), 396-405.
[7]
Saleem, M.M.; Danish, A.M.; Iqbal, J.; Bazaz, S.A. Wide bandwidth 2-DoF electromagnetic MEMS energy harvester for low g applications. Microsyst. Technol., 2017, 23(12), 1-13.
[8]
Blondy, P.; Peroulis, D. Handling RF power: The latest advances in RF-MEMS tunable filters. IEEE Microw. Mag., 2013, 14(1), 24-38.
[9]
Pantazi, A.; Lantz, M.A.; Cherubini, G.; Pozidis, H.; Eleftheriou, E. A servomechanism for a micro-electro-mechanical-system-based scanning-probe data storage device. Nanotechnology, 2004, 15(10), S612.
[10]
Won Jung, C.; Lee, M.J.; Li, G.P.; De Flaviis, F. Reconfigurable scan-beam single-arm spiral antenna integrated with RF-MEMS switches. IEEE Trans. Antenn. Propag., 2006, 54(2), 455-463.
[11]
Erdil, E.; Topalli, K.; Unlu, M.; Civi, O.A.; Akin, T. Frequency tunable microstrip patch antenna using RF MEMS technology. IEEE Trans. Antenn. Propag., 2007, 55(4), 1193-1196.
[12]
Topalli, K.; Civi, Ö.A.; Demir, S.; Koc, S.; Akin, T. A monolithic phased array using 3-bit distributed RF MEMS phase shifters. IEEE Trans. Microw. Theory Tech., 2008, 56(2), 270-277.
[13]
Rantakari, P.; Malmqvist, R.; Samuelsson, C.; Leblanc, R.; Smith, D.; Jonsson, R.; Simon, W.; Saijets, J.; Baggen, R.; Vähä-Heikkiä, T. Wide-band radio frequency micro electro-mechanical systems switches and switching networks using a gallium arsenide monolithic microwave-integrated circuits foundry process technology. IET Microw. Antennas Propag., 2011, 5(8), 948-955.
[14]
Brank, J.; Yao, J.; Eberly, M.; Malczewski, A.; Varian, K.; Goldsmith, C. RF MEMS‐based tunable filters. Int. J. RF Microw. Comput.-Aided Eng., 2001, 11(5), 276-284.
[15]
Barzegar, S.; Mirzajani, H.; Ghavifekr, H.B. A new linearly tunable RF MEMS varactor with latching mechanism for low voltage and low power reconfigurable networks. Wirel. Pers. Commun., 2015, 83(3), 2249-2265.
[16]
Guo, X.; Gong, Z.; Zhong, Q.; Liang, X.; Liu, Z. A miniaturized reconfigurable broadband attenuator based on RF MEMS switches. J. Micromech. Microeng., 2016, 26(7), 074002.
[17]
Jaafar, H.; Beh, K.S.; Yunus, N.A.; Hasan, W.Z.; Shafie, S.; Sidek, O. A comprehensive study on RF MEMS switch. Microsyst. Technol., 2014, 20(12), 2109-2121.
[18]
Guo, Z.J.; McGruer, N.E.; Adams, G.G. Modeling, simulation and measurement of the dynamic performance of an ohmic contact, electrostatically actuated RF MEMS switch. J. Micromech. Microeng., 2007, 17(9), 1899.
[19]
Girbau, D.; Pradell, L.; Lázaro, A.; Nebot, À. Electrothermally actuated RF MEMS switches suspended on a low-resistivity substrate. J. Microelectromech. Syst., 2007, 16(5), 1061-1070.
[20]
Zhang, Y.H.; Ding, G.; Shun, X.; Gu, D.; Cai, B.; Lai, Z. Preparing of a high speed bistable electromagnetic RF MEMS switch. Sens. Actuators A Phys., 2007, 134(2), 532-537.
[21]
Lin, T.H.; Paul, S.; Lu, S.; Lu, H. A study on the performance and reliability of magnetostatic actuated RF MEMS switches. Microelectron. Reliab., 2009, 49(1), 59-65.
[22]
Lee, H.C.; Park, J.H.; Park, J.Y.; Nam, H.J.; Bu, J.U. Design, fabrication and RF performances of two different types of piezoelectrically actuated ohmic MEMS switches. J. Micromech. Microeng., 2005, 15(11), 2098.
[23]
Rebeiz, G.M. RF MEMS: Theory, design, and technology; John Wiley & Sons: Hoboken, NJ, 2004.
[24]
Yao, J.J.R.F. MEMS from a device perspective. J. Micromech. Microeng., 2000, 10(4), R9.
[25]
Yao, J.J.; Chang, M.F. A surface micromachined miniature switch for telecommunications applications with signal frequencies from DC up to 4 GHz. In: Proceedings of the IEEE 8th International Conference on Solid-State. Sensors and . Actuators, 1995, Vol 2, 384-387.
[26]
Yao, Z.J.; Chen, S.; Eshelman, S.; Denniston, D.; Goldsmith, C. Micromachined low-loss microwave switches. J. Microelectromech. Syst., 1999, 8(2), 129-134.
[27]
Pacheco, S.P.; Katehi, L.P.; Nguyen, C.C. Design of low actuation voltage RF MEMS switch. In IEEE MTT-S Int. Microw. Symp. Dig., 2000, vol 1, 165-168.
[28]
Park, J.Y.; Kim, G.H.; Chung, K.W.; Bu, J.U. Monolithically integrated micromachined RF MEMS capacitive switches. Sens. Actuators A Phys., 2001, 89(1), 88-94.
[29]
Kim, J.M.; Lee, S.; Kim, J.M.; Baek, C.W.; Kwon, Y.; Kim, Y.K. A mechanically reliable digital-type Single Crystalline Silicon (SCS) RF MEMS variable capacitor. J. Micromech. Microeng., 2005, 15(10), 1854.
[30]
Liu, A.Q.; Tang, M.; Agarwal, A.; Alphones, A. Low-loss lateral micromachined switches for high frequency applications. J. Micromech. Microeng., 2004, 15(1), 157.
[31]
Cho, I.J.; Song, T.; Baek, S.H.; Yoon, E. A low-voltage and low-power RF MEMS series and shunt switches actuated by combination of electromagnetic and electrostatic forces. IEEE Trans. Microw. Theory Tech., 2005, 53(7), 2450-2457.
[32]
Park, J.H.; Lee, H.C.; Park, Y.H.; Kim, Y.D.; Ji, C.H.; Bu, J.; Nam, H.J. A fully wafer-level packaged RF MEMS switch with low actuation voltage using a piezoelectric actuator. J. Micromech. Microeng., 2006, 16(11), 2281.
[33]
Ke, F.; Miao, J.; Oberhammer, J. A ruthenium-based multimetal-contact RF MEMS switch with a corrugated diaphragm. J. Microelectromech. Syst., 2008, 17(6), 1447-1459.
[34]
Kim, J.M.; Lee, S.; Park, J.H.; Baek, C.W.; Kwon, Y.; Kim, Y.K. Electrostatically driven low-voltage micromechanical RF switches using robust single-crystal silicon actuators. J. Micromech. Microeng., 2010, 20(9), 095007.
[35]
Rahman, H.U.; Chan, K.Y.; Ramer, R. Cantilever beam designs for RF MEMS switches. J. Micromech. Microeng., 2010, 20(7), 075042.
[36]
Cho, I.J.; Yoon, E. Design and fabrication of a single membrane push-pull SPDT RF MEMS switch operated by electromagnetic actuation and electrostatic hold. J. Micromech. Microeng., 2010, 20(3), 035028.
[37]
Liu, B.; Lv, Z.; He, X.; Liu, M.; Hao, Y.; Li, Z. Improving performance of the metal-to-metal contact RF MEMS switch with a Pt–Au microspring contact design. J. Micromech. Microeng., 2011, 21(6), 065038.
[38]
Stefanini, R.; Chatras, M.; Blondy, P.; Rebeiz, G.M. Miniature MEMS switches for RF applications. J. Microelectromech. Syst., 2011, 20(6), 1324-1335.
[39]
Jaibir, S.; Nagendra, K.; Amitava, D. Fabrication of low pull-in voltage RF MEMS switches on glass substrate in recessed CPW configuration for V-band application. J. Micromech. Microeng., 2012, 22(2), 025001.
[40]
Persano, A.; Tazzoli, A.; Cola, A.; Siciliano, P.; Meneghesso, G.; Quaranta, F. Reliability enhancement by suitable actuation waveforms for capacitive RF MEMS switches in III–V technology. J. Microelectromech. Syst., 2012, 21(2), 414-419.
[41]
Bansal, D.; Kumar, A.; Sharma, A.; Kumar, P.; Rangra, K.J. Design of novel compact anti-stiction and low insertion loss RF MEMS switch. Microsyst. Technol., 2014, 20(2), 337-340.
[42]
Bansal, D.; Kumar, A.; Sharma, A.; Rangra, K.J. Design of compact and wide bandwidth SPDT with anti-stiction torsional RF MEMS series capacitive switch. Microsyst. Technol., 2015, 21(5), 1047-1052.
[43]
Pirmoradi, E.; Mirzajani, H.; Ghavifekr, H.B. Design and simulation of a novel electro-thermally actuated lateral RF MEMS latching switch for low power applications. Microsyst. Technol., 2015, 21(2), 465-475.
[44]
Angira, M.; Rangra, K. Design and investigation of a low insertion loss, broadband, enhanced self and hold down power RF-MEMS switch. Microsyst. Technol., 2015, 21(6), 1173-1178.
[45]
Angira, M.; Rangra, K. A novel design for low insertion loss, multi-band RF-MEMS switch with low pull-in voltage. Eng. Sci. Technol. Int. J., 2016, 19(1), 171-177.
[46]
Persano, A.; Quaranta, F.; Martucci, M.C.; Siciliano, P.; Cola, A. On the electrostatic actuation of capacitive RF MEMS switches on GaAs substrate. Sens. Actuator. Phys., 2015, 232, 202-207.
[47]
Sim, S.M.; Lee, Y.; Jang, Y.H.; Lee, Y.S.; Kim, Y.K.; Llamas-Garro, I.; Kim, J.M.A. 50-100GHz ohmic contact SPDT RF MEMS silicon switch with dual axis movement. Microelectron. Eng., 2016, 162, 69-74.
[48]
Nair, A.G.; Shajahan, E.S. Design and simulation of radio frequency micro electro mechanical capacitive shunt switches. Procedia Comput. Sci., 2016, 93, 217-222.
[49]
Chakraborty, A.; Gupta, B. Utility of RF MEMS miniature switched capacitors in phase shifting applications. AEU Int. J. Electron. Commun., 2017, 75, 98-107.
[50]
Wei, H.; Deng, Z.; Guo, X.; Wang, Y.; Yang, H. High on/off capacitance ratio RF MEMS capacitive switches. J. Micromech. Microeng., 2017, 27(5), 055002.
[51]
Li, M.; Zhao, J.; You, Z.; Zhao, G. Design and fabrication of a low insertion loss capacitive RF MEMS switch with novel micro-structures for actuation. Solid-State Electron., 2017, 127, 32-37.
[52]
Hartzell, A.L.; Da Silva, M.G.; Shea, H. MEMS reliability; Springer Science & Business Media: Emeritus, MA, 2010.
[53]
Rebeiz, G.M.; Patel, C.D.; Han, S.K.; Ko, C.H.; Ho, K.M. The search for a reliable MEMS switch. IEEE Microw. Mag., 2013, 14(1), 57-67.
[54]
Tanner, D.M. MEMS reliability: Where are we now? Microelectron. Reliab., 2009, 49(9-11), 937-940.
[55]
Goldsmith, C.; Maciel, J.; McKillop, J. Demonstrating reliability. IEEE Microw. Mag., 2007, 8(6), 56-60.
[56]
Iannacci, J. Reliability of MEMS: A perspective on failure mechanisms, improvement solutions and best practices at development level. Displays, 2015, 37, 62-71.
[57]
Bowden, F.P.; Tabor, D. The friction and lubrication of solids; Oxford University Press: Lincoln, UK, 2001.
[58]
De Wolf, I.; Van Spengen, W.M. Techniques to study the reliability of metal RF MEMS capacitive switches. Microelectron. Reliab., 2002, 42(9-11), 1789-1794.
[59]
Song, X.; Fu, R.; He, H. Frequency effects on the dielectric properties of AlN film deposited by radio frequency reactive magnetron sputtering. Microelectron. Eng., 2009, 86(11), 2217-2221.
[60]
Van Spengen, W.M. MEMS reliability from a failure mechanisms perspective. Microelectron. Reliab., 2003, 43(7), 1049-1060.
[61]
Zhao, Y.P.; Wang, G.C.; Lu, T.M. Surface-roughness effect on capacitance and leakage current of an insulating film. Phys. Rev. B, 1999, 60(12), 9157.
[62]
Patrikar, R.M. Modeling and simulation of surface roughness. Appl. Surf. Sci., 2004, 228(1), 213-220.
[63]
Van Spengen, W.M. Capacitive RF MEMS switch dielectric charging and reliability: A critical review with recommendations. J. Micromech. Microeng., 2012, 22(7), 074001.
[64]
Van Spengen, W.M.; De Wolf, I.; Puers, B. Auto-adhesion model for MEMS surfaces taking into account the effect of surface roughness. Micromach. Microfabric. Int. Soc. Optic. Photon., 2000, 4175, 104-113.
[65]
Barnes, C.; Johnston, A.; Lee, C.; Swift, G.; Rax, B. . Keynote paper:Recent radiation effects activities at JPL: Coping with COTS.In: Electronic Component Conference-EECC, , 1997; Vol. 395, p. 227.
[66]
Mastrangelo, C.H.; Hsu, C.H. A simple experimental technique for the measurement of the work of adhesion of microstructures. 5th Technical Digest IEEE Solid-State Sensor and Actuator Workshop, 1992, pp. 208-212.
[67]
Mastrangelo, C.H.; Hsu, C.H. Mechanical stability and adhesion of microstructures under capillary forces. II. Basic theory. J. Microelectromech. Syst., 1993, 2(1), 33-43.
[68]
Mastrangelo, C.H.; Hsu, C.H. Mechanical stability and adhesion of microstructures under capillary forces. II. Experiments. J. Microelectromech. Syst., 1993, 2(1), 44-55.
[69]
Legtenberg, R.; Tilmans, H.A.; Elders, J. Stiction of surface micromachined structures after rinsing and drying: Model and investigation of adhesion mechanisms. Sens. Actuators A Phys., 1994, 43(1), 230-238.
[70]
De Boer, M.P.; Tabbara, M.R.; Dugger, M.T.; Clews, P.J.; Michalske, T.A. Measuring and modeling electrostatic adhesion in micromachines. In IEEE International Conference on Solid State Sensors and Actuators, 1997, Vol. 1, pp. 229-232.
[71]
Yee, Y.; Park, M.; Chun, K. A sticking model of suspended polysilicon microstructure including residual stress gradient and postrelease temperature. J. Microelectromech. Syst., 1998, 7(3), 339-344.
[72]
Van Spengen, W.M.; Puers, R.; De Wolf, I. A physical model to predict stiction in MEMS. J. Micromech. Microeng., 2002, 12(5), 702.
[73]
Van Spengen, W.M.; Puers, R.; Mertens, R.; De Wolf, I. Experimental characterization of stiction due to charging in RF MEMS. IEEE International Electron Devices Meeting, 2002, pp. 901-904.
[74]
Rottenberg, X.; Nauwelaers, B.; De Raedt, W.; Tilmans, H.A. Distributed dielectric charging and its impact on RF MEMS devices. In: IEEE 34th European Microwave Conference, 2004, vol,1, pp. 77-80.
[75]
Van Spengen, W.M.; Puers, R.; Mertens, R.; De Wolf, I. A comprehensive model to predict the charging and reliability of capacitive RF MEMS switches. J. Micromech. Microeng., 2004, 14(4), 514.
[76]
Melle, S.; De Conto, D.; Dubuc, D.; Grenier, K.; Vendier, O.; Muraro, J.L.; Cazaux, J.L.; Plana, R. Reliability modeling of capacitive RF MEMS. IEEE Trans. Microw. Theory Tech., 2005, 53(11), 3482-3488.
[77]
Papaioannou, G.J.; Exarchos, M.; Theonas, V.; Psychias, J.; Konstantinidis, G.; Vasilache, D.; Muller, A.; Neculoiu, D. Effect of space charge polarization in radio frequency microelectromechanical system capacitive switch dielectric charging. Appl. Phys. Lett., 2006, 89(10), 103512.
[78]
Bordas, C.; Grenier, K.; Dubuc, D.; Flahaut, E.; Pacchini, S.; Paillard, M.; Cazaux, J.L. Carbon nanotube based dielectric for enhanced RF MEMS reliability. IEEE International Microwave Symposium, 2007, pp. 375-378.
[79]
Li, G.; San, H.; Chen, X. Charging and discharging in ion implanted dielectric films used for capacitive radio frequency microelectromechanical systems switch. J. Appl. Phys., 2009, 105(12), 124503.
[80]
Peng, Z.; Palego, C.; Hwang, J.C.; Forehand, D.I.; Goldsmith, C.L.; Moody, C.; Malczewski, A.; Pillans, B.W.; Daigler, R.; Papapolymerou, J. Impact of humidity on dielectric charging in RF MEMS capacitive switches. In IEEE Microw. Wirel. Compon. Lett., 2009, Vol.19(No.5), 299-301.
[81]
Iannacci, J.; Repchankova, A.; Faes, A.; Tazzoli, A.; Meneghesso, G.; Dalla Betta, G.F. Enhancement of RF-MEMS switch reliability through an active anti-stiction heat-based mechanism. Microelectron. Reliab., 2010, 50(9), 1599-1603.
[82]
Yamashita, T.; Itoh, T.; Suga, T. Investigation of anti-stiction coating for ohmic contact MEMS switches with thiophenol and 2-naphthalenethiol self-assembled monolayer. Sens. Actuators A Phys., 2011, 172(2), 455-461.
[83]
Barbato, M.; Meneghesso, G. A novel technique to alleviate the stiction phenomenon in radio frequency microelectromechanical switches. IEEE Electron Device Lett., 2015, 36(2), 177-179.
[84]
Heinz, D.B.; Hong, V.A.; Ahn, C.H.; Ng, E.J.; Yang, Y.; Kenny, T.W. Experimental investigation into stiction forces and dynamic mechanical anti-stiction solutions in ultra-clean encapsulated MEMS devices. J. Microelectromech. Syst., 2016, 25(3), 469-478.
[85]
Agarwal, S.; Kashyap, R.; Guha, K.; Baishya, S. Modeling and analysis of capacitance in consideration of the deformation in RF MEMS shunt switch. Superlattices Microstruct., 2017, 101, 567-574.
[86]
Koutsoureli, M.; Michalas, L.; Papandreou, E.; Papaioannou, G. Dielectric charging asymmetry in SiN films used in RF MEMS capacitive switches. IEEE Trans. Device Mater. Reliab., 2017, 17(1), 138-145.
[87]
Shen, S.C.; Caruth, D.; Feng, M. Broadband low actuation voltage RF MEM switches. In: IEEE 22nd Annual GaAs IC Symposium,, 2000, pp. 161-164.
[88]
Balaraman, D.; Bhattacharya, S.K.; Ayazi, F.; Papapolymerou, J. Low-cost low actuation voltage copper RF MEMS switches. IEEE MTT-S Int. Microw. Symp. Dig., 2002, Vol.2, pp.1225-1228.
[89]
Chan, R.; Lesnick, R.; Becher, D.; Feng, M. Low-actuation voltage RF MEMS shunt switch with cold switching lifetime of seven billion cycles. J. Microelectromech. Syst., 2003, 12(5), 713-719.
[90]
Touati, S.; Lorphelin, N.; Kanciurzewski, A.; Robin, R.; Rollier, A.S.; Millet, O.; Segueni, K. Low actuation voltage totally free flexible RF MEMS switch with antistiction system. In IEEE Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS, 2008, pp. 66-70.
[91]
Lorphelin, N.; Robin, R.; Rollier, A.S.; Touati, S.; Kanciurzewski, A.; Millet, O.; Segueni, K. Simulation and optimization of a totally free flexible RF MEMS switch. J. Micromech. Microeng., 2009, 19(7), 074017.
[92]
Blondy, P.; Crunteanu, A.; Champeaux, C.; Catherinot, A.; Tristant, P.; Vendier, O.; Cazaux, J.L.; Marchand, L. Dielectric less capacitive MEMS switches. In IEEE MTT-S Int. Microw. Symp. Dig., 2004, 2, 573-576.
[93]
Mardivirin, D.; Pothier, A.; Crunteanu, A.; Vialle, B.; Blondy, P. Charging in dielectricless capacitive RF-MEMS switches. In IEEE Trans. Microw. Theory And Techniques,, 2009, Vol.57(1), pp.231-236.
[94]
Tazzoli, A.; Autizi, E.; Barbato, M.; Meneghesso, G.; Solazzi, F.; Farinelli, P.; Giacomozzi, F.; Iannacci, J.; Margesin, B.; Sorrentino, R. Evolution of electrical parameters of dielectric-less ohmic RF-MEMS switches during continuous actuation stress. In IEEE Proceedings of the European Solid State Device Research Conference, 2009, pp. 343-346.
[95]
Herrmann, C.F.; DelRio, F.W.; Miller, D.C.; George, S.M.; Bright, V.M.; Ebel, J.L.; Strawser, R.E.; Cortez, R.; Leedy, K.D. Alternative dielectric films for RF MEMS capacitive switches deposited using atomic layer deposited Al2O3/ZnO alloys. Sens. Actuators A Phys., 2007, 135(1), 262-272.
[96]
Cheng, Z.; Huang, X.; Huang, H.; Wang, K.; Li, G. Effect of arsenic doping on charge relaxation process in silicon nitride film for capacitive RF MEMS switch application. Microelectron. Eng., 2016, 162, 89-92.
[97]
Goldsmith, C.L.; Forehand, D.I.; Peng, Z.; Hwang, J.C.; Ebel, J.L. High-cycle life testing of RF MEMS switches. In IEEE/MTT-S International Microwave Symposium, 2007, pp. 1805-1808.
[98]
Withers, P.J. Residual stress and its role in failure. Rep. Prog. Phys., 2007, 70(12), 2211.
[99]
Doerner, M.F.; Nix, W.D. Stresses and deformation processes in thin films on substrates. Crit. Rev. Solid State Mater. Sci., 1988, 14(3), 225-268.
[100]
Withers, P.J.; Bhadeshia, H.K.D.H. Residual stress. Part 2-Nature and origins. Mater. Sci. Technol., 2001, 17(4), 366-375.
[101]
Mattox, D.M. . Atomistic film growth and resulting film properties:Residual film stress. Vac. Technol. Coat 2001, 22-23.
[102]
Rossini, N.S.; Dassisti, M.; Benyounis, K.Y.; Olabi, A.G. Methods of measuring residual stresses in components. Mater. Des., 2012, 35, 572-588.
[103]
Clyne, T.W.; Gill, S.C. Residual stresses in thermal spray coatings and their effect on interfacial adhesion: A review of recent work. J. Thermal Spray Technol., 1996, 5(4), 401-418.
[104]
Kraft, O.; Volkert, C.A. Mechanical testing of thin films and small structures. Adv. Eng. Mater., 2001, 3(3), 99-110.
[105]
De Wolf, I. Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits. Semicond. Sci. Technol., 1996, 11(2), 139.
[106]
Reimers, W. Analysis of residual stress states using diffraction methods. Acta Phys. Pol. A, 1999, 96(2), 229-238.
[107]
De Pasquale, G.; Soma, A. Dynamic identification of electrostatically actuated MEMS in the frequency domain. Mech. Syst. Signal Process., 2010, 24(6), 1621-1633.
[108]
Stoney, G.G. The tension of metallic films deposited by electrolysis. In Proc.of the R. Soc. Lond.Series , Containing Papers of a Mathematical and Physica. Character, 1909, Vol.82(No.553), 172-175.
[109]
Freund, L.B. Substrate curvature due to thin film mismatch strain in the nonlinear deformation range. J. Mech. Phys. Solids, 2000, 48(6), 1159-1174.
[110]
Feng, X.; Huang, Y.; Jiang, H.; Ngo, D.; Rosakis, A.J. The effect of thin film/substrate radii on the Stoney formula for thin film/substrate subjected to nonuniform axisymmetric misfit strain and temperature. J. Mech. Mater. Struct., 2006, 1(6), 1041-1053.
[111]
Huang, Y.; Rosakis, A.J. Extension of Stoney’s formula to non-uniform temperature distributions in thin film/substrate systems. The case of radial symmetry. J. Mech. Phys. Solids, 2005, 53(11), 2483-2500.
[112]
Huang, S.; Zhang, X. Extension of the Stoney formula for film–substrate systems with gradient stress for MEMS applications. J. Micromech. Microeng., 2006, 16(2), 382.
[113]
Tanaka, K.; Ishihara, K.; Akiniwa, Y.; Ohta, H. Residual stress of aluminum thin films measured by X-ray and curvature methods. J. Soc. Mater. Sci. Jpn., 1996, 45(9), 153-159.
[114]
Iborra, E.; Olivares, J.; Clement, M.; Vergara, L.; Sanz-Hervás, A.; Sangrador, J. Piezoelectric properties and residual stress of sputtered AlN thin films for MEMS applications. Sens. Actuators A Phys., 2004, 115(2), 501-507.
[115]
Pandey, A.; Dutta, S.; Prakash, R.; Dalal, S.; Raman, R.; Kapoor, A.K.; Kaur, D. Growth and evolution of residual stress of AlN films on silicon (100) wafer. Mater. Sci. Semicond. Process., 2016, 52, 16-23.
[116]
Watanabe, M.; Mumm, D.R.; Chiras, S.; Evans, A.G. Measurement of the residual stress in a Pt–aluminide bond coat. Scr. Mater., 2002, 46(1), 67-70.
[117]
Bigl, S.; Heinz, W.; Kahn, M.; Schoenherr, H.; Cordill, M.J. High-temperature characterization of silicon dioxide films with wafer curvature. JOM, 2015, 67(12), 2902-2907.
[118]
Alaca, B.E.; Toga, K.B.; Akar, O.; Akin, T. Strain-controlled bulge test. J. Mater. Res., 2008, 23(12), 3295-3302.
[119]
Shojaei, O.R.; Karimi, A. Comparison of mechanical properties of TiN thin films using nanoindentation and bulge test. Thin Solid Films, 1998, 332(1), 202-208.
[120]
Javed, H.; Merle, B.; Preiß, E.; Hivet, R.; Benedetto, A.; Göken, M. Mechanical characterization of metallic thin films by bulge and scratch testing. Surf. Coat. Tech., 2016, 289, 69-74.
[121]
Vlassak, J.J.; Nix, W.D. A new bulge test technique for the determination of Young’s modulus and Poisson’s ratio of thin films. J. Mater. Res., 1992, 7(12), 3242-3249.
[122]
Edwards, R.L.; Coles, G.; Sharpe, W.N. Comparison of tensile and bulge tests for thin-film silicon nitride. Exp. Mech., 2004, 44(1), 49-54.
[123]
Frischmuth, T.; Schneider, M.; Maurer, D.; Grille, T.; Schmid, U. Impact of thermal treatment on the residual stress and Young’s modulus of thin a-SiC: H membranes applying bulge testing. Proc. Eng., 2015, 120, 752-755.
[124]
Rats, D.; Bimbault, L.; Vandenbulcke, L.; Herbin, R.; Badawi, K.F. Crystalline quality and residual stresses in diamond layers by Raman and X‐ray diffraction analyses. J. Appl. Phys., 1995, 78(8), 4994-5001.
[125]
Kang, Y.; Qiu, Y.; Lei, Z.; Hu, M. An application of Raman spectroscopy on the measurement of residual stress in porous silicon. Opt. Lasers Eng., 2005, 43(8), 847-855.
[126]
Ahmed, F.; Bayerlein, K.; Rosiwal, S.M.; Göken, M.; Durst, K. Stress evolution and cracking of crystalline diamond thin films on ductile titanium substrate: Analysis by micro-raman spectroscopy and analytical modelling. Acta Mater., 2011, 59(14), 5422-5433.
[127]
Xu, W.H.; Lu, D.; Zhang, T.Y. Determination of residual stresses in Pb (Zr 0.53 Ti 0.47) O3 thin films with Raman spectroscopy. Appl. Phys. Lett., 2001, 79(25), 4112-4114.
[128]
Zhang, S.; Xie, H.; Zeng, X.; Hing, P. Residual stress characterization of diamond-like carbon coatings by an X-ray diffraction method. Surf. Coat. Tech., 1999, 122(2), 219-224.
[129]
Kraft, O.; Hommel, M.; Arzt, E. X-ray diffraction as a tool to study the mechanical behaviour of thin films. Mater. Sci. Eng. A, 2000, 288(2), 209-216.
[130]
Shen, Y.G.; Mai, Y.W.; Zhang, Q.C.; McKenzie, D.R.; McFall, W.D.; McBride, W.E. Residual stress, microstructure, and structure of tungsten thin films deposited by magnetron sputtering. J. Appl. Phys., 2000, 87(1), 177-187.
[131]
Treml, R.; Kozic, D.; Zechner, J.; Maeder, X.; Sartory, B.; Gänser, H.P.; Schöngrundner, R.; Michler, J.; Brunner, R.; Kiener, D. High resolution determination of local residual stress gradients in single-and multilayer thin film systems. Acta Mater., 2016, 103, 616-623.
[132]
Zheng, X.; Li, J.; Zhou, Y. X-ray diffraction measurement of residual stress in PZT thin films prepared by pulsed laser deposition. Acta Mater., 2004, 52(11), 3313-3322.
[133]
Welzel, U.; Ligot, J.; Lamparter, P.; Vermeulen, A.C.; Mittemeijer, E.J. Stress analysis of polycrystalline thin films and surface regions by X-ray diffraction. J. Appl. Cryst., 2005, 38(1), 1-29.
[134]
Koutsokeras, L.E.; Abadias, G. Intrinsic stress in ZrN thin films: Evaluation of grain boundary contribution from in situ wafer curvature and ex situ X-ray diffraction techniques. J. Appl. Phys., 2012, 111(9), 093509.
[135]
Keckes, J.; Bartosik, M.; Daniel, R.; Mitterer, C.; Maier, G.; Ecker, W.; Vila-Comamala, J.; David, C.; Schoeder, S.; Burghammer, M. X-ray nanodiffraction reveals strain and microstructure evolution in nanocrystalline thin films. Scr. Mater., 2012, 67(9), 748-751.
[136]
Stefenelli, M.; Daniel, R.; Ecker, W.; Kiener, D.; Todt, J.; Zeilinger, A.; Mitterer, C. X-ray nanodiffraction reveals stress distribution across an indented multilayered CrN–Cr thin film. Acta Mater., 2015, 85, 24-31.
[137]
Hanabusa, T.; Kusaka, K.; Sakata, O. Residual stress and thermal stress observation in thin copper films. Thin Solid Films, 2004, 459(1), 245-248.
[138]
Sharma, J.; Das Gupta, A. Effect of stress on the pull-in voltage of membranes for MEMS application. J. Micromech. Microeng., 2009, 19(11), 115021.
[139]
Zou, Q.; Li, Z.; Liu, L. New methods for measuring mechanical properties of thin films in micromachining: Beam pull-in voltage (VPI) method and Long Beam Deflection (LBD) method. Sens. Actuators A Phys., 1995, 48(2), 137-143.
[140]
Baek, C.W.; Kim, Y.K.; Ahn, Y.; Kim, Y.H. Measurement of the mechanical properties of electroplated gold thin films using micromachined beam structures. Sens. Actuators A Phys., 2005, 117(1), 17-27.
[141]
Cardinale, G.F.; Howitt, D.G.; McCarty, K.F.; Medlin, D.L.; Mirkarimi, P.B.; Moody, N.R. Analysis of residual stress in cubic boron nitride thin films using micromachined cantilever beams. Diamond Related Materials, 1996, 5(11), 1295-1302.
[142]
Zhou, Y.; Yang, C.S.; Chen, J.A.; Ding, G.F.; Ding, W.; Wang, L.; Wang, M.J.; Zhang, Y.M.; Zhang, T.H. Measurement of Young’s modulus and residual stress of copper film electroplated on silicon wafer. Thin Solid Films, 2004, 460(1), 175-180.
[143]
Pandey, A.K.; Venkatesh, K.P.; Pratap, R. Effect of metal coating and residual stress on the resonant frequency of MEMS resonators. Sadhana, 2009, 34(4), 651.
[144]
Ma, S.; Wang, S.; Iacopi, F.; Huang, H. A resonant method for determining the residual stress and elastic modulus of a thin film. Appl. Phys. Lett., 2013, 103(3), 031603.
[145]
Somà, A.; Saleem, M.M. Modeling and experimental verification of thermally induced residual stress in RF-MEMS. J. Micromech. Microeng., 2015, 25(5), 055007.
[146]
Soma, A.; Ballestra, A. Residual stress measurement method in MEMS microbeams using frequency shift data. J. Micromech. Microeng., 2009, 19(9), 095023.
[147]
Kiesewetter, L.; Zhang, J.M.; Houdeau, D.; Steckenborn, A. Determination of Young’s moduli of micromechanical thin films using the resonance method. Sens. Actuators A Phys., 1992, 35(2), 153-159.
[148]
Tsui, Y.C.; Clyne, T.W. An analytical model for predicting residual stresses in progressively deposited coatings Part 1: Planar geometry. Thin Solid Films, 1997, 306(1), 23-33.
[149]
Tsui, Y.C.; Clyne, T.W. An analytical model for predicting residual stresses in progressively deposited coatings Part 2: Cylindrical geometry. Thin Solid Films, 1997, 306(1), 34-51.
[150]
Zhang, T.Y.; Su, Y.J.; Qian, C.F.; Zhao, M.H.; Chen, L.Q. Microbridge testing of silicon nitride thin films deposited on silicon wafers. Acta Mater., 2000, 48(11), 2843-2857.
[151]
Denhoff, M.W. A measurement of Young’s modulus and residual stress in MEMS bridges using a surface profiler. J. Micromech. Microeng., 2003, 13(5), 686.
[152]
Zhang, Y.; Ren, Q.; Zhao, Y. Modelling analysis of surface stress on a rectangular cantilever beam. J. Phys. D Appl. Phys., 2004, 37(15), 2140.
[153]
Wan, K.T.; Guo, S.; Dillard, D.A. A theoretical and numerical study of a thin clamped circular film under an external load in the presence of a tensile residual stress. Thin Solid Films, 2003, 425(1), 150-162.
[154]
Song, Y.T.; Lee, H.Y.; Esashi, M. A corrugated bridge of low residual stress for RF-MEMS switch. Sens. Actuators A Phys., 2007, 135(2), 818-826.
[155]
Wei, C.; Yang, J.F. A finite element analysis of the effects of residual stress, substrate roughness and non-uniform stress distribution on the mechanical properties of diamond-like carbon films. Diamond Related Materials, 2011, 20(5), 839-844.
[156]
Anzalone, R.; D’arrigo, G.; Camarda, M.; Locke, C.; Saddow, S.E.; La Via, F. Advanced residual stress analysis and FEM simulation on heteroepitaxial 3C–SiC for MEMS application. J. Microelectromech. Syst., 2011, 20(3), 745-752.
[157]
Korsunsky, A.M.; Sebastiani, M.; Bemporad, E. Residual stress evaluation at the micrometer scale: Analysis of thin coatings by FIB milling and digital image correlation. Surf. Coat. Tech., 2010, 205(7), 2393-2403.
[158]
Bai, M.; Kato, K.; Umehara, N.; Miyake, Y. Nanoindentation and FEM study of the effect of internal stress on micro/nano mechanical property of thin CNx films. Thin Solid Films, 2000, 377, 138-147.
[159]
Zhang, X.; Zhang, T.Y.; Zohar, Y. Measurements of residual stresses in thin films using micro-rotating-structures. Thin Solid Films, 1998, 335(1), 97-105.
[160]
Ballestra, A.; Somà, A.; Pavanello, R. Experimental-numerical comparison of the cantilever MEMS frequency shift in presence of a residual stress gradient. Sensors , 2008, 8(2), 767-783.
[161]
Chen, S.; Baughn, T.V.; Yao, Z.J.; Goldsmith, C.L. A new in situ residual stress measurement method for a MEMS thin fixed-fixed beam structure. J. Microelectromech. Syst., 2002, 11(4), 309-316.
[162]
Schijve, J. Fatigue of structures and materials.Dordrecht:; Kluwer Academic, 2001.
[163]
EDFAS Desk Reference Committee. Microelectronics Failure Analysis: Desk Reference.. ASM International, 2011.
[164]
Tabib-Azar, M.; Wong, K.; Ko, W. Aging phenomena in heavily doped (p+) micromachined silicon cantilever beams. Sens. Actuators A Phys., 1992, 33(3), 199-206.
[165]
Cornella, G.; Vinci, R.P.; Iyer, R.S.; Dauskardt, R.H.; Bravman, J.C. Observations of low cycle fatigue of Al thin films for MEMS applications. MRS Online Proc. Lib. Arch 1998, 518.
[166]
Takashima, K.; Higo, Y.; Sugiura, S.; Shimojo, M. Fatigue crack growth behavior of micro-sized specimens prepared from an electroless plated Ni-P amorphous alloy thin film. Mater. Trans., 2001, 42(1), 68-73.
[167]
Kraft, O.; Schwaiger, R.; Wellner, P. Fatigue in thin films: Lifetime and damage formation. Mater. Sci. Eng. A, 2001, 319, 919-923.
[168]
Muhlstein, C.L.; Brown, S.B.; Ritchie, R.O. High-cycle fatigue and durability of polycrystalline silicon thin films in ambient air. Sens. Actuators A Phys., 2001, 94(3), 177-188.
[169]
Millet, O.; Bertrand, P.; Legrand, B.; Collard, D.; Buchaillot, L. An original methodology to assess fatigue behavior in RF MEMS devices. In Proceeding GAAS Symposium, 2004, pp. 69-72.
[170]
Zhang, G.P.; Volkert, C.A.; Schwaiger, R.; Arzt, E.; Kraft, O. Damage behavior of 200 nm thin copper films under cyclic loading. J. Mater. Res., 2005, 20(1), 201-207.
[171]
Son, D.; Kim, J.J.; Kim, J.Y.; Kwon, D. Tensile properties and fatigue crack growth in LIGA nickel MEMS structures. Mater. Sci. Eng. A, 2005, 406(1), 274-278.
[172]
Lin, Y.C.; Hocheng, H.; Fang, W.L.; Chen, R. Fabrication and fatigue testing of an electrostatically driven microcantilever beam. Mater. Manuf. Process., 2006, 21(1), 75-80.
[173]
Park, J.H.; Myung, M.S.; Kim, Y.J. Tensile and high cycle fatigue test of Al–3% Ti thin films. Sens. Actuators A Phys., 2008, 147(2), 561-569.
[174]
Soma, A.; De Pasquale, G. MEMS mechanical fatigue: Experimental results on gold microbeams. J. Microelectromech. Syst., 2009, 18(4), 828-835.
[175]
Jalalahmadi, B.; Sadeghi, F.; Peroulis, D. A numerical fatigue damage model for life scatter of MEMS devices. J. Microelectromech. Syst., 2009, 18(5), 1016-1031.
[176]
Zhang, J.Y.; Zhang, X.; Liu, G.; Wang, R.H.; Zhang, G.J.; Sun, J. Length scale dependent yield strength and fatigue behavior of nanocrystalline Cu thin films. Mater. Sci. Eng. A, 2011, 528(25), 7774-7780.
[177]
Hung, J.N.; Hocheng, H. Frequency effects and life prediction of polysilicon microcantilever beams in bending fatigue. J. Micro. Nanolithogr. MEMS MOEMS, 2012, 11(2), 021206.
[178]
Baumert, E.K.; Pierron, O.N. Very high cycle fatigue crack initiation in electroplated Ni films under extreme stress gradients. Scr. Mater., 2012, 67(1), 45-48.
[179]
De Pasquale, G.; Somà, A. Experimental methods for the characterization of fatigue in microstructures. Frattura Integr. Strutt., 2013, 23, 114.
[180]
Hamada, S.; Tani, S.; Horikawa, M.; Otani, H.; Tsugai, M.; Yosikawa, E. Notch effect of micro polycrystalline silicon cantilever.In: ICF10, Honolulu (USA), ; , 2001.
[181]
Mazzalai, A.; Balma, D.; Chidambaram, N.; Matloub, R.; Muralt, P. Characterization and fatigue of the converse piezoelectric effect in PZT films for MEMS applications. J. Microelectromech. Syst., 2015, 24(4), 831-838.
[182]
Kondo, T.; Bi, X.; Hirakata, H.; Minoshima, K. Mechanics of fatigue crack initiation in submicron-thick freestanding copper films. Int. J. Fatigue, 2016, 82, 12-28.
[183]
Mulloni, V.; Margesin, B.; Farinelli, P.; Marcelli, R.; Lucibello, A.; De Angelis, G. Cycling reliability of RF-MEMS switches with gold-platinum multilayers as contact material. Microsyst. Technol., 2017, 23(9), 3843-3850.
[184]
Allameh, S.; Shrotriya, P.; Gally, B.; Brown, S.; Soboyejo, W.O. Micromechanisms of fatigue in polysilicon mems structures.In: ICF10, Honolulu (USA), ; , 2001.
[185]
Alsem, D.H.; Muhlstein, C.L.; Stach, E.A.; Ritchie, R.O. Further considerations on the high-cycle fatigue of micron-scale polycrystalline silicon. Scr. Mater., 2008, 59(9), 931-935.
[186]
Kahn, H.; Chen, L.; Ballarini, R.; Heuer, A.H. Mechanical fatigue of polysilicon: Effects of mean stress and stress amplitude. Acta Mater., 2006, 54(3), 667-678.
[187]
Chasiotis, I.; Bateson, C.; Timpano, K.; McCarty, A.S.; Barker, N.S.; Stanec, J.R. Strain rate effects on the mechanical behavior of nanocrystalline Au films. Thin Solid Films, 2007, 515(6), 3183-3189.
[188]
Chew, Y.H.; Wong, C.C.; Wulff, F.; Lim, F.C.; Goh, H.M. Strain rate sensitivity and Hall-Petch behavior of ultrafine-grained gold wires. Thin Solid Films, 2008, 516(16), 5376-5380.
[189]
Zhang, Z.F.; Wang, Z.G. Dependence of intergranular fatigue cracking on the interactions of persistent slip bands with grain boundaries. Acta Mater., 2003, 51(2), 347-364.
[190]
Hassan, M.K.; Torii, T.; Ishida, K.; Shimizu, K. Fatigue fracture behavior of MEMS Cu thin films. In: ECF18 2010,; , 2013.
[191]
Muhlstein, C.L.; Brown, S.B.; Ritchie, R.O. High-cycle fatigue of single-crystal silicon thin films. J. Microelectromech. Syst., 2001, 10(4), 593-600.
[192]
Takashima, K.; Higo, Y.; Swain, M.V. Fatigue crack growth behaviour of micro-sized specimens prepared from amorphous alloy thin films. In: ICF10, Honolulu (USA); , 2001.
[193]
Bannantine, J.A.; Comer, J.J.; Handrock, J.L. Fundamentals of Metal Fatigue Analysis; Pearson; 1st ed.,. , 1989.
[194]
Wöhler, A. Über die Festigkeits-versuche mit Eisen und Stahl., 1870.
[195]
Hertzberg, R.W. Deformation and fracture mechanics of engineering materials; Wiley, 1996.
[196]
Douglass, M.R. Lifetime estimates and unique failure mechanisms of the Digital Micromirror Device (DMD). In 36th Annual IEEE International Reliability Physics Symposium Proceedings, 1998, pp. 9-16.
[197]
Vickers-Kirby, D.J.; Kubena, R.L.; Stratton, F.P.; Joyce, R.J.; Chang, D.T.; Kim, J. Anelastic creep phenomena in thin metal plated cantilevers for MEMS. MRS Online Proceedings Library Archive 657, 2000.
[198]
Tuck, K.; Jungen, A.; Geisberger, A.; Ellis, M.; Skidmore, G. A study of creep in polysilicon MEMS devices. Trans. ASME-H-. J. Eng. Mater. Technol., 2005, 127(1), 90-96.
[199]
Van Gils, M.; Bielen, J.; McDonald, G. Evaluation of creep in RF MEMS devices. n: IEEE International Conference on Thermal,Mechanical and Multi-Physics Simulation Experiments in Microelectronics and Micro-Systems, EuroSime, , 2007, pp. 1-6.
[200]
Yan, X.; Brown, W.L.; Li, Y.; Papapolymerou, J.; Palego, C.; Hwang, J.C.; Vinci, R.P. Anelastic stress relaxation in gold films and its impact on restoring forces in MEMS devices. J. Microelectromech. Syst., 2009, 18(3), 570-576.
[201]
Hsu, H.H.; Koslowski, M.; Peroulis, D. An experimental and theoretical investigation of creep in ultrafine crystalline nickel RF-MEMS devices. IEEE Trans. Microw. Theory Tech., 2011, 59(10), 2655-2664.
[202]
Bergers, L.I.; Hoefnagels, J.P.; Delhey, N.K.; Geers, M.G. Measuring time-dependent deformations in metallic MEMS. Microelectron. Reliab., 2011, 51(6), 1054-1059.
[203]
Jain, A.; Palit, S.; Alam, M.A. A physics-based predictive modeling framework for dielectric charging and creep in RF MEMS capacitive switches and varactors. J. Microelectromech. Syst., 2012, 21(2), 420-430.
[204]
Somà, A.; De Pasquale, G.; Saleem, M.M. Experimental investigations of creep in gold RF-MEMS microstructures. In: Smart Sensors,Actuators, and MEMS VII; and Cyber Physical Systems, International Society for Optics and Photonics; , 2015. Vol. 9517,95170H
[205]
Modlinski, R.; Witvrouw, A.; Ratchev, P.; Puers, R.; den Toonder, J.M.; De Wolf, I. Creep characterization of Al alloy thin films for use in MEMS applications. Microelectron. Eng., 2004, 76(1), 272-278.
[206]
Modlinski, R.; Ratchev, P.; Witvrouw, A.; Puers, R.; De Wolf, I. Creep-resistant aluminum alloys for use in MEMS. J. Micromech. Microeng., 2005, 15(7), S165.
[207]
Hsu, H.H.; Peroulis, D. A CAD model for creep behavior of RF-MEMS varactors and circuits. IEEE Trans. Microw. Theory Tech., 2011, 59(7), 1761-1768.
[208]
Lemoine, E.; Pothier, A.; Crunteanu, A.; Blondy, P.; Saillen, N.; Marchand, L. Simple creep parameters extraction in metal contact RF-MEMS switches. In IEEE MTT-S International Microwave Symposium (IMS), 2015, pp. 1-4.
[209]
Somà, A.; Saleem, M.M.; De Pasquale, G. Effect of creep in RF MEMS static and dynamic behavior. Microsyst. Technol., 2016, 22(5), 1067-1078.
[210]
Kolis, P.; Bajaj, A.K.; Koslowski, M. Quantification of uncertainty in creep failure of RF-MEMS switches. J. Microelectromech. Syst., 2017, 26(1), 283-294.
[211]
Arzt, E. Size effects in materials due to microstructural and dimensional constraints: A comparative review. Acta Mater., 1998, 46(16), 5611-5626.
[212]
Espinosa, H.D.; Prorok, B.C. Size effects on the mechanical behavior of gold thin films. J. Mater. Sci., 2003, 38(20), 4125-4128.
[213]
Greer, J.R.; De Hosson, J.T. Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater. Sci., 2011, 56(6), 654-724.
[214]
El-Sherik, A.M.; Erb, U.; Palumbo, G.; Aust, K.T. Deviations from hall-petch behaviour in as-prepared nanocrystalline nickel. Scr. Metall. Mater., 1992, 27(9), 1185-1188.
[215]
Ashby, M.F. A first report on deformation-mechanism maps. Acta Metall., 1972, 20(7), 887-897.
[216]
Emery, R.D.; Povirk, G.L. Tensile behavior of free-standing gold films. Part II. Fine-grained films. Acta Mater., 2003, 51(7), 2079-2087.
[217]
Harris, K.E.; King, A.H. Direct observation of diffusional creep via TEM in polycrystalline thin films of gold. Acta Mater., 1998, 46(17), 6195-6203.
[218]
Karanjgaokar, N.J.; Oh, C.S.; Lambros, J.; Chasiotis, I. Inelastic deformation of nanocrystalline Au thin films as a function of temperature and strain rate. Acta Mater., 2012, 60(13), 5352-5361.
[219]
Olliges, S.; Frank, S.; Gruber, P.A.; Auzelyte, V.; Solak, H.; Spolenak, R. Thermo mechanical properties and plastic deformation of gold nanolines and gold thin films. Mater. Sci. Eng. A, 2011, 528(19), 6203-6209.
[220]
Wang, C.L.; Zhang, M.; Nieh, T.G. Nanoindentation creep of nanocrystalline nickel at elevated temperatures. J. Phys. D Appl. Phys., 2009, 42(11), 115405.
[221]
Wang, N.; Wang, Z.; Aust, K.T.; Erb, U. Room temperature creep behavior of nanocrystalline nickel produced by an electrodeposition technique. Mater. Sci. Eng. A, 1997, 237(2), 150-158.
[222]
Yin, W.M.; Whang, S.H.; Mirshams, R.; Xiao, C.H. Creep behavior of nanocrystalline nickel at 290 and 373 K. Mater. Sci. Eng. A, 2001, 301(1), 18-22.
[223]
De Pasquale, G.; Soma, A.; Barbato, M.; Meneghesso, G. Impact wear and other contact effects on the electro-mechanical reliability of MEMS. In: IEEE 2014 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP),, 2014, pp. 1-6.
[224]
De Pasquale, G.; Barbato, M.; Giliberto, V.; Meneghesso, G.; Somà, A. Reliability improvement in microstructures by reducing the impact velocity through electrostatic force modulation. Microelectron. Reliab., 2012, 52(9), 1808-1811.
[225]
Tazzoli, A.; Barbato, M.; Mattiuzzo, F.; Ritrovato, V.; Meneghesso, G. Study of the actuation speed, bounces occurrences, and contact reliability of ohmic RF-MEMS switches. Microelectron. Reliab., 2010, 50(9), 1604-1608.
[226]
Wong, J.E.; Lang, J.H.; Schmidt, M.A. An electrostatically-actuated MEMS switch for power applications. In: IEEE 13th Annual International Conference on Micro Electro Mechanical Systems,, 2000, pp. 633-638.
[227]
Shi, Y.; Kim, S.G. A lateral, self-cleaning, direct contact MEMS switch. In 18th IEEE International Conference on Micro Electro Mechanical Systems, 2005, pp. 195-198.
[228]
Lee, H.; Coutu, R.A.; Mall, S.; Leedy, K.D. Characterization of metal and metal alloy films as contact materials in MEMS switches. J. Micromech. Microeng., 2006, 16(3), 557.
[229]
Kwon, H.; Choi, D.J.; Park, J.H.; Lee, H.C.; Park, Y.H.; Kim, Y.D.; Nam, H.J.; Joo, Y.C.; Bu, J.U. Contact materials and reliability for high power RF-MEMS switches. In: IEEE 20th International Conference on Micro Electro Mechanical Systems, , 2007, pp. 231-234.
[230]
Brown, C.; Rezvanian, O.; Zikry, M.A.; Krim, J. Temperature dependence of asperity contact and contact resistance in gold RF MEMS switches. J. Micromech. Microeng., 2009, 19(2), 025006.
[231]
Bannuru, T.; Brown, W.L.; Narksitipan, S.; Vinci, R.P. The electrical and mechanical properties of Au–V and Au–V2 O5 thin films for wear-resistant RF MEMS switches. J. Appl. Phys., 2008, 103(8), 083522.
[232]
Brand, V.; De Boer, M.P. Oxygen-induced graphitization of amorphous carbon deposit on ohmic switch contacts improves their electrical conductivity and protects them from wear. J. Micromech. Microeng., 2014, 24(9), 095029.
[233]
Khanna, V.K. Adhesion-delamination phenomena at the surfaces and interfaces in microelectronics and MEMS structures and packaged devices. J. Phys. D Appl. Phys., 2010, 44(3), 034004.
[234]
Ramesham, R.; Ghaffarian, R. Challenges in interconnection and packaging of Microelectromechanical Systems (MEMS). In: IEEE Proceedings of 50th Electronic Components and Technology Conference, 2000, pp. 666-675.
[235]
Forehand, D.I.; Goldsmith, C.L. Wafer level micropackaging for RF MEMS switches. Proc. IPACK, 2005.
[236]
Carton, A.; Christodoulou, C.G.; Dyck, C.; Nordquist, C. Investigating the impact of Carbon Contamination on RF MEMS Reliability. In:IEEE Antennas and Propagation Society International Symposium, 2006, pp. 193-196.
[237]
Shea, H.R. Reliability of MEMS for space applications. In: Reliability,Packaging, Testing, and Characterization of MEMS/MOEMS. Int. Soc. Opt. Photon., ; , 2006. Vol. 6111, 61110A
[238]
Tekin, T.; Ngo, H.D.; Wittler, O.; Bouhlal, B.; Lang, K.D. Packaging of mems/moems and nanodevices: Reliability testing and characterization aspects.In Reliability, Packaging, Testing, and Characterization of MEMS/MOEMS and Nanodevices X; International Society for Optics and Photonics, 2011, Vol. 7928, p. 792805.
[239]
Manier, C.A.; Zoschke, K.; Oppermann, H.; Ruffieux, D.; Dalla Piazza, S.; Suni, T.; Dekker, J.; Allegato, G. Vacuum packaging at wafer level for MEMS using gold-tin metallurgy. In:IEEE European Microelectronics Packaging Conference (EMPC), 2013, pp. 1-8.
[240]
Tanaka, S.; Esashi, M. Wafer-level MEMS package and its reliability issues. In:IEEE International Reliability Physics Symposium (IRPS), 2013, pp. 6B-1.
[241]
Souchon, F.; Saint-Patrice, D.; Pornin, J.L.; Bouchu, D.; Baret, C.; Reig, B. Thin film packaged redundancy RF MEMS switches for space applications. In: IEEE 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 2017, pp. 175-178.

© 2024 Bentham Science Publishers | Privacy Policy