[1]
Stark, B. MEMS reliability assurance guidelines for space applications., 1999.
[2]
Miao, C.X.; Cao, J.J.; Ou, Y.B. MEMS-SINS/GPS/Magnetometer integrated navigation system for small unmanned aerial vehicles. Appl. Mech. Mater., 2014, 568, 976-986.
[3]
Saleem, M.M.; Bazaz, S.A. Design and robustness analysis of structurally decoupled 3-DoF MEMS gyroscope in the presence of worst-case process tolerances. Microsyst. Technol., 2011, 17(8), 1381-1391.
[4]
Eaton, W.P.; James, H.S. Micromachined pressure sensors: Review and recent developments. Smart Mater. Struct., 1997, 6(5), 530.
[5]
Kim, K.H.; Ko, J.S.; Cho, Y.H.; Lee, K.; Kwak, B.M.; Park, K. A skew-symmetric cantilever accelerometer for automotive airbag applications. Sens. Actuators A Phys., 1995, 50(1-2), 121-126.
[6]
Lu, Y.; Mapili, G.; Suhali, G.; Chen, S.; Roy, K. A digital micro‐mirror device‐based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds. J. Biomed. Mater. Res. Part A., , 2006, 77(2), 396-405.
[7]
Saleem, M.M.; Danish, A.M.; Iqbal, J.; Bazaz, S.A. Wide bandwidth 2-DoF electromagnetic MEMS energy harvester for low g applications. Microsyst. Technol., 2017, 23(12), 1-13.
[8]
Blondy, P.; Peroulis, D. Handling RF power: The latest advances in RF-MEMS tunable filters. IEEE Microw. Mag., 2013, 14(1), 24-38.
[9]
Pantazi, A.; Lantz, M.A.; Cherubini, G.; Pozidis, H.; Eleftheriou, E. A servomechanism for a micro-electro-mechanical-system-based scanning-probe data storage device. Nanotechnology, 2004, 15(10), S612.
[10]
Won Jung, C.; Lee, M.J.; Li, G.P.; De Flaviis, F. Reconfigurable scan-beam single-arm spiral antenna integrated with RF-MEMS switches. IEEE Trans. Antenn. Propag., 2006, 54(2), 455-463.
[11]
Erdil, E.; Topalli, K.; Unlu, M.; Civi, O.A.; Akin, T. Frequency tunable microstrip patch antenna using RF MEMS technology. IEEE Trans. Antenn. Propag., 2007, 55(4), 1193-1196.
[12]
Topalli, K.; Civi, Ö.A.; Demir, S.; Koc, S.; Akin, T. A monolithic phased array using 3-bit distributed RF MEMS phase shifters. IEEE Trans. Microw. Theory Tech., 2008, 56(2), 270-277.
[13]
Rantakari, P.; Malmqvist, R.; Samuelsson, C.; Leblanc, R.; Smith, D.; Jonsson, R.; Simon, W.; Saijets, J.; Baggen, R.; Vähä-Heikkiä, T. Wide-band radio frequency micro electro-mechanical systems switches and switching networks using a gallium arsenide monolithic microwave-integrated circuits foundry process technology. IET Microw. Antennas Propag., 2011, 5(8), 948-955.
[14]
Brank, J.; Yao, J.; Eberly, M.; Malczewski, A.; Varian, K.; Goldsmith, C. RF MEMS‐based tunable filters. Int. J. RF Microw. Comput.-Aided Eng., 2001, 11(5), 276-284.
[15]
Barzegar, S.; Mirzajani, H.; Ghavifekr, H.B. A new linearly tunable RF MEMS varactor with latching mechanism for low voltage and low power reconfigurable networks. Wirel. Pers. Commun., 2015, 83(3), 2249-2265.
[16]
Guo, X.; Gong, Z.; Zhong, Q.; Liang, X.; Liu, Z. A miniaturized reconfigurable broadband attenuator based on RF MEMS switches. J. Micromech. Microeng., 2016, 26(7), 074002.
[17]
Jaafar, H.; Beh, K.S.; Yunus, N.A.; Hasan, W.Z.; Shafie, S.; Sidek, O. A comprehensive study on RF MEMS switch. Microsyst. Technol., 2014, 20(12), 2109-2121.
[18]
Guo, Z.J.; McGruer, N.E.; Adams, G.G. Modeling, simulation and measurement of the dynamic performance of an ohmic contact, electrostatically actuated RF MEMS switch. J. Micromech. Microeng., 2007, 17(9), 1899.
[19]
Girbau, D.; Pradell, L.; Lázaro, A.; Nebot, À. Electrothermally actuated RF MEMS switches suspended on a low-resistivity substrate. J. Microelectromech. Syst., 2007, 16(5), 1061-1070.
[20]
Zhang, Y.H.; Ding, G.; Shun, X.; Gu, D.; Cai, B.; Lai, Z. Preparing of a high speed bistable electromagnetic RF MEMS switch. Sens. Actuators A Phys., 2007, 134(2), 532-537.
[21]
Lin, T.H.; Paul, S.; Lu, S.; Lu, H. A study on the performance and reliability of magnetostatic actuated RF MEMS switches. Microelectron. Reliab., 2009, 49(1), 59-65.
[22]
Lee, H.C.; Park, J.H.; Park, J.Y.; Nam, H.J.; Bu, J.U. Design, fabrication and RF performances of two different types of piezoelectrically actuated ohmic MEMS switches. J. Micromech. Microeng., 2005, 15(11), 2098.
[23]
Rebeiz, G.M. RF MEMS: Theory, design, and technology; John Wiley & Sons: Hoboken, NJ, 2004.
[24]
Yao, J.J.R.F. MEMS from a device perspective. J. Micromech. Microeng., 2000, 10(4), R9.
[25]
Yao, J.J.; Chang, M.F. A surface micromachined miniature switch for telecommunications applications with signal frequencies from DC up to 4 GHz. In: Proceedings of the IEEE 8th International Conference on Solid-State. Sensors and . Actuators, 1995, Vol 2, 384-387.
[26]
Yao, Z.J.; Chen, S.; Eshelman, S.; Denniston, D.; Goldsmith, C. Micromachined low-loss microwave switches. J. Microelectromech. Syst., 1999, 8(2), 129-134.
[27]
Pacheco, S.P.; Katehi, L.P.; Nguyen, C.C. Design of low actuation voltage RF MEMS switch. In IEEE MTT-S Int. Microw. Symp. Dig., 2000, vol 1, 165-168.
[28]
Park, J.Y.; Kim, G.H.; Chung, K.W.; Bu, J.U. Monolithically integrated micromachined RF MEMS capacitive switches. Sens. Actuators A Phys., 2001, 89(1), 88-94.
[29]
Kim, J.M.; Lee, S.; Kim, J.M.; Baek, C.W.; Kwon, Y.; Kim, Y.K. A mechanically reliable digital-type Single Crystalline Silicon (SCS) RF MEMS variable capacitor. J. Micromech. Microeng., 2005, 15(10), 1854.
[30]
Liu, A.Q.; Tang, M.; Agarwal, A.; Alphones, A. Low-loss lateral micromachined switches for high frequency applications. J. Micromech. Microeng., 2004, 15(1), 157.
[31]
Cho, I.J.; Song, T.; Baek, S.H.; Yoon, E. A low-voltage and low-power RF MEMS series and shunt switches actuated by combination of electromagnetic and electrostatic forces. IEEE Trans. Microw. Theory Tech., 2005, 53(7), 2450-2457.
[32]
Park, J.H.; Lee, H.C.; Park, Y.H.; Kim, Y.D.; Ji, C.H.; Bu, J.; Nam, H.J. A fully wafer-level packaged RF MEMS switch with low actuation voltage using a piezoelectric actuator. J. Micromech. Microeng., 2006, 16(11), 2281.
[33]
Ke, F.; Miao, J.; Oberhammer, J. A ruthenium-based multimetal-contact RF MEMS switch with a corrugated diaphragm. J. Microelectromech. Syst., 2008, 17(6), 1447-1459.
[34]
Kim, J.M.; Lee, S.; Park, J.H.; Baek, C.W.; Kwon, Y.; Kim, Y.K. Electrostatically driven low-voltage micromechanical RF switches using robust single-crystal silicon actuators. J. Micromech. Microeng., 2010, 20(9), 095007.
[35]
Rahman, H.U.; Chan, K.Y.; Ramer, R. Cantilever beam designs for RF MEMS switches. J. Micromech. Microeng., 2010, 20(7), 075042.
[36]
Cho, I.J.; Yoon, E. Design and fabrication of a single membrane push-pull SPDT RF MEMS switch operated by electromagnetic actuation and electrostatic hold. J. Micromech. Microeng., 2010, 20(3), 035028.
[37]
Liu, B.; Lv, Z.; He, X.; Liu, M.; Hao, Y.; Li, Z. Improving performance of the metal-to-metal contact RF MEMS switch with a Pt–Au microspring contact design. J. Micromech. Microeng., 2011, 21(6), 065038.
[38]
Stefanini, R.; Chatras, M.; Blondy, P.; Rebeiz, G.M. Miniature MEMS switches for RF applications. J. Microelectromech. Syst., 2011, 20(6), 1324-1335.
[39]
Jaibir, S.; Nagendra, K.; Amitava, D. Fabrication of low pull-in voltage RF MEMS switches on glass substrate in recessed CPW configuration for V-band application. J. Micromech. Microeng., 2012, 22(2), 025001.
[40]
Persano, A.; Tazzoli, A.; Cola, A.; Siciliano, P.; Meneghesso, G.; Quaranta, F. Reliability enhancement by suitable actuation waveforms for capacitive RF MEMS switches in III–V technology. J. Microelectromech. Syst., 2012, 21(2), 414-419.
[41]
Bansal, D.; Kumar, A.; Sharma, A.; Kumar, P.; Rangra, K.J. Design of novel compact anti-stiction and low insertion loss RF MEMS switch. Microsyst. Technol., 2014, 20(2), 337-340.
[42]
Bansal, D.; Kumar, A.; Sharma, A.; Rangra, K.J. Design of compact and wide bandwidth SPDT with anti-stiction torsional RF MEMS series capacitive switch. Microsyst. Technol., 2015, 21(5), 1047-1052.
[43]
Pirmoradi, E.; Mirzajani, H.; Ghavifekr, H.B. Design and simulation of a novel electro-thermally actuated lateral RF MEMS latching switch for low power applications. Microsyst. Technol., 2015, 21(2), 465-475.
[44]
Angira, M.; Rangra, K. Design and investigation of a low insertion loss, broadband, enhanced self and hold down power RF-MEMS switch. Microsyst. Technol., 2015, 21(6), 1173-1178.
[45]
Angira, M.; Rangra, K. A novel design for low insertion loss, multi-band RF-MEMS switch with low pull-in voltage. Eng. Sci. Technol. Int. J., 2016, 19(1), 171-177.
[46]
Persano, A.; Quaranta, F.; Martucci, M.C.; Siciliano, P.; Cola, A. On the electrostatic actuation of capacitive RF MEMS switches on GaAs substrate. Sens. Actuator. Phys., 2015, 232, 202-207.
[47]
Sim, S.M.; Lee, Y.; Jang, Y.H.; Lee, Y.S.; Kim, Y.K.; Llamas-Garro, I.; Kim, J.M.A. 50-100GHz ohmic contact SPDT RF MEMS silicon switch with dual axis movement. Microelectron. Eng., 2016, 162, 69-74.
[48]
Nair, A.G.; Shajahan, E.S. Design and simulation of radio frequency micro electro mechanical capacitive shunt switches. Procedia Comput. Sci., 2016, 93, 217-222.
[49]
Chakraborty, A.; Gupta, B. Utility of RF MEMS miniature switched capacitors in phase shifting applications. AEU Int. J. Electron. Commun., 2017, 75, 98-107.
[50]
Wei, H.; Deng, Z.; Guo, X.; Wang, Y.; Yang, H. High on/off capacitance ratio RF MEMS capacitive switches. J. Micromech. Microeng., 2017, 27(5), 055002.
[51]
Li, M.; Zhao, J.; You, Z.; Zhao, G. Design and fabrication of a low insertion loss capacitive RF MEMS switch with novel micro-structures for actuation. Solid-State Electron., 2017, 127, 32-37.
[52]
Hartzell, A.L.; Da Silva, M.G.; Shea, H. MEMS reliability; Springer Science & Business Media: Emeritus, MA, 2010.
[53]
Rebeiz, G.M.; Patel, C.D.; Han, S.K.; Ko, C.H.; Ho, K.M. The search for a reliable MEMS switch. IEEE Microw. Mag., 2013, 14(1), 57-67.
[54]
Tanner, D.M. MEMS reliability: Where are we now? Microelectron. Reliab., 2009, 49(9-11), 937-940.
[55]
Goldsmith, C.; Maciel, J.; McKillop, J. Demonstrating reliability. IEEE Microw. Mag., 2007, 8(6), 56-60.
[56]
Iannacci, J. Reliability of MEMS: A perspective on failure mechanisms, improvement solutions and best practices at development level. Displays, 2015, 37, 62-71.
[57]
Bowden, F.P.; Tabor, D. The friction and lubrication of solids; Oxford University Press: Lincoln, UK, 2001.
[58]
De Wolf, I.; Van Spengen, W.M. Techniques to study the reliability of metal RF MEMS capacitive switches. Microelectron. Reliab., 2002, 42(9-11), 1789-1794.
[59]
Song, X.; Fu, R.; He, H. Frequency effects on the dielectric properties of AlN film deposited by radio frequency reactive magnetron sputtering. Microelectron. Eng., 2009, 86(11), 2217-2221.
[60]
Van Spengen, W.M. MEMS reliability from a failure mechanisms perspective. Microelectron. Reliab., 2003, 43(7), 1049-1060.
[61]
Zhao, Y.P.; Wang, G.C.; Lu, T.M. Surface-roughness effect on capacitance and leakage current of an insulating film. Phys. Rev. B, 1999, 60(12), 9157.
[62]
Patrikar, R.M. Modeling and simulation of surface roughness. Appl. Surf. Sci., 2004, 228(1), 213-220.
[63]
Van Spengen, W.M. Capacitive RF MEMS switch dielectric charging and reliability: A critical review with recommendations. J. Micromech. Microeng., 2012, 22(7), 074001.
[64]
Van Spengen, W.M.; De Wolf, I.; Puers, B. Auto-adhesion model for MEMS surfaces taking into account the effect of surface roughness. Micromach. Microfabric. Int. Soc. Optic. Photon., 2000, 4175, 104-113.
[65]
Barnes, C.; Johnston, A.; Lee, C.; Swift, G.; Rax, B. . Keynote paper:Recent radiation effects activities at JPL: Coping with COTS.In: Electronic Component Conference-EECC, , 1997; Vol. 395, p. 227.
[66]
Mastrangelo, C.H.; Hsu, C.H. A simple experimental technique for the measurement of the work of adhesion of microstructures. 5th Technical Digest IEEE Solid-State Sensor and Actuator Workshop, 1992, pp. 208-212.
[67]
Mastrangelo, C.H.; Hsu, C.H. Mechanical stability and adhesion of microstructures under capillary forces. II. Basic theory. J. Microelectromech. Syst., 1993, 2(1), 33-43.
[68]
Mastrangelo, C.H.; Hsu, C.H. Mechanical stability and adhesion of microstructures under capillary forces. II. Experiments. J. Microelectromech. Syst., 1993, 2(1), 44-55.
[69]
Legtenberg, R.; Tilmans, H.A.; Elders, J. Stiction of surface micromachined structures after rinsing and drying: Model and investigation of adhesion mechanisms. Sens. Actuators A Phys., 1994, 43(1), 230-238.
[70]
De Boer, M.P.; Tabbara, M.R.; Dugger, M.T.; Clews, P.J.; Michalske, T.A. Measuring and modeling electrostatic adhesion in micromachines. In IEEE International Conference on Solid State Sensors and Actuators, 1997, Vol. 1, pp. 229-232.
[71]
Yee, Y.; Park, M.; Chun, K. A sticking model of suspended polysilicon microstructure including residual stress gradient and postrelease temperature. J. Microelectromech. Syst., 1998, 7(3), 339-344.
[72]
Van Spengen, W.M.; Puers, R.; De Wolf, I. A physical model to predict stiction in MEMS. J. Micromech. Microeng., 2002, 12(5), 702.
[73]
Van Spengen, W.M.; Puers, R.; Mertens, R.; De Wolf, I. Experimental characterization of stiction due to charging in RF MEMS. IEEE International Electron Devices Meeting, 2002, pp. 901-904.
[74]
Rottenberg, X.; Nauwelaers, B.; De Raedt, W.; Tilmans, H.A. Distributed dielectric charging and its impact on RF MEMS devices. In: IEEE 34th European Microwave Conference, 2004, vol,1, pp. 77-80.
[75]
Van Spengen, W.M.; Puers, R.; Mertens, R.; De Wolf, I. A comprehensive model to predict the charging and reliability of capacitive RF MEMS switches. J. Micromech. Microeng., 2004, 14(4), 514.
[76]
Melle, S.; De Conto, D.; Dubuc, D.; Grenier, K.; Vendier, O.; Muraro, J.L.; Cazaux, J.L.; Plana, R. Reliability modeling of capacitive RF MEMS. IEEE Trans. Microw. Theory Tech., 2005, 53(11), 3482-3488.
[77]
Papaioannou, G.J.; Exarchos, M.; Theonas, V.; Psychias, J.; Konstantinidis, G.; Vasilache, D.; Muller, A.; Neculoiu, D. Effect of space charge polarization in radio frequency microelectromechanical system capacitive switch dielectric charging. Appl. Phys. Lett., 2006, 89(10), 103512.
[78]
Bordas, C.; Grenier, K.; Dubuc, D.; Flahaut, E.; Pacchini, S.; Paillard, M.; Cazaux, J.L. Carbon nanotube based dielectric for enhanced RF MEMS reliability. IEEE International Microwave Symposium, 2007, pp. 375-378.
[79]
Li, G.; San, H.; Chen, X. Charging and discharging in ion implanted dielectric films used for capacitive radio frequency microelectromechanical systems switch. J. Appl. Phys., 2009, 105(12), 124503.
[80]
Peng, Z.; Palego, C.; Hwang, J.C.; Forehand, D.I.; Goldsmith, C.L.; Moody, C.; Malczewski, A.; Pillans, B.W.; Daigler, R.; Papapolymerou, J. Impact of humidity on dielectric charging in RF MEMS capacitive switches. In IEEE Microw. Wirel. Compon. Lett., 2009, Vol.19(No.5), 299-301.
[81]
Iannacci, J.; Repchankova, A.; Faes, A.; Tazzoli, A.; Meneghesso, G.; Dalla Betta, G.F. Enhancement of RF-MEMS switch reliability through an active anti-stiction heat-based mechanism. Microelectron. Reliab., 2010, 50(9), 1599-1603.
[82]
Yamashita, T.; Itoh, T.; Suga, T. Investigation of anti-stiction coating for ohmic contact MEMS switches with thiophenol and 2-naphthalenethiol self-assembled monolayer. Sens. Actuators A Phys., 2011, 172(2), 455-461.
[83]
Barbato, M.; Meneghesso, G. A novel technique to alleviate the stiction phenomenon in radio frequency microelectromechanical switches. IEEE Electron Device Lett., 2015, 36(2), 177-179.
[84]
Heinz, D.B.; Hong, V.A.; Ahn, C.H.; Ng, E.J.; Yang, Y.; Kenny, T.W. Experimental investigation into stiction forces and dynamic mechanical anti-stiction solutions in ultra-clean encapsulated MEMS devices. J. Microelectromech. Syst., 2016, 25(3), 469-478.
[85]
Agarwal, S.; Kashyap, R.; Guha, K.; Baishya, S. Modeling and analysis of capacitance in consideration of the deformation in RF MEMS shunt switch. Superlattices Microstruct., 2017, 101, 567-574.
[86]
Koutsoureli, M.; Michalas, L.; Papandreou, E.; Papaioannou, G. Dielectric charging asymmetry in SiN films used in RF MEMS capacitive switches. IEEE Trans. Device Mater. Reliab., 2017, 17(1), 138-145.
[87]
Shen, S.C.; Caruth, D.; Feng, M. Broadband low actuation voltage RF MEM switches. In: IEEE 22nd Annual GaAs IC Symposium,, 2000, pp. 161-164.
[88]
Balaraman, D.; Bhattacharya, S.K.; Ayazi, F.; Papapolymerou, J. Low-cost low actuation voltage copper RF MEMS switches. IEEE MTT-S Int. Microw. Symp. Dig., 2002, Vol.2, pp.1225-1228.
[89]
Chan, R.; Lesnick, R.; Becher, D.; Feng, M. Low-actuation voltage RF MEMS shunt switch with cold switching lifetime of seven billion cycles. J. Microelectromech. Syst., 2003, 12(5), 713-719.
[90]
Touati, S.; Lorphelin, N.; Kanciurzewski, A.; Robin, R.; Rollier, A.S.; Millet, O.; Segueni, K. Low actuation voltage totally free flexible RF MEMS switch with antistiction system. In IEEE Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS, 2008, pp. 66-70.
[91]
Lorphelin, N.; Robin, R.; Rollier, A.S.; Touati, S.; Kanciurzewski, A.; Millet, O.; Segueni, K. Simulation and optimization of a totally free flexible RF MEMS switch. J. Micromech. Microeng., 2009, 19(7), 074017.
[92]
Blondy, P.; Crunteanu, A.; Champeaux, C.; Catherinot, A.; Tristant, P.; Vendier, O.; Cazaux, J.L.; Marchand, L. Dielectric less capacitive MEMS switches. In IEEE MTT-S Int. Microw. Symp. Dig., 2004, 2, 573-576.
[93]
Mardivirin, D.; Pothier, A.; Crunteanu, A.; Vialle, B.; Blondy, P. Charging in dielectricless capacitive RF-MEMS switches. In IEEE Trans. Microw. Theory And Techniques,, 2009, Vol.57(1), pp.231-236.
[94]
Tazzoli, A.; Autizi, E.; Barbato, M.; Meneghesso, G.; Solazzi, F.; Farinelli, P.; Giacomozzi, F.; Iannacci, J.; Margesin, B.; Sorrentino, R. Evolution of electrical parameters of dielectric-less ohmic RF-MEMS switches during continuous actuation stress. In IEEE Proceedings of the European Solid State Device Research Conference, 2009, pp. 343-346.
[95]
Herrmann, C.F.; DelRio, F.W.; Miller, D.C.; George, S.M.; Bright, V.M.; Ebel, J.L.; Strawser, R.E.; Cortez, R.; Leedy, K.D. Alternative dielectric films for RF MEMS capacitive switches deposited using atomic layer deposited Al2O3/ZnO alloys. Sens. Actuators A Phys., 2007, 135(1), 262-272.
[96]
Cheng, Z.; Huang, X.; Huang, H.; Wang, K.; Li, G. Effect of arsenic doping on charge relaxation process in silicon nitride film for capacitive RF MEMS switch application. Microelectron. Eng., 2016, 162, 89-92.
[97]
Goldsmith, C.L.; Forehand, D.I.; Peng, Z.; Hwang, J.C.; Ebel, J.L. High-cycle life testing of RF MEMS switches. In IEEE/MTT-S International Microwave Symposium, 2007, pp. 1805-1808.
[98]
Withers, P.J. Residual stress and its role in failure. Rep. Prog. Phys., 2007, 70(12), 2211.
[99]
Doerner, M.F.; Nix, W.D. Stresses and deformation processes in thin films on substrates. Crit. Rev. Solid State Mater. Sci., 1988, 14(3), 225-268.
[100]
Withers, P.J.; Bhadeshia, H.K.D.H. Residual stress. Part 2-Nature and origins. Mater. Sci. Technol., 2001, 17(4), 366-375.
[101]
Mattox, D.M. . Atomistic film growth and resulting film properties:Residual film stress. Vac. Technol. Coat 2001, 22-23.
[102]
Rossini, N.S.; Dassisti, M.; Benyounis, K.Y.; Olabi, A.G. Methods of measuring residual stresses in components. Mater. Des., 2012, 35, 572-588.
[103]
Clyne, T.W.; Gill, S.C. Residual stresses in thermal spray coatings and their effect on interfacial adhesion: A review of recent work. J. Thermal Spray Technol., 1996, 5(4), 401-418.
[104]
Kraft, O.; Volkert, C.A. Mechanical testing of thin films and small structures. Adv. Eng. Mater., 2001, 3(3), 99-110.
[105]
De Wolf, I. Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits. Semicond. Sci. Technol., 1996, 11(2), 139.
[106]
Reimers, W. Analysis of residual stress states using diffraction methods. Acta Phys. Pol. A, 1999, 96(2), 229-238.
[107]
De Pasquale, G.; Soma, A. Dynamic identification of electrostatically actuated MEMS in the frequency domain. Mech. Syst. Signal Process., 2010, 24(6), 1621-1633.
[108]
Stoney, G.G. The tension of metallic films deposited by electrolysis. In Proc.of the R. Soc. Lond.Series , Containing Papers of a Mathematical and Physica. Character, 1909, Vol.82(No.553), 172-175.
[109]
Freund, L.B. Substrate curvature due to thin film mismatch strain in the nonlinear deformation range. J. Mech. Phys. Solids, 2000, 48(6), 1159-1174.
[110]
Feng, X.; Huang, Y.; Jiang, H.; Ngo, D.; Rosakis, A.J. The effect of thin film/substrate radii on the Stoney formula for thin film/substrate subjected to nonuniform axisymmetric misfit strain and temperature. J. Mech. Mater. Struct., 2006, 1(6), 1041-1053.
[111]
Huang, Y.; Rosakis, A.J. Extension of Stoney’s formula to non-uniform temperature distributions in thin film/substrate systems. The case of radial symmetry. J. Mech. Phys. Solids, 2005, 53(11), 2483-2500.
[112]
Huang, S.; Zhang, X. Extension of the Stoney formula for film–substrate systems with gradient stress for MEMS applications. J. Micromech. Microeng., 2006, 16(2), 382.
[113]
Tanaka, K.; Ishihara, K.; Akiniwa, Y.; Ohta, H. Residual stress of aluminum thin films measured by X-ray and curvature methods. J. Soc. Mater. Sci. Jpn., 1996, 45(9), 153-159.
[114]
Iborra, E.; Olivares, J.; Clement, M.; Vergara, L.; Sanz-Hervás, A.; Sangrador, J. Piezoelectric properties and residual stress of sputtered AlN thin films for MEMS applications. Sens. Actuators A Phys., 2004, 115(2), 501-507.
[115]
Pandey, A.; Dutta, S.; Prakash, R.; Dalal, S.; Raman, R.; Kapoor, A.K.; Kaur, D. Growth and evolution of residual stress of AlN films on silicon (100) wafer. Mater. Sci. Semicond. Process., 2016, 52, 16-23.
[116]
Watanabe, M.; Mumm, D.R.; Chiras, S.; Evans, A.G. Measurement of the residual stress in a Pt–aluminide bond coat. Scr. Mater., 2002, 46(1), 67-70.
[117]
Bigl, S.; Heinz, W.; Kahn, M.; Schoenherr, H.; Cordill, M.J. High-temperature characterization of silicon dioxide films with wafer curvature. JOM, 2015, 67(12), 2902-2907.
[118]
Alaca, B.E.; Toga, K.B.; Akar, O.; Akin, T. Strain-controlled bulge test. J. Mater. Res., 2008, 23(12), 3295-3302.
[119]
Shojaei, O.R.; Karimi, A. Comparison of mechanical properties of TiN thin films using nanoindentation and bulge test. Thin Solid Films, 1998, 332(1), 202-208.
[120]
Javed, H.; Merle, B.; Preiß, E.; Hivet, R.; Benedetto, A.; Göken, M. Mechanical characterization of metallic thin films by bulge and scratch testing. Surf. Coat. Tech., 2016, 289, 69-74.
[121]
Vlassak, J.J.; Nix, W.D. A new bulge test technique for the determination of Young’s modulus and Poisson’s ratio of thin films. J. Mater. Res., 1992, 7(12), 3242-3249.
[122]
Edwards, R.L.; Coles, G.; Sharpe, W.N. Comparison of tensile and bulge tests for thin-film silicon nitride. Exp. Mech., 2004, 44(1), 49-54.
[123]
Frischmuth, T.; Schneider, M.; Maurer, D.; Grille, T.; Schmid, U. Impact of thermal treatment on the residual stress and Young’s modulus of thin a-SiC: H membranes applying bulge testing. Proc. Eng., 2015, 120, 752-755.
[124]
Rats, D.; Bimbault, L.; Vandenbulcke, L.; Herbin, R.; Badawi, K.F. Crystalline quality and residual stresses in diamond layers by Raman and X‐ray diffraction analyses. J. Appl. Phys., 1995, 78(8), 4994-5001.
[125]
Kang, Y.; Qiu, Y.; Lei, Z.; Hu, M. An application of Raman spectroscopy on the measurement of residual stress in porous silicon. Opt. Lasers Eng., 2005, 43(8), 847-855.
[126]
Ahmed, F.; Bayerlein, K.; Rosiwal, S.M.; Göken, M.; Durst, K. Stress evolution and cracking of crystalline diamond thin films on ductile titanium substrate: Analysis by micro-raman spectroscopy and analytical modelling. Acta Mater., 2011, 59(14), 5422-5433.
[127]
Xu, W.H.; Lu, D.; Zhang, T.Y. Determination of residual stresses in Pb (Zr 0.53 Ti 0.47) O3 thin films with Raman spectroscopy. Appl. Phys. Lett., 2001, 79(25), 4112-4114.
[128]
Zhang, S.; Xie, H.; Zeng, X.; Hing, P. Residual stress characterization of diamond-like carbon coatings by an X-ray diffraction method. Surf. Coat. Tech., 1999, 122(2), 219-224.
[129]
Kraft, O.; Hommel, M.; Arzt, E. X-ray diffraction as a tool to study the mechanical behaviour of thin films. Mater. Sci. Eng. A, 2000, 288(2), 209-216.
[130]
Shen, Y.G.; Mai, Y.W.; Zhang, Q.C.; McKenzie, D.R.; McFall, W.D.; McBride, W.E. Residual stress, microstructure, and structure of tungsten thin films deposited by magnetron sputtering. J. Appl. Phys., 2000, 87(1), 177-187.
[131]
Treml, R.; Kozic, D.; Zechner, J.; Maeder, X.; Sartory, B.; Gänser, H.P.; Schöngrundner, R.; Michler, J.; Brunner, R.; Kiener, D. High resolution determination of local residual stress gradients in single-and multilayer thin film systems. Acta Mater., 2016, 103, 616-623.
[132]
Zheng, X.; Li, J.; Zhou, Y. X-ray diffraction measurement of residual stress in PZT thin films prepared by pulsed laser deposition. Acta Mater., 2004, 52(11), 3313-3322.
[133]
Welzel, U.; Ligot, J.; Lamparter, P.; Vermeulen, A.C.; Mittemeijer, E.J. Stress analysis of polycrystalline thin films and surface regions by X-ray diffraction. J. Appl. Cryst., 2005, 38(1), 1-29.
[134]
Koutsokeras, L.E.; Abadias, G. Intrinsic stress in ZrN thin films: Evaluation of grain boundary contribution from in situ wafer curvature and ex situ X-ray diffraction techniques. J. Appl. Phys., 2012, 111(9), 093509.
[135]
Keckes, J.; Bartosik, M.; Daniel, R.; Mitterer, C.; Maier, G.; Ecker, W.; Vila-Comamala, J.; David, C.; Schoeder, S.; Burghammer, M. X-ray nanodiffraction reveals strain and microstructure evolution in nanocrystalline thin films. Scr. Mater., 2012, 67(9), 748-751.
[136]
Stefenelli, M.; Daniel, R.; Ecker, W.; Kiener, D.; Todt, J.; Zeilinger, A.; Mitterer, C. X-ray nanodiffraction reveals stress distribution across an indented multilayered CrN–Cr thin film. Acta Mater., 2015, 85, 24-31.
[137]
Hanabusa, T.; Kusaka, K.; Sakata, O. Residual stress and thermal stress observation in thin copper films. Thin Solid Films, 2004, 459(1), 245-248.
[138]
Sharma, J.; Das Gupta, A. Effect of stress on the pull-in voltage of membranes for MEMS application. J. Micromech. Microeng., 2009, 19(11), 115021.
[139]
Zou, Q.; Li, Z.; Liu, L. New methods for measuring mechanical properties of thin films in micromachining: Beam pull-in voltage (VPI) method and Long Beam Deflection (LBD) method. Sens. Actuators A Phys., 1995, 48(2), 137-143.
[140]
Baek, C.W.; Kim, Y.K.; Ahn, Y.; Kim, Y.H. Measurement of the mechanical properties of electroplated gold thin films using micromachined beam structures. Sens. Actuators A Phys., 2005, 117(1), 17-27.
[141]
Cardinale, G.F.; Howitt, D.G.; McCarty, K.F.; Medlin, D.L.; Mirkarimi, P.B.; Moody, N.R. Analysis of residual stress in cubic boron nitride thin films using micromachined cantilever beams. Diamond Related Materials, 1996, 5(11), 1295-1302.
[142]
Zhou, Y.; Yang, C.S.; Chen, J.A.; Ding, G.F.; Ding, W.; Wang, L.; Wang, M.J.; Zhang, Y.M.; Zhang, T.H. Measurement of Young’s modulus and residual stress of copper film electroplated on silicon wafer. Thin Solid Films, 2004, 460(1), 175-180.
[143]
Pandey, A.K.; Venkatesh, K.P.; Pratap, R. Effect of metal coating and residual stress on the resonant frequency of MEMS resonators. Sadhana, 2009, 34(4), 651.
[144]
Ma, S.; Wang, S.; Iacopi, F.; Huang, H. A resonant method for determining the residual stress and elastic modulus of a thin film. Appl. Phys. Lett., 2013, 103(3), 031603.
[145]
Somà, A.; Saleem, M.M. Modeling and experimental verification of thermally induced residual stress in RF-MEMS. J. Micromech. Microeng., 2015, 25(5), 055007.
[146]
Soma, A.; Ballestra, A. Residual stress measurement method in MEMS microbeams using frequency shift data. J. Micromech. Microeng., 2009, 19(9), 095023.
[147]
Kiesewetter, L.; Zhang, J.M.; Houdeau, D.; Steckenborn, A. Determination of Young’s moduli of micromechanical thin films using the resonance method. Sens. Actuators A Phys., 1992, 35(2), 153-159.
[148]
Tsui, Y.C.; Clyne, T.W. An analytical model for predicting residual stresses in progressively deposited coatings Part 1: Planar geometry. Thin Solid Films, 1997, 306(1), 23-33.
[149]
Tsui, Y.C.; Clyne, T.W. An analytical model for predicting residual stresses in progressively deposited coatings Part 2: Cylindrical geometry. Thin Solid Films, 1997, 306(1), 34-51.
[150]
Zhang, T.Y.; Su, Y.J.; Qian, C.F.; Zhao, M.H.; Chen, L.Q. Microbridge testing of silicon nitride thin films deposited on silicon wafers. Acta Mater., 2000, 48(11), 2843-2857.
[151]
Denhoff, M.W. A measurement of Young’s modulus and residual stress in MEMS bridges using a surface profiler. J. Micromech. Microeng., 2003, 13(5), 686.
[152]
Zhang, Y.; Ren, Q.; Zhao, Y. Modelling analysis of surface stress on a rectangular cantilever beam. J. Phys. D Appl. Phys., 2004, 37(15), 2140.
[153]
Wan, K.T.; Guo, S.; Dillard, D.A. A theoretical and numerical study of a thin clamped circular film under an external load in the presence of a tensile residual stress. Thin Solid Films, 2003, 425(1), 150-162.
[154]
Song, Y.T.; Lee, H.Y.; Esashi, M. A corrugated bridge of low residual stress for RF-MEMS switch. Sens. Actuators A Phys., 2007, 135(2), 818-826.
[155]
Wei, C.; Yang, J.F. A finite element analysis of the effects of residual stress, substrate roughness and non-uniform stress distribution on the mechanical properties of diamond-like carbon films. Diamond Related Materials, 2011, 20(5), 839-844.
[156]
Anzalone, R.; D’arrigo, G.; Camarda, M.; Locke, C.; Saddow, S.E.; La Via, F. Advanced residual stress analysis and FEM simulation on heteroepitaxial 3C–SiC for MEMS application. J. Microelectromech. Syst., 2011, 20(3), 745-752.
[157]
Korsunsky, A.M.; Sebastiani, M.; Bemporad, E. Residual stress evaluation at the micrometer scale: Analysis of thin coatings by FIB milling and digital image correlation. Surf. Coat. Tech., 2010, 205(7), 2393-2403.
[158]
Bai, M.; Kato, K.; Umehara, N.; Miyake, Y. Nanoindentation and FEM study of the effect of internal stress on micro/nano mechanical property of thin CNx films. Thin Solid Films, 2000, 377, 138-147.
[159]
Zhang, X.; Zhang, T.Y.; Zohar, Y. Measurements of residual stresses in thin films using micro-rotating-structures. Thin Solid Films, 1998, 335(1), 97-105.
[160]
Ballestra, A.; Somà, A.; Pavanello, R. Experimental-numerical comparison of the cantilever MEMS frequency shift in presence of a residual stress gradient. Sensors , 2008, 8(2), 767-783.
[161]
Chen, S.; Baughn, T.V.; Yao, Z.J.; Goldsmith, C.L. A new in situ residual stress measurement method for a MEMS thin fixed-fixed beam structure. J. Microelectromech. Syst., 2002, 11(4), 309-316.
[162]
Schijve, J. Fatigue of structures and materials.Dordrecht:; Kluwer Academic, 2001.
[163]
EDFAS Desk Reference Committee. Microelectronics Failure Analysis: Desk Reference.. ASM International, 2011.
[164]
Tabib-Azar, M.; Wong, K.; Ko, W. Aging phenomena in heavily doped (p+) micromachined silicon cantilever beams. Sens. Actuators A Phys., 1992, 33(3), 199-206.
[165]
Cornella, G.; Vinci, R.P.; Iyer, R.S.; Dauskardt, R.H.; Bravman, J.C. Observations of low cycle fatigue of Al thin films for MEMS applications. MRS Online Proc. Lib. Arch 1998, 518.
[166]
Takashima, K.; Higo, Y.; Sugiura, S.; Shimojo, M. Fatigue crack growth behavior of micro-sized specimens prepared from an electroless plated Ni-P amorphous alloy thin film. Mater. Trans., 2001, 42(1), 68-73.
[167]
Kraft, O.; Schwaiger, R.; Wellner, P. Fatigue in thin films: Lifetime and damage formation. Mater. Sci. Eng. A, 2001, 319, 919-923.
[168]
Muhlstein, C.L.; Brown, S.B.; Ritchie, R.O. High-cycle fatigue and durability of polycrystalline silicon thin films in ambient air. Sens. Actuators A Phys., 2001, 94(3), 177-188.
[169]
Millet, O.; Bertrand, P.; Legrand, B.; Collard, D.; Buchaillot, L. An original methodology to assess fatigue behavior in RF MEMS devices. In Proceeding GAAS Symposium, 2004, pp. 69-72.
[170]
Zhang, G.P.; Volkert, C.A.; Schwaiger, R.; Arzt, E.; Kraft, O. Damage behavior of 200 nm thin copper films under cyclic loading. J. Mater. Res., 2005, 20(1), 201-207.
[171]
Son, D.; Kim, J.J.; Kim, J.Y.; Kwon, D. Tensile properties and fatigue crack growth in LIGA nickel MEMS structures. Mater. Sci. Eng. A, 2005, 406(1), 274-278.
[172]
Lin, Y.C.; Hocheng, H.; Fang, W.L.; Chen, R. Fabrication and fatigue testing of an electrostatically driven microcantilever beam. Mater. Manuf. Process., 2006, 21(1), 75-80.
[173]
Park, J.H.; Myung, M.S.; Kim, Y.J. Tensile and high cycle fatigue test of Al–3% Ti thin films. Sens. Actuators A Phys., 2008, 147(2), 561-569.
[174]
Soma, A.; De Pasquale, G. MEMS mechanical fatigue: Experimental results on gold microbeams. J. Microelectromech. Syst., 2009, 18(4), 828-835.
[175]
Jalalahmadi, B.; Sadeghi, F.; Peroulis, D. A numerical fatigue damage model for life scatter of MEMS devices. J. Microelectromech. Syst., 2009, 18(5), 1016-1031.
[176]
Zhang, J.Y.; Zhang, X.; Liu, G.; Wang, R.H.; Zhang, G.J.; Sun, J. Length scale dependent yield strength and fatigue behavior of nanocrystalline Cu thin films. Mater. Sci. Eng. A, 2011, 528(25), 7774-7780.
[177]
Hung, J.N.; Hocheng, H. Frequency effects and life prediction of polysilicon microcantilever beams in bending fatigue. J. Micro. Nanolithogr. MEMS MOEMS, 2012, 11(2), 021206.
[178]
Baumert, E.K.; Pierron, O.N. Very high cycle fatigue crack initiation in electroplated Ni films under extreme stress gradients. Scr. Mater., 2012, 67(1), 45-48.
[179]
De Pasquale, G.; Somà, A. Experimental methods for the characterization of fatigue in microstructures. Frattura Integr. Strutt., 2013, 23, 114.
[180]
Hamada, S.; Tani, S.; Horikawa, M.; Otani, H.; Tsugai, M.; Yosikawa, E. Notch effect of micro polycrystalline silicon cantilever.In: ICF10, Honolulu (USA), ; , 2001.
[181]
Mazzalai, A.; Balma, D.; Chidambaram, N.; Matloub, R.; Muralt, P. Characterization and fatigue of the converse piezoelectric effect in PZT films for MEMS applications. J. Microelectromech. Syst., 2015, 24(4), 831-838.
[182]
Kondo, T.; Bi, X.; Hirakata, H.; Minoshima, K. Mechanics of fatigue crack initiation in submicron-thick freestanding copper films. Int. J. Fatigue, 2016, 82, 12-28.
[183]
Mulloni, V.; Margesin, B.; Farinelli, P.; Marcelli, R.; Lucibello, A.; De Angelis, G. Cycling reliability of RF-MEMS switches with gold-platinum multilayers as contact material. Microsyst. Technol., 2017, 23(9), 3843-3850.
[184]
Allameh, S.; Shrotriya, P.; Gally, B.; Brown, S.; Soboyejo, W.O. Micromechanisms of fatigue in polysilicon mems structures.In: ICF10, Honolulu (USA), ; , 2001.
[185]
Alsem, D.H.; Muhlstein, C.L.; Stach, E.A.; Ritchie, R.O. Further considerations on the high-cycle fatigue of micron-scale polycrystalline silicon. Scr. Mater., 2008, 59(9), 931-935.
[186]
Kahn, H.; Chen, L.; Ballarini, R.; Heuer, A.H. Mechanical fatigue of polysilicon: Effects of mean stress and stress amplitude. Acta Mater., 2006, 54(3), 667-678.
[187]
Chasiotis, I.; Bateson, C.; Timpano, K.; McCarty, A.S.; Barker, N.S.; Stanec, J.R. Strain rate effects on the mechanical behavior of nanocrystalline Au films. Thin Solid Films, 2007, 515(6), 3183-3189.
[188]
Chew, Y.H.; Wong, C.C.; Wulff, F.; Lim, F.C.; Goh, H.M. Strain rate sensitivity and Hall-Petch behavior of ultrafine-grained gold wires. Thin Solid Films, 2008, 516(16), 5376-5380.
[189]
Zhang, Z.F.; Wang, Z.G. Dependence of intergranular fatigue cracking on the interactions of persistent slip bands with grain boundaries. Acta Mater., 2003, 51(2), 347-364.
[190]
Hassan, M.K.; Torii, T.; Ishida, K.; Shimizu, K. Fatigue fracture behavior of MEMS Cu thin films. In: ECF18 2010,; , 2013.
[191]
Muhlstein, C.L.; Brown, S.B.; Ritchie, R.O. High-cycle fatigue of single-crystal silicon thin films. J. Microelectromech. Syst., 2001, 10(4), 593-600.
[192]
Takashima, K.; Higo, Y.; Swain, M.V. Fatigue crack growth behaviour of micro-sized specimens prepared from amorphous alloy thin films. In: ICF10, Honolulu (USA); , 2001.
[193]
Bannantine, J.A.; Comer, J.J.; Handrock, J.L. Fundamentals of Metal Fatigue Analysis; Pearson; 1st ed.,. , 1989.
[194]
Wöhler, A. Über die Festigkeits-versuche mit Eisen und Stahl., 1870.
[195]
Hertzberg, R.W. Deformation and fracture mechanics of engineering materials; Wiley, 1996.
[196]
Douglass, M.R. Lifetime estimates and unique failure mechanisms of the Digital Micromirror Device (DMD). In 36th Annual IEEE International Reliability Physics Symposium Proceedings, 1998, pp. 9-16.
[197]
Vickers-Kirby, D.J.; Kubena, R.L.; Stratton, F.P.; Joyce, R.J.; Chang, D.T.; Kim, J. Anelastic creep phenomena in thin metal plated cantilevers for MEMS. MRS Online Proceedings Library Archive 657, 2000.
[198]
Tuck, K.; Jungen, A.; Geisberger, A.; Ellis, M.; Skidmore, G. A study of creep in polysilicon MEMS devices. Trans. ASME-H-. J. Eng. Mater. Technol., 2005, 127(1), 90-96.
[199]
Van Gils, M.; Bielen, J.; McDonald, G. Evaluation of creep in RF MEMS devices. n: IEEE International Conference on Thermal,Mechanical and Multi-Physics Simulation Experiments in Microelectronics and Micro-Systems, EuroSime, , 2007, pp. 1-6.
[200]
Yan, X.; Brown, W.L.; Li, Y.; Papapolymerou, J.; Palego, C.; Hwang, J.C.; Vinci, R.P. Anelastic stress relaxation in gold films and its impact on restoring forces in MEMS devices. J. Microelectromech. Syst., 2009, 18(3), 570-576.
[201]
Hsu, H.H.; Koslowski, M.; Peroulis, D. An experimental and theoretical investigation of creep in ultrafine crystalline nickel RF-MEMS devices. IEEE Trans. Microw. Theory Tech., 2011, 59(10), 2655-2664.
[202]
Bergers, L.I.; Hoefnagels, J.P.; Delhey, N.K.; Geers, M.G. Measuring time-dependent deformations in metallic MEMS. Microelectron. Reliab., 2011, 51(6), 1054-1059.
[203]
Jain, A.; Palit, S.; Alam, M.A. A physics-based predictive modeling framework for dielectric charging and creep in RF MEMS capacitive switches and varactors. J. Microelectromech. Syst., 2012, 21(2), 420-430.
[204]
Somà, A.; De Pasquale, G.; Saleem, M.M. Experimental investigations of creep in gold RF-MEMS microstructures. In: Smart Sensors,Actuators, and MEMS VII; and Cyber Physical Systems, International Society for Optics and Photonics; , 2015. Vol. 9517,95170H
[205]
Modlinski, R.; Witvrouw, A.; Ratchev, P.; Puers, R.; den Toonder, J.M.; De Wolf, I. Creep characterization of Al alloy thin films for use in MEMS applications. Microelectron. Eng., 2004, 76(1), 272-278.
[206]
Modlinski, R.; Ratchev, P.; Witvrouw, A.; Puers, R.; De Wolf, I. Creep-resistant aluminum alloys for use in MEMS. J. Micromech. Microeng., 2005, 15(7), S165.
[207]
Hsu, H.H.; Peroulis, D. A CAD model for creep behavior of RF-MEMS varactors and circuits. IEEE Trans. Microw. Theory Tech., 2011, 59(7), 1761-1768.
[208]
Lemoine, E.; Pothier, A.; Crunteanu, A.; Blondy, P.; Saillen, N.; Marchand, L. Simple creep parameters extraction in metal contact RF-MEMS switches. In IEEE MTT-S International Microwave Symposium (IMS), 2015, pp. 1-4.
[209]
Somà, A.; Saleem, M.M.; De Pasquale, G. Effect of creep in RF MEMS static and dynamic behavior. Microsyst. Technol., 2016, 22(5), 1067-1078.
[210]
Kolis, P.; Bajaj, A.K.; Koslowski, M. Quantification of uncertainty in creep failure of RF-MEMS switches. J. Microelectromech. Syst., 2017, 26(1), 283-294.
[211]
Arzt, E. Size effects in materials due to microstructural and dimensional constraints: A comparative review. Acta Mater., 1998, 46(16), 5611-5626.
[212]
Espinosa, H.D.; Prorok, B.C. Size effects on the mechanical behavior of gold thin films. J. Mater. Sci., 2003, 38(20), 4125-4128.
[213]
Greer, J.R.; De Hosson, J.T. Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater. Sci., 2011, 56(6), 654-724.
[214]
El-Sherik, A.M.; Erb, U.; Palumbo, G.; Aust, K.T. Deviations from hall-petch behaviour in as-prepared nanocrystalline nickel. Scr. Metall. Mater., 1992, 27(9), 1185-1188.
[215]
Ashby, M.F. A first report on deformation-mechanism maps. Acta Metall., 1972, 20(7), 887-897.
[216]
Emery, R.D.; Povirk, G.L. Tensile behavior of free-standing gold films. Part II. Fine-grained films. Acta Mater., 2003, 51(7), 2079-2087.
[217]
Harris, K.E.; King, A.H. Direct observation of diffusional creep via TEM in polycrystalline thin films of gold. Acta Mater., 1998, 46(17), 6195-6203.
[218]
Karanjgaokar, N.J.; Oh, C.S.; Lambros, J.; Chasiotis, I. Inelastic deformation of nanocrystalline Au thin films as a function of temperature and strain rate. Acta Mater., 2012, 60(13), 5352-5361.
[219]
Olliges, S.; Frank, S.; Gruber, P.A.; Auzelyte, V.; Solak, H.; Spolenak, R. Thermo mechanical properties and plastic deformation of gold nanolines and gold thin films. Mater. Sci. Eng. A, 2011, 528(19), 6203-6209.
[220]
Wang, C.L.; Zhang, M.; Nieh, T.G. Nanoindentation creep of nanocrystalline nickel at elevated temperatures. J. Phys. D Appl. Phys., 2009, 42(11), 115405.
[221]
Wang, N.; Wang, Z.; Aust, K.T.; Erb, U. Room temperature creep behavior of nanocrystalline nickel produced by an electrodeposition technique. Mater. Sci. Eng. A, 1997, 237(2), 150-158.
[222]
Yin, W.M.; Whang, S.H.; Mirshams, R.; Xiao, C.H. Creep behavior of nanocrystalline nickel at 290 and 373 K. Mater. Sci. Eng. A, 2001, 301(1), 18-22.
[223]
De Pasquale, G.; Soma, A.; Barbato, M.; Meneghesso, G. Impact wear and other contact effects on the electro-mechanical reliability of MEMS. In: IEEE 2014 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP),, 2014, pp. 1-6.
[224]
De Pasquale, G.; Barbato, M.; Giliberto, V.; Meneghesso, G.; Somà, A. Reliability improvement in microstructures by reducing the impact velocity through electrostatic force modulation. Microelectron. Reliab., 2012, 52(9), 1808-1811.
[225]
Tazzoli, A.; Barbato, M.; Mattiuzzo, F.; Ritrovato, V.; Meneghesso, G. Study of the actuation speed, bounces occurrences, and contact reliability of ohmic RF-MEMS switches. Microelectron. Reliab., 2010, 50(9), 1604-1608.
[226]
Wong, J.E.; Lang, J.H.; Schmidt, M.A. An electrostatically-actuated MEMS switch for power applications. In: IEEE 13th Annual International Conference on Micro Electro Mechanical Systems,, 2000, pp. 633-638.
[227]
Shi, Y.; Kim, S.G. A lateral, self-cleaning, direct contact MEMS switch. In 18th IEEE International Conference on Micro Electro Mechanical Systems, 2005, pp. 195-198.
[228]
Lee, H.; Coutu, R.A.; Mall, S.; Leedy, K.D. Characterization of metal and metal alloy films as contact materials in MEMS switches. J. Micromech. Microeng., 2006, 16(3), 557.
[229]
Kwon, H.; Choi, D.J.; Park, J.H.; Lee, H.C.; Park, Y.H.; Kim, Y.D.; Nam, H.J.; Joo, Y.C.; Bu, J.U. Contact materials and reliability for high power RF-MEMS switches. In: IEEE 20th International Conference on Micro Electro Mechanical Systems, , 2007, pp. 231-234.
[230]
Brown, C.; Rezvanian, O.; Zikry, M.A.; Krim, J. Temperature dependence of asperity contact and contact resistance in gold RF MEMS switches. J. Micromech. Microeng., 2009, 19(2), 025006.
[231]
Bannuru, T.; Brown, W.L.; Narksitipan, S.; Vinci, R.P. The electrical and mechanical properties of Au–V and Au–V2 O5 thin films for wear-resistant RF MEMS switches. J. Appl. Phys., 2008, 103(8), 083522.
[232]
Brand, V.; De Boer, M.P. Oxygen-induced graphitization of amorphous carbon deposit on ohmic switch contacts improves their electrical conductivity and protects them from wear. J. Micromech. Microeng., 2014, 24(9), 095029.
[233]
Khanna, V.K. Adhesion-delamination phenomena at the surfaces and interfaces in microelectronics and MEMS structures and packaged devices. J. Phys. D Appl. Phys., 2010, 44(3), 034004.
[234]
Ramesham, R.; Ghaffarian, R. Challenges in interconnection and packaging of Microelectromechanical Systems (MEMS). In: IEEE Proceedings of 50th Electronic Components and Technology Conference, 2000, pp. 666-675.
[235]
Forehand, D.I.; Goldsmith, C.L. Wafer level micropackaging for RF MEMS switches. Proc. IPACK, 2005.
[236]
Carton, A.; Christodoulou, C.G.; Dyck, C.; Nordquist, C. Investigating the impact of Carbon Contamination on RF MEMS Reliability. In:IEEE Antennas and Propagation Society International Symposium, 2006, pp. 193-196.
[237]
Shea, H.R. Reliability of MEMS for space applications. In: Reliability,Packaging, Testing, and Characterization of MEMS/MOEMS. Int. Soc. Opt. Photon., ; , 2006. Vol. 6111, 61110A
[238]
Tekin, T.; Ngo, H.D.; Wittler, O.; Bouhlal, B.; Lang, K.D. Packaging of mems/moems and nanodevices: Reliability testing and characterization aspects.In Reliability, Packaging, Testing, and Characterization of MEMS/MOEMS and Nanodevices X; International Society for Optics and Photonics, 2011, Vol. 7928, p. 792805.
[239]
Manier, C.A.; Zoschke, K.; Oppermann, H.; Ruffieux, D.; Dalla Piazza, S.; Suni, T.; Dekker, J.; Allegato, G. Vacuum packaging at wafer level for MEMS using gold-tin metallurgy. In:IEEE European Microelectronics Packaging Conference (EMPC), 2013, pp. 1-8.
[240]
Tanaka, S.; Esashi, M. Wafer-level MEMS package and its reliability issues. In:IEEE International Reliability Physics Symposium (IRPS), 2013, pp. 6B-1.
[241]
Souchon, F.; Saint-Patrice, D.; Pornin, J.L.; Bouchu, D.; Baret, C.; Reig, B. Thin film packaged redundancy RF MEMS switches for space applications. In: IEEE 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 2017, pp. 175-178.