Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Research Article

Facile Solvothermal Preparation and Tribological Performance of PbSe Nanoparticles

Author(s): Feng Yang and M.Q. Xue*

Volume 11, Issue 1, 2019

Page: [34 - 39] Pages: 6

DOI: 10.2174/1876402911666181214125955

Abstract

Background: Metal dichalcogenides are important branch of functional materials, which have renewed great attention in academia and industry because of their various significant applications.

Objective: The aim of the present study is to synthesize PbSe by solvothermal and investigate PbSe’s tribological properties.

Results: The XRD pattern of the sample can be readily indexed as PbSe. The tribological properties of PbSe as additives in base oil were investigated using a UMT-2 ball-on-disc tribotester. Under the determinate conditions, the friction coefficient of the base oil containing 1.0 wt. % PbSe was lower than that of the base oil. A stable tribofilm on the rubbing surface could explain the improved tribological properties of PbSe as additives.

Conclusion: PbSe nanoparticles have been synthesized successfully via solvothermal reaction. The preliminary tribological experimental results show that the PbSe could be a lubricant additive to the base oil and able to improve the tribological properties under the optimal concentration (1.0 wt. %). The result of tribological experiments demonstrated that the stable tribofilm with PbSe nanoparticles on the rubbing surface could benefit to decreasing surface friction.

Keywords: PbSe, solvothermal, tribological, tribo film, chalcogenides, chemical vapour deposition.

Graphical Abstract

[1]
Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol., 2012, 7(11), 699.
[2]
Jariwala, D.; Sangwan, V.K.; Lauhon, L.J.; Marks, T.J.; Hersam, M.C. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano, 2014, 8(2), 1102-1120.
[3]
Chen, J.; Wu, X.J.; Yin, L.; Li, B.; Hong, X.; Fan, Z.; Zhang, H. One‐pot synthesis of CdS nanocrystals hybridized with single‐layer transition‐metal dichalcogenide nanosheets for efficient photocatalytic hydrogen evolution. Angew. Chem., 2015, 127(4), 1226-1230.
[4]
Zhang, Y.; Zheng, B.; Zhu, C.; Zhang, X.; Tan, C.; Li, H.; Wang, L. Single‐layer transition metal dichalcogenide nanosheet‐based nanosensors for rapid, sensitive, and multiplexed detection of DNA. Adv. Mater., 2015, 27(5), 935-939.
[5]
Gatensby, R.; McEvoy, N.; Lee, K.; Hallam, T.; Berner, N.C.; Rezvani, E.; Duesberg, G.S. Controlled synthesis of transition metal dichalcogenide thin films for electronic applications. Appl. Surf. Sci., 2014, 297, 139-146.
[6]
Tan, C.; Qi, X.; Huang, X.; Yang, J.; Zheng, B.; An, Z.; Zhang, H. Single‐layer transition metal dichalcogenide nanosheet‐assisted assembly of aggregation‐induced emission molecules to form organic nanosheets with enhanced fluorescence. Adv. Mater., 2014, 26(11), 1735-1739.
[7]
Wan, C.; Gu, X.; Dang, F.; Itoh, T.; Wang, Y.; Sasaki, H.; Yang, R. Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Nat. Mater., 2015, 14(6), 622.
[8]
Ji, Q.; Zhang, Y.; Zhang, Y.; Liu, Z. Chemical vapour deposition of group-VIB metal dichalcogenide monolayers: Engineered substrates from amorphous to single crystalline. Chem. Soc. Rev., 2015, 44(9), 2587-2602.
[9]
Zou, M.; Jiang, Y.; Wan, M.; Zhang, M.; Zhu, H.; Yang, T.; Du, M. Controlled morphology evolution of electrospun carbon nanofiber templated tungsten disulfide nanostructures. Electrochim. Acta, 2015, 176, 255-264.
[10]
Yan, A.; Velasco, J., Jr; Kahn, S.; Watanabe, K.; Taniguchi, T.; Wang, F.; Zettl, A. Direct growth of single-and few-layer MoS2 on h-BN with preferred relative rotation angles. Nano Lett., 2015, 15(10), 6324-6331.
[11]
Tan, C.; Zhang, H. Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev., 2015, 44(9), 2713-2731.
[12]
Zhang, X.; Lai, Z.; Liu, Z.; Tan, C.; Huang, Y.; Li, B.; Zhang, H. A facile and universal top‐down method for preparation of monodisperse transition‐metal dichalcogenide nanodots. Angew. Chem., 2015, 127(18), 5515-5518.
[13]
Wu, Y.; Qiao, X.; Fan, X.; Zhang, X.; Cui, S.; Wan, J. Facile synthesis of monodisperse Cu3 SbSe4 nanoparticles and thermoelectric performance of Cu3 SbSe4 nanoparticle-based materials. J. Nanopart. Res., 2015, 17(7), 285.
[14]
Zhang, X.; Xu, H.; Wang, J.; Ye, X.; Lei, W.; Xue, M.; Li, C. Synthesis of ultrathin WS2 nanosheets and their tribological properties as lubricant additives. Nanoscale Res. Lett., 2016, 11(1), 442.
[15]
Zhang, X.; Xue, M.; Yang, X.; Luo, G.; Yang, F. Hydrothermal synthesis and tribological properties of MoSe2 nanoflowers. IET Micro Nano Lett., 2015, 10(7), 339-342.
[16]
Zhang, X.; Huang, X.; Xue, M.; Ye, X.; Lei, W.; Tang, H.; Li, C. Hydrothermal synthesis and characterization of 3D flower-like MoS2 microspheres. Mater. Lett., 2015, 148, 67-70.
[17]
Talapin, D.V.; Murray, C.B. PbSe nanocrystal solids for n-and p-channel thin film field-effect transistors. Science, 2005, 310(5745), 86-89.
[18]
Oh, S.J.; Berry, N.E.; Choi, J.H.; Gaulding, E.A.; Lin, H.; Paik, T.; Kagan, C.R. Designing high-performance PbS and PbSe nanocrystal electronic devices through stepwise, post-synthesis, colloidal atomic layer deposition. Nano Lett., 2014, 14(3), 1559-1566.
[19]
Zhang, J.; Gao, J.; Church, C.P.; Miller, E.M.; Luther, J.M.; Klimov, V.I.; Beard, M.C. PbSe quantum dot solar cells with more than 6% efficiency fabricated in ambient atmosphere. Nano Lett., 2014, 14(10), 6010-6015.
[20]
Etgar, L.; Yanover, D.; Čapek, R.K.; Vaxenburg, R.; Xue, Z.; Liu, B.; Grätzel, M. Core/Shell PbSe/PbS QDs TiO2 heterojunction solar cell. Adv. Funct. Mater., 2013, 23(21), 2736-2741.
[21]
Wang, H.; Gibbs, Z.M.; Takagiwa, Y.; Snyder, G.J. Tuning bands of PbSe for better thermoelectric efficiency. Energy Environ. Sci., 2014, 7(2), 804-811.
[22]
Korkosz, R.J.; Chasapis, T.C.; Lo, S.H.; Doak, J.W.; Kim, Y.J.; Wu, C.I.; Dravid, V.P. High ZT in p-Type (PbTe) 1–2 x (PbSe) x (PbS) x thermoelectric materials. J. Am. Chem. Soc., 2014, 136(8), 3225-3237.
[23]
Manga, K.K.; Wang, J.; Lin, M.; Zhang, J.; Nesladek, M.; Nalla, V.; Loh, K.P. High‐performance broadband photodetector using solution‐processible PbSe–TiO2–graphene hybrids. Adv. Mater., 2012, 24(13), 1697-1702.
[24]
Oh, S.J.; Wang, Z.; Berry, N.E.; Choi, J.H.; Zhao, T.; Gaulding, E.A.; Kagan, C.R. Engineering charge injection and charge transport for high performance PbSe nanocrystal thin film devices and circuits. Nano Lett., 2014, 14(11), 6210-6216.
[25]
Hassinen, A.; Moreels, I.; De Nolf, K.; Smet, P.F.; Martins, J.C.; Hens, Z. Short-chain alcohols strip X-type ligands and quench the luminescence of PbSe and CdSe quantum dots, acetonitrile does not. J. Am. Chem. Soc., 2012, 134(51), 20705-20712.
[26]
Zhang, Y.; Cao, M.; Song, X.; Wang, J.; Che, Y.; Dai, H.; Yao, J. Multiheterojunction phototransistors based on graphene–PbSe quantum dot hybrids. J. Phys. Chem. C, 2015, 119(37), 21739-21743.
[27]
Baeg, K.J.; Binda, M.; Natali, D.; Caironi, M.; Noh, Y.Y. Organic light detectors: Photodiodes and phototransistors. Adv. Mater., 2013, 25(31), 4267-4295.
[28]
Zhu, L.; Park, T.S.; Cho, K.Y.; Oh, W.C. Sonochemical synthesis of graphene based PbSe nanocomposite as efficient catalytic counter electrode for dye-sensitized solar cell. J. Mater. Sci. Mater. Electron., 2016, 27(2), 2062-2070.
[29]
Hoomi, S.; Yousefi, R.; Jamali-Sheini, F.; Sáaedi, A.; Cheraghizade, M.; Basirun, W.J.; Huang, N.M. Large-scale and facile fabrication of PbSe nanostructures by selenization of a Pb sheet. Func. Mater. Lett., 2015, 8(5), 1550063.
[30]
Xu, Y.; Sun, W.; Liu, C.; Chu, Y. Facile solvothermal preparation and photoluminescence properties of PbS, PbSe nanocrystals and PbS/PbSe alloyed heterostructures on lead substrates. Mater. Res. Bull., 2014, 50, 1-6.
[31]
Shi, X.; Chen, G.; Chen, D.; Jin, R.; Xu, H. PbSe hierarchical nanostructures: Solvothermal synthesis, growth mechanism and their thermoelectric transportation properties. CrystEngComm, 2014, 16(41), 9704-9710.
[32]
Jia, Y.; Shi, H.; Zhang, G.; Wang, F.; He, H.; Wang, X.; Wang, W. Controllable synthesis of PbSe nanorods via a low temperature solvothermal process. Mater. Lett., 2013, 96, 97-99.
[33]
Smirnova, Z.I.; Maskaeva, L.N.; Markov, V.F.; Voronin, V.I.; Kuznetsov, M.V. Incubation of PbSe thin films in a Tin (II) salt aqueous solution: Modification and ion-exchange reactions. J. Mater. Sci. Technol., 2015, 31(8), 790-797.
[34]
Zhu, L.; Park, T.S.; Cho, K.Y.; Oh, W.C. Sonochemical synthesis of graphene based PbSe nanocomposite as efficient catalytic counter electrode for dye-sensitized solar cell. J. Mater. Sci. Mater. Electron., 2016, 27(2), 2062-2070.
[35]
Akhtar, J.; Akhtar, M.; Malik, M.A.; O’Brien, P.; Raftery, J. A single-source precursor route to unusual PbSe nanostructures by a solution–liquid–solid method. J. Am. Chem. Soc., 2012, 134(5), 2485-2487.
[36]
Lokteva, I.; Thiemann, S.; Gannott, F.; Zaumseil, J. Ambipolar, low-voltage and low-hysteresis PbSe nanowire field-effect transistors by electrolyte gating. Nanoscale, 2013, 5(10), 4230-4235.
[37]
Duan, Y.; Cong, P.; Liu, X.; Li, T. Comparative study of tribological properties of polyphenylene sulfide (PPS), polyethersulfone (PES), and polysulfone (PSU). J. Macromol. Sci, 2009, 48(2), 269-281.
[38]
Cho, M. Friction and wear of a hybrid surface texturing of polyphenylene sulfide-filled micropores. Wear, 2016, 346, 158-167.
[39]
Zhang, X.; Xue, M.; Yang, X.; Wang, Z.; Luo, G.; Huang, Z.; Li, C. Preparation and tribological properties of Ti3 C2 (OH)2 nanosheets as additives in base oil. RSC Advances, 2015, 5(4), 2762-2767.
[40]
Zhang, X.; Xu, H.; Wang, J.; Ye, X.; Lei, W.; Xue, M.; Li, C. Synthesis of ultrathin WS 2 nanosheets and their tribological properties as lubricant additives. Nanoscale Res. Lett., 2016, 11(1), 442.

© 2024 Bentham Science Publishers | Privacy Policy