[1]
Tipton, K.; Boyce, S. History of the enzyme nomenclature system. Bioinformatics, 2000, 16(1), 34-40.
[2]
Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res., 2000, 28(1), 27-30.
[3]
Ogata, H.; Goto, S.; Sato, K.; Fujibuchi, W.; Bono, H.; Kanehisa, M. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res., 1999, 27(1), 29-34.
[4]
Jensen, L.J.; Skovgaard, M.; Brunak, S. Prediction of novel archaeal enzymes from sequence-derived features. Protein Sci., 2002, 11(12), 2894-2898.
[5]
Cai, C.Z.; Han, L.Y.; Ji, Z.L.; Chen, Y.Z. Enzyme family classification by support vector machines. Proteins, 2004, 55(1), 66-76.
[6]
Chou, K.C.; Elrod, D.W. Prediction of enzyme family classes. J. Proteome Res., 2003, 2(2), 183-190.
[7]
Lu, L.; Qian, Z.; Cai, Y.D.; Li, Y. ECS: an automatic enzyme classifier based on functional domain composition. Comput. Biol. Chem., 2007, 31(3), 226-232.
[8]
Cai, Y.D.; Chou, K.C. Using functional domain composition to predict enzyme family classes. J. Proteome Res., 2005, 4(1), 109-111.
[9]
Shen, H.B.; Chou, K.C. EzyPred: a top-down approach for predicting enzyme functional classes and subclasses. Biochem. Biophys. Res. Commun., 2007, 364(1), 53-59.
[10]
Qiu, J.D.; Huang, J.H.; Shi, S.P.; Liang, R.P. Using the concept of Chou’s pseudo amino acid composition to predict enzyme family classes: an approach with support vector machine based on discrete wavelet transform. Protein Pept. Lett., 2010, 17(6), 715-722.
[11]
Cai, Y.D.; Zhou, G.P.; Chou, K.C. Predicting enzyme family classes by hybridizing gene product composition and pseudo-amino acid composition. J. Theor. Biol., 2005, 234(1), 145-149.
[12]
Chou, K. Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics, 2005, 21(1), 10-19.
[13]
Zhou, X.; Chen, C.; Li, Z.; Zou, X. Using Chou’s amphiphilic pseudo-amino acid composition and support vector machine for prediction of enzyme subfamily classes. J. Theor. Biol., 2007, 248(3), 546-551.
[14]
Chou, K.C.; Cai, Y.D. Predicting enzyme family class in a hybridization space. Protein Sci., 2004, 13(11), 2857-2863.
[15]
Huang, W.L.; Chen, H.M.; Hwang, S.F.; Ho, S.Y. Accurate prediction of enzyme subfamily class using an adaptive fuzzy k-nearest neighbor method. Biosystems, 2007, 90(2), 405-413.
[16]
Yun, W.; Hua, T.; Wei, C.; Hao, L. Predicting human enzyme family classes by using pseudo amino acid composition. Curr. Proteomics, 2016, 13(2), 99-104.
[17]
Dobson, P.D.; Doig, A.J. Predicting enzyme class from protein structure without alignments. J. Mol. Biol., 2005, 345(1), 187-199.
[18]
Borro, L.C.; Oliveira, S.R.; Yamagishi, M.E.; Mancini, A.L.; Jardine, J.G.; Mazoni, I.; Santos, E.H.; Higa, R.H.; Kuser, P.R.; Neshich, G. Predicting enzyme class from protein structure using Bayesian classification. Genet. Mol. Res., 2006, 5(1), 193-202.
[19]
Bairoch, A. The ENZYME database in 2000. Nucleic Acids Res., 2000, 28(1), 304-305.
[20]
Snel, B.; Lehmann, G.; Bork, P.; Huynen, M.A. STRING: a web-server to retrieve and display the repeatedly occurring neighbourhood of a gene. Nucleic Acids Res., 2000, 28(18), 3442-3444.
[21]
Cai, Y.D.; Zhang, Q.; Zhang, Y.H.; Chen, L.; Huang, T. Identification of genes associated with breast cancer metastasis to bone on a protein-protein interaction network with a shortest path algorithm. J. Proteome Res., 2017, 16(2), 1027-1038.
[22]
Chen, L.; Yang, J.; Xing, Z.; Yuan, F.; Shu, Y.; Zhang, Y.; Kong, X.; Huang, T.; Li, H.; Cai, Y.D. An integrated method for the identification of novel genes related to oral cancer. PLoS One, 2017, 12(4)e0175185
[23]
Ng, K.L.; Ciou, J.S.; Huang, C.H. Prediction of protein functions based on function-function correlation relations. Comput. Biol. Med., 2010, 40(3), 300-305.
[24]
Chen, L.; Xing, Z.; Huang, T.; Shu, Y.; Huang, G.; Li, H.P. Application of the shortest path algorithm for the discovery of breast cancer related genes. Curr. Bioinform., 2016, 11(1), 51-58.
[25]
Zhang, J.; Yang, J.; Huang, T.; Shu, Y.; Chen, L. Identification of novel proliferative diabetic retinopathy related genes on protein-protein interaction network. Neurocomputing, 2016, 217, 63-72.
[26]
Chen, L.; Huang, T.; Zhang, Y.H.; Jiang, Y.; Zheng, M.; Cai, Y.D. Identification of novel candidate drivers connecting different dysfunctional levels for lung adenocarcinoma using protein-protein interactions and a shortest path approach. Sci. Rep., 2016, 6, 29849.
[27]
Hu, L.; Huang, T.; Liu, X.J.; Cai, Y.D. Predicting protein phenotypes based on protein-protein interaction network. PLoS One, 2011, 6(3)e17668
[28]
Hu, L.; Huang, T.; Shi, X.; Lu, W.C.; Cai, Y.D.; Chou, K.C. Predicting functions of proteins in mouse based on weighted protein-protein interaction network and protein hybrid properties. PLoS One, 2011, 6(1)e14556
[29]
Chen, L.; Zhang, Y.H.; Huang, T.; Cai, Y.D. Identifying novel protein phenotype annotations by hybridizing protein-protein interactions and protein sequence similarities. Mol. Genet. Genomics, 2016, 291(2), 913-934.
[30]
Chen, L.; Yang, J.; Huang, T.; Kong, X.Y.; Lu, L.; Cai, Y.D. Mining for novel tumor suppressor genes using a shortest path approach. J. Biomol. Struct. Dyn., 2016, 34(3), 664-675.
[31]
Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn., 1995, 20(3), 273-297.
[32]
Witten, I.H.; Frank, E. Data mining: practical machine learning
tools and techniques, 2nd Ed., Morgan, K.; San Francisco, USA. 2005.pp. 560
[33]
Platt, J. Fast training of support vector machines using sequential
minimal optimization. In Adv. Kernel Methods, MIT Press Cambridge,
MA, USA. 1998, 185-208.
[34]
Keerthi, S.S.; Shevade, S.K.; Bhattacharyya, C.; Murthy, K.R.K. Improvements to Platt’s SMO algorithm for SVM classifier design. Neural Comput., 2001, 13(3), 637-649.
[35]
Chen, L.; Feng, K.Y.; Cai, Y.D.; Chou, K.C.; Li, H.P. Predicting the network of substrate-enzyme-product triads by combining compound similarity and functional domain composition. BMC Bioinformatics, 2010, 11, 293.
[36]
Baldi, P.; Brunak, S.; Chauvin, Y.; Andersen, C.; Nielsen, H. Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics, 2000, 16(5), 412-424.
[37]
Matthews, B. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim. et Biophys. Acta Protein Struct., 1975, 405(2), 442-451.
[38]
Cohen, W.W. Fast effective rule induction. In: Twelfth International
Conference Machine Learning, Ed. Morgan Kaufmann Publishers
Inc. San Francisco, CA, USA. 1995, p. pp. 115-123.
[39]
Breiman, L. Random forests. Mach. Learn., 2001, 45(1), 5-32.