[1]
Lamb, J.; Crawford, E.D.; Peck, D.; Modell, J.W.; Blat, I.C.; Wrobel, M.J.; Lerner, J.; Brunet, J-P.; Subramanian, A.; Ross, K.N. The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science, 2006, 313(5795), 1929-1935.
[2]
Huang, G.; Zhou, H.; Li, Y.; Xu, L. Alignment-free comparison of genome sequences by a new numerical characterization. J. Theor. Biol., 2011, 281(1), 107-112.
[3]
Li, X. A fast and exhaustive method for heterogeneity and epistasis analysis based on multi-objective optimization. Bioinformatics, 2017, 33(18), 2829-2836.
[4]
Emilsson, V.; Thorleifsson, G.; Zhang, B.; Leonardson, A.S.; Zink, F.; Zhu, J.; Carlson, S.; Helgason, A.; Walters, G.B.; Gunnarsdottir, S. Genetics of gene expression and its effect on disease. Nature, 2008, 452(7186), 423-428.
[5]
Huang, G.; Chu, C.; Huang, T.; Kong, X.; Zhang, Y.; Zhang, N.; Cai, Y-D. Exploring mouse protein function via multiple approaches. PLoS One, 2016, 11(11)e0166580
[6]
Golub, T.R.; Slonim, D.K.; Tamayo, P.; Huard, C.; Gaasenbeek, M.; Mesirov, J.P.; Coller, H.; Loh, M.L.; Downing, J.R.; Caligiuri, M.A. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 1999, 286(5439), 531-537.
[7]
Guyon, J.W.; Barnhill, S.; Vapnik, V. Gene selection for cancer classification using support vector machines. Mach. Learn., 2002, 46(1), 389-422.
[8]
Wang, S-L.; Li, X.; Zhang, S.; Gui, J.; Huang, D-S. Tumor classification by combining PNN classifier ensemble with neighborhood rough set based gene reduction. Comput. Biol. Med., 2010, 40(2), 179-189.
[9]
Xu, Y.; Selaru, F.M.; Yin, J.; Zou, T.T.; Shustova, V.; Mori, Y.; Sato, F.; Liu, T.C.; Olaru, A.; Wang, S. Artificial neural networks and gene filtering distinguish between global gene expression profiles of Barrett’s esophagus and esophageal cancer. Cancer Res., 2002, 62(12), 3493-3497.
[10]
Huang, G.; Li, J. Feature extractions for computationally predicting protein post-translational modifications. Curr. Bioinform., 2018, 13(4), 387-395.
[11]
Wang, S-L.; Sun, L.; Fang, J. Molecular cancer classification using a meta-sample-based regularized robust coding method. BMC Bioinformatics, 2014, 15(15), S2.
[12]
Jirapech-Umpai, T.; Aitken, S. Feature selection and classification for microarray data analysis: evolutionary methods for identifying predictive genes. BMC Bioinformatics, 2005, 6(1), 148.
[13]
Seiler, M.C.; Seiler, F.A. Numerical recipes in C: the art of scientific computing. Risk Anal., 1989, 9(3), 415-416.
[14]
Ding, C.H. In Analysis of gene expression profiles: class discovery and leaf ordering. Proc. 6th Annu. Int. Conf. Comput. Biol. ACM, 2002, pp. 127-136.
[15]
Ruan, X-G.; Chao, H. Selection of feature genes in cancer clsssification. Cont. Engr. China, 2007, 14(4), 373-375.
[16]
Arfin, S.M.; Long, A.D.; Ito, E.T.; Tolleri, L.; Riehle, M.M.; Paegle, E.S.; Hatfield, G.W. Global gene expression profiling in Esherichia coli K12. The effects of integration host factor. J. Biol. Chem., 2000, 275(38), 29672-29684.
[17]
Tanaka, T.S.; Jaradat, S.A.; Lim, M.K.; Kargul, G.J.; Wang, X.; Grahovac, M.J.; Pantano, S.; Sano, Y.; Piao, Y.; Nagaraja, R. Genome-wide expression profiling of mid-gestation placenta and embryo using a 15,000 mouse developmental cDNA microarray. Proc. Natl. Acad. Sci. USA, 2000, 97(16), 9127-9132.
[18]
Hsu, W.H. Genetic wrappers for feature selection in decision tree induction and variable ordering in Bayesian network structure learning. Inf. Sci., 2004, 163(1), 103-122.
[19]
Tabus, I.; Astola, J. On the use of MDL principle in gene expression prediction. J. Appl. Signal Process., 2001, 2001(1), 297-303.
[20]
Furey, T.S.; Cristianini, N.; Duffy, N.; Bednarski, D.W.; Schummer, M.; Haussler, D. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics, 2000, 16(10), 906-914.
[21]
Xiong, M.; Fang, X.; Zhao, J. Biomarker identification by feature wrappers. Genome Res., 2001, 11(11), 1878-1887.
[22]
Haferlach, T.; Kohlmann, A.; Wieczorek, L.; Basso, G.; Kronnie, G.T.; Béné, M.C.; De Vos, J.; Hernández, J.M.; Hofmann, W.K.; Mills, K.I. Clinical utility of microarray-based gene expression profiling in the diagnosis and subclassification of leukemia: report from the international microarray innovations in leukemia study group. J. Clin. Oncol., 2010, 28(15), 2529-2537.
[23]
Mav, D.; Shah, R.R.; Howard, B.E.; Auerbach, S.S.; Bushel, P.R.; Collins, J.B.; Gerhold, D.L.; Judson, R.S.; Karmaus, A.L.; Maull, E.A.; Mendrick, D.L.; Merrick, B.A.; Sipes, N.S.; Svoboda, D.; Paules, R.S. A hybrid gene selection approach to create the S1500+ targeted gene sets for use in high-throughput transcriptomics. PLoS One, 2018, 13(2)e0191105
[24]
Aggarwal, A.; Jamwal, M.; Viswanathan, G.K.; Sharma, P.; Singh Sachdeva, M.U.; Bansal, D.; Malhotra, P.; Das, R. Optimal reference gene selection for expression studies in human reticulocytes. J. Mol. Diagn., 2018, 20(3), 326-333.
[25]
Sun, L.; Zhang, X.; Xu, J.; Wang, W.; Liu, R. A gene selection approach based on the fisher linear discriminant and the neighborhood rough set. Bioengineered, 2018, 9(1), 144-151.
[26]
Das, S.; Rai, A.; Mishra, D.C.; Rai, S.N. Statistical approach for selection of biologically informative genes. Gene, 2018, 655, 71-83.
[27]
Xu, J.; Mu, H.; Wang, Y.; Huang, F. Feature genes selection using supervised locally linear embedding and correlation coefficient for microarray classification. Comput. Math. Methods Med., 2018, 2018, 11.
[28]
Kaya, M. Bilge, H.S.Classification of pancreas tumor dataset using adaptive weighted k nearest neighbor algorithm; IEEE Int. Sympos. Innovat. Intell. Syst. Appl. Proc, 2014, pp. 253-257.
[29]
Huang, G. A novel neighborhood model to predict protein function from protein-protein interaction data. Curr. Proteomics, 2014, 11(4), 237-244.
[30]
Huang, G.; Zhou, Y.; Zhang, Y.; Li, B.Q.; Zhang, N.; Cai, Y.D. Prediction of carbamylated lysine sites based on the one-class k-nearest neighbor method. Mol. Biosyst., 2013, 9(11), 2729-2740.
[31]
Khan, J.; Wei, J.S.; Ringner, M.; Saal, L.H.; Ladanyi, M.; Westermann, F.; Berthold, F.; Schwab, M.; Antonescu, C.R.; Peterson, C. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat. Med., 2001, 7(6), 673-679.
[32]
Liu, B.; Cui, Q.; Jiang, T.; Ma, S. A combinational feature selection and ensemble neural network method for classification of gene expression data. BMC Bioinformatics, 2004, 5(1), 136.
[33]
Zhou, X.; Wang, X.; Dougherty, E.R. A Bayesian approach to nonlinear probit gene selection and classification. J. Franklin Inst., 2004, 341(1), 137-156.
[34]
Cawley, G.C.; Talbot, N.L. Gene selection in cancer classification using sparse logistic regression with Bayesian regularization. Bioinformatics, 2006, 22(19), 2348-2355.
[35]
Donoho, D.L.; Huo, X. Uncertainty principles and ideal atomic decomposition. IEEE Trans. Inf. Theory, 2001, 47(7), 2845-2862.
[36]
Candès, E.J.; Romberg, J.; Tao, T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory, 2006, 52(2), 489-509.
[37]
Tibshirani, R. Regression shrinkage and selection via the lasso. J. Royal Statist. Soc. Series B, 1996, 267-288.
[38]
Hang, X.; Wu, F.X. Sparse representation for classification of tumors using gene expression data. J. Biomed. Biotechnol., 2009, 2009403689
[39]
Hang, X. In Multiclass gene selection on microarray data using l1-norm least square regression. Int. Joint Conf. Bioinform. Syst. Biol. Intell. Comput, 2009, , pp. 52-55.
[40]
Zheng, C.H.; Zhang, L.; Ng, T.Y.; Shiu, C.K.; Huang, D.S. Metasample-based sparse representation for tumor classification. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 2011, 8(5), 1273-1282.
[41]
Gan, B.; Zheng, C.H.; Zhang, J.; Wang, H.Q. Sparse representation for tumor classification based on feature extraction using latent low-rank representation. BioMed Res. Int., 2014, 2014, 7.
[42]
Cai, R.; Hao, Z.; Yang, X.; Huang, H. A new hybrid method for gene selection. Pattern Anal. Appl., 2011, 14(1), 1-8.
[43]
Guyon, I.; Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res., 2003, 3, 1157-1182.
[44]
Kannan, S.S.; Ramaraj, N. A novel hybrid feature selection via symmetrical Uncertainty ranking based local memetic search algorithm. Knowl. Base. Syst., 2010, 23(6), 580-585.
[45]
Huang, G.; Lu, L.; Feng, K.; Zhao, J.; Zhang, Y.; Xu, Y.; Zhang, N.; Li, B.Q.; Huang, W.; Cai, Y.D. Prediction of S-nitrosylation modification sites based on kernel sparse representation classification and mRMR algorithm. BioMed Res. Int., 2014, 2014438341
[46]
Peng, H.; Long, F.; Ding, C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27(8), 1226-1238.
[47]
Chen, M.; He, X.; Duan, S.; Deng, Y. A novel gene selection method based on sparse representation and max-relevance and min-redundancy. Comb. Chem. High Throughput Screen., 2017, 20(2), 158-163.
[48]
Zadeh, L.A. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst., 1978, 1(1), 3-28.
[49]
Zadeh, L.A. Toward a generalized theory of uncertainty (GTU)-an outline. Inf. Sci., 2005, 172(1), 1-40.
[50]
Guan, Y.Y.; Wang, H.K. Set-valued information systems. Inf. Sci., 2006, 176(17), 2507-2525.
[51]
Singh, D.; Febbo, P.G.; Ross, K.; Jackson, D.G.; Manola, J.; Ladd, C.; Tamayo, P.; Renshaw, A.A.; D’Amico, A.V.; Richie, J.P. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell, 2002, 1(2), 203-209.
[52]
Shipp, M.A.; Ross, K.N.; Tamayo, P.; Weng, A.P.; Kutok, J.L.; Aguiar, R.C.; Gaasenbeek, M.; Angelo, M.; Reich, M.; Pinkus, G.S. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat. Med., 2002, 8(1), 68-74.
[53]
Armstrong, S.A.; Staunton, J.E.; Silverman, L.B.; Pieters, R.; den Boer, M.L.; Minden, M.D.; Sallan, S.E.; Lander, E.S.; Golub, T.R.; Korsmeyer, S.J. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat. Genet., 2002, 30(1), 41-47.
[54]
Wang, S.L.; Zhu, Y.H.; Jia, W.; Huang, D.S. Robust classification method of tumor subtype by using correlation filters. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 2012, 9(2), 580-591.
[55]
Leung, Y.; Hung, Y. A multiple-filter-multiple-wrapper approach to gene selection and microarray data classification. IEEE/ACM trans. Comput. Boil. Bioinform., 2010, 7(1), 108-117.
[56]
Kononenko, I. In Estimating attributes: analysis and extensions of
RELIEF., European conference on machine learning, Springer. 1994, pp. 171-182.