[1]
Rodríguez, A.; Ezquerro, S.; Méndez-Giménez, L.; Becerril, S.; Frühbeck, G. Revisiting the adipocyte: A model for integration of cytokine signalling in the regulation of energy metabolism. Am. J. Physiol. Endocrinol. Metab., 2015, 309, E691-E714.
[2]
Giralt, M.; Villarroya, F. White, brown, beige/brite: Different adipose cells for different functions? Endocrinology, 2013, 154, 2992-3000.
[3]
Frühbeck, G.; Gómez-Ambrosi, J.; Muruzabal, F.J.; Burrell, M.A. The adipocyte: A model for integration of endocrine and metabolic signaling in energy metabolism regulation. Am. J. Physiol. Endocrinol. Metab., 2001, 280, E827-E847.
[4]
Di Franco, A.; Guasti, D.; Squecco, R.; Mazzanti, B.; Rossi, F.; Idrizaj, E.; Gallego-Escuredo, J.M.; Villarroya, F.; Bani, D.; Forti, G.; Vannelli, G.B.; Luconi, M. Searching for classical brown fat in humans: Development of a novel human fetal brown stem cell model. Stem Cells, 2016, 34, 1679-1691.
[5]
Wu, J.; Bostrom, P.; Sparks, L.M.; Ye, L.; Choi, J.H.; Giang, A.H.; Khandekar, M.; Virtanen, K.A.; Nuutila, P.; Schaart, G.; Huang, K.; Tu, H.; van Marken Lichtenbelt, W.D.; Hoeks, J.; Enerback, S.; Schrauwen, P.; Spiegelman, B.M. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell, 2012, 150, 366-376.
[6]
Zhang, Y.; Proenca, R.; Maffei, M.; Barone, M.; Leopold, L.; Friedman, J.M. Positional cloning of the mouse obese gene and its human homologue. Nature, 1994, 372(6505), 425-432.
[7]
Novelle, M.G.; Diéguez, C. Unravelling the role and mechanism of adipokine and gastrointestinal signals in animal models in the nonhomeostatic control of energy homeostasis: Implications for binge eating disorder. Eur. Eat. Disord. Rev., 2018, 26(6), 551-568.
[8]
Spalding, K.L.; Arner, E.; Westermark, P.O.; Bernard, S.; Buchholz, B.A.; Bergmann, O.; Blomqvist, L.; Hoffstedt, J.; Naslund, E.; Britton, T.; Concha, H.; Hassan, M.; Ryden, M.; Frisen, J:,. Arner, P. Dynamics of fat cell turnover in humans. Nature, 2008, 453, 783-787.
[9]
Gray, S.L.; Vidal-Puig, A.J. Adipose tissue expandability in the maintenance of metabolic homeostasis. Nutr. Rev., 2007, 107, S7-S12.
[10]
Furness, J.B. The enteric nervous system and neurogastroenterology. Nat. Rev. Gastroenterol. Hepatol., 2012, 9(5), 286-294.
[11]
Furness, J.B.; Callaghan, B.P.; Rivera, L.R.; Cho, H.J. The enteric nervous system and gastrointestinal innervation: Integrated local and central control. Adv. Exp. Med. Biol., 2014, 817, 39-71.
[12]
Wood, J.D. In: Physiology of the Gastrointestinal Tract., Johnson
L.R. Ed.; Raven Press, New York. 1987, 67-109.
[13]
Burnstock, G.; Campbell, G.; Bennet, M.; Holman, M.E. Inhibition of the smooth muscle of the Taenia coli. Nature, 1963, 200, 581-582.
[14]
Martinson, J.; Muren, A. Excitatory and inhibitory effects of vagus stimulation on gastric motility in the cat. Acta Physiol. Scand., 1963, 57, 309-316.
[15]
Rand, M.J. Nitrergic transmission: Nitric oxide as mediator of non-adrenergic, non-cholinergic neuro-effector transmission. Clin. Exp. Pharmacol. Physiol., 1992, 19, 147-169.
[16]
Currò, D.; Ipavec, V.; Preziosi, P. Neurotransmitters of the non-adrenergic non-cholinergic relaxation of proximal stomach. Eur. Rev. Med. Pharmacol. Sci., 2008, 12(1), 53-62.
[17]
Garella, R.; Idrizaj, E.; Traini, C.; Squecco, R.; Vannucchi, M.G.; Baccari, M.C. Glucagon-like peptide-2 modulates the nitrergic neurotransmission in strips from the mouse gastric fundus. World J. Gastroenterol., 2017, 23(40), 7211-7220.
[18]
Garella, R.; Squecco, R.; Baccari, M.C. Site-related effects of relaxin in the gastrointestinal tract through nitric oxide signalling: An updated report. Curr. Protein Pept. Sci., 2017, 18(12), 1254-1262.
[19]
Sanders, K.M. Regulation of smooth muscle excitation and contraction. Neurogastroenterol. Motil., 2008, 20, 39-53.
[20]
Sanders, K.M.; Sang, D.K.; Seungil, R.; Sean, M.W. Regulation of gastrointestinal motility-insights from smooth muscle biology. Nat. Rev. Gastroenterol. Hepatol., 2012, 9(11), 633-645.
[21]
Camilleri, M. Peripheral mechanisms in appetite regulation. Gastroenterology, 2015, 148, 1219-1233.
[22]
Zhang, A.Q.; Li, X.L.; Jiang, C.Y.; Lin, L.; Shi, R.H.; Chen, J.D.; Oomura, Y. Expression of nesfatin-1/NUCB2 in rodent digestive system. World J. Gastroenterol., 2010, 16, 1735-1741.
[23]
Pelleymounter, M.A.; Cullen, M.J.; Baker, M.B.; Hecht, R.; Winters, D.; Boone, T.; Collins, F. Effects of the obese gene product on body weight regulation in ob/ob mice. Science, 1995, 269(5223), 540-543.
[24]
Chan, J.L.; Heist, K.; De Paoli, A.M.; Veldhuis, J.D.; Mantzoros, C.S. The role of falling leptin levels in the neuroendocrine and metabolic adaptation to short-term starvation in healthy men. J. Clin. Invest., 2003, 111, 1409-1421.
[25]
Ahima, R.S.; Saper, C.B.; Flier, J.S.; Elmquist, J.K. Leptin regulation of neuroendocrine systems. Front. Neuroendocrinol., 2000, 21, 263-307.
[26]
Frederich, R.C.; Hamann, A.; Anderson, S.; Lollmann, B.; Lowell, B.B.; Flier, J.S. Leptin levels reflect body lipid content in mice: Evidence for diet-induced resistance to leptin action. Nat. Med., 1995, 1(12), 1311-1314.
[27]
Maffei, M.; Halaas, J.; Ravussin, E.; Pratley, R.E.; Lee, G.H.; Zhang, Y.; Fei, H.; Kim, S.; Lallone, R.; Ranganathan, S. Leptin levels in human and rodent: Measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat. Med., 1995, 1(11), 1155-1161.
[28]
Morris, D.L.; Rui, L. Recent advances in understanding leptin signaling and leptin resistance. Am. J. Physiol. Endocrinol. Metab., 2009, 297(6), E1247-E1259.
[29]
Badman, M.K.; Flier, J.S. The adipocyte as an active participant in energy balance and metabolism. Gastroenterology, 2007, 132, 2103-2115.
[30]
Mark, A.L.; Agassandian, K.; Morgan, D.A.; Liu, X.; Cassel, M.D.; Rahmouni, K. Leptin signaling in the nucleus Tractus solitarii increases sympathetic nerve activity to the kidney. Hypertension, 2009, 53, 375-380.
[31]
Münzberg, H.; Morrison, C.D. Structure, production and signaling of leptin. Metabolism, 2015, 64(1), 13-23.
[32]
Gong, Y.; Ishida-Takahashi, R.; Villanueva, E.C.; Fingar, D.C.; Munzberg, H.; Myers, M.G., Jr The long form of the leptin receptor regulates STAT5 and ribosomal protein S6 via alternate mechanisms. J. Biol. Chem., 2007, 282, 31019-31027.
[33]
Wada, N.; Hirako, S.; Takenoya, F.; Kageyama, H.; Okabe, M.; Shioda, S. Leptin and its receptors. J. Chem. Neuroanat., 2014, 61-62, 191-199.
[34]
Buettner, C.; Pocai, A.; Muse, E.D.; Etgen, A.M.; Myers, M.G., Jr; Rossetti, L. Critical role of STAT3 in leptin’s metabolic actions. Cell Metab., 2006, 4, 49-60.
[35]
Sahu, M.; Sahu, A. Leptin receptor expressing neurons express phosphodiesterase-3B (PDE3B) and leptin induces STAT3 activation in PDE3B neurons in the mouse hypothalamus. Peptides, 2015, 73, 35-42.
[36]
Korner, J.; Chua, S.C., Jr; Williams, J.A.; Leibel, R.L.; Wardlaw, S.L. Regulation of hypothalamic proopiomelanocortin by leptin in lean and obese rats. Neuroendocrinology, 1999, 70(6), 377-383.
[37]
Mercer, A.J.; Stuart, R.C.; Attard, C.A.; Otero-Corchon, V.; Nillni, E.A.; Low, M.J. Temporal changes in nutritional state affect hypothalamic POMC peptide levels independently of leptin in adult male mice. Am. J. Physiol. Endocrinol. Metab., 2014, 306(8), E904-E915.
[38]
Lee, S.J.; Verma, S.; Simonds, S.E.; Kirigiti, M.A.; Kievit, P.; Lindsley, S.R.; Loche, A.; Smith, M.S.; Cowley, M.A.; Grove, K.L. Leptin stimulates neuropeptide Y and cocaine amphetamine-regulated transcript coexpressing neuronal activity in the dorsomedial hypothalamus in diet-induced obese mice. J. Neurosci., 2013, 33(38), 15306-15317.
[39]
Gong, L.; Yao, F.; Hockman, K.; Heng, H.H.; Morton, G.J.; Takeda, K.; Akira, S.; Low, M.J.; Rubinstein, M.; MacKenzie, R.G. Signal transducer and activator of transcription-3 is required in hypothalamic agouti-related protein/neuropeptide Y neurons for normal energy homeostasis. Endocrinology, 2008, 149(7), 3346-3354.
[40]
Bates, S.H.; Stearns, W.H.; Dundon, T.A.; Schubert, M.; Tso, A.W.; Wang, Y.; Banks, A.S.; Lavery, H.J.; Haq, A.K.; Maratos-Flier, E.; Neel, B.G.; Schwartz, M.W.; Myers, M.G., Jr STAT3 signalling is required for leptin regulation of energy balance but not reproduction. Nature, 2003, 421(6925), 856-859.
[41]
Cummings, D.E.; Foster, K.E. Ghrelin-leptin tango in body-weight regulation. Gastroenterology, 2003, 124(5), 1532-1535.
[42]
Rodrigues, K.D.C.D.; Pereira, R.M.; de Campos, T.D.P.; de Moura, R.F.; da Silva, A.S.R.; Cintra, D.E.; Ropelle, E.R.; Pauli, J.R.; de Araújo, M.B.; de Moura, L.P. The role of physical exercise improve the browning of white adipose tissue via POMC neurons. Front. Cell. Neurosci., 2018, 12, 88.
[43]
Ahima, R.S.; Mitchell, A.L. Adipokines and the peripheral and neural control of energy balance. Mol. Endocrinol., 2008, 22(5), 1023-1031.
[44]
Barrenetxe, J.; Barber, A.; Lostao, M.P. Leptin effect on galactose absorption in mice jejunum. J. Physiol. Biochem., 2001, 57(4), 345-346.
[45]
Fanjul, C.; Barrenetxe, J.; Inigo, C.; Sakar, Y.; Ducroc, R.; Barber, A.; Lostao, M.P. Leptin regulates sugar and amino acids transport in the human intestinal cell line Caco-2. Acta Physiol., 2012, 205(1), 82-91.
[46]
Martí, A.; Berraondo, B.; Martínez, J.A. Leptin: Physiological actions. J. Physiol. Biochem., 1999, 55(1), 43-49.
[47]
De Fanti, B.A.; Lamas, O.; Milagro, F.I.; Martïnez-Ansó, E.; Martínez, J.A. Immunoneutralization and anti-idiotype production: two-sided applications of leptin. Trends Immunol., 2002, 23(4), 180-181.
[48]
Yarandi, S.S.; Hebbar, G.; Sauer, C.G.; Cole, C.R.; Ziegler, T.R. Diverse roles of leptin in the gastrointestinal tract: Modulation of motility, absorption, growth, and inflammation. Nutrition, 2011, 27(3), 269-275.
[49]
Buettner, C.; Muse, E.D.; Cheng, A.; Chen, L.; Scherer, T.; Pocai, A.; Su, K.; Cheng, B.; Li, X.; Harvey-White, J.; Schwartz, G.J.; Kunos, G.; Rossetti, L. Leptin controls adipose tissue lipogenesis via central, STAT3-independent mechanisms. Nat. Med., 2008, 14, 667-675.
[50]
Dong, Z.; Fu, S.; Xu, X.; Yang, Y.; Du, L.; Li, W.; Kan, S.; Li, Z.; Zhang, X.; Wang, L.; Li, J.; Liu, H.; Qu, X.; Wang, C. Leptin-mediated regulation of ICAM-1 is Rho/ROCK dependent and enhances gastric cancer cell migration. Br. J. Cancer, 2014, 110(7), 1801-1810.
[51]
Bado, A.; Levasseur, S.; Attoub, S.; Kermorgant, S.; Laigneau, J.P.; Bortoluzzi, M.N.; Moizo, L.; Lehy, T.; Guerre-Millo, M.; Le Marchand, B.Y.; Lewin, M.J. The stomach is a source of leptin. Nature, 1998, 394, 790-793.
[52]
Sobhani, I.; Bado, A.; Vissuzaine, C.; Buyse, M.; Kermorgant, S.; Laigneau, J.P.; Attoub, S.; Lehy, T.; Henin, D.; Mignon, M.; Lewin, M.J. Leptin secretion and leptin receptor in the human stomach. Gut, 2000, 47, 178-183.
[53]
Barrenetxe, J.; Villaro, A.C.; Guembe, L.; Pascual, I.; Munoz-Navas, M.; Barber, A.; Lostao, M.P. Distribution of the long leptin receptor isoform in brush border, basolateral membrane, and cytoplasm of enterocytes. Gut, 2008, 50, 797-809.
[54]
Buyse, M.; Ovesjo, M.L.; Goiot, H.; Guilmeau, S.; Peranzi, G.; Moizo, L.; Walker, F.; Lewin, M.J.; Meister, B.; Bado, A. Expression and regulation of leptin receptor proteins in afferent and efferent neurons of the vagus nerve. Eur. J. Neurosci., 2001, 14, 64-73.
[55]
Wang, Y.H.; Tache, Y.; Sheibel, A.B.; Go, V.L.; Wei, J.Y. Two types of leptin-responsive gastric vagal afferent terminals: an in vitro single-unit study in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol., 1997, 273, R833-R837.
[56]
Li, H.Y.; Wang, L.L.; Yeh, R.S. Leptin immunoreactivity in the central nervous system in normal and diabetic rats. Neuroreport, 1999, 10, 437-442.
[57]
Martinez, V.; Barrachina, M.D.; Wang, L.; Tache, Y. Intracerebroventricular leptin inhibits gastric emptying of a solid nutrient meal in rats. Neuroreport, 1999, 10, 3217.
[58]
Banks, W.A.; Kastin, A.J.; Huang, W.; Jaspan, J.B.; Maness, L.M. Leptin enters the brain by a saturable system independent of insulin. Peptides, 1996, 17, 305-311.
[59]
Davis, J.D.; Smith, G.P.; Sayler, J.L. Reduction of intake in the rat due to gastric filling. Am. J. Physiol., 1997, 272, R1599-R1605.
[60]
Asakawa, A.; Inui, A.; Ueno, N.; Makino, S.; Fujino, M.A.; Kasuga, M. Urocortin reduces food intake and gastric emptying in lean and ob/ob obese mice. Gastroenterology, 1999, 116, 1287.
[61]
Barrachina, M.D.; Martinez, V.; Wei, J.Y.; Tache, Y. Leptin-induced decrease in food intake is not associated with changes in gastric emptying in lean mice. Am. J. Physiol., 1997, 272, R1007-R1011.
[62]
Hata, N.; Murata, S.; Maeda, J.; Yatani, H.; Kohno, Y.; Yokono, K.; Okano, H. Predictors of gastric myoelectrical activity in type 2 diabetes mellitus. J. Clin. Gastroenterol., 2009, 43, 429-436.
[63]
He, L.; Sun, Y.; Zhu, Y.; Ren, R.; Zhang, Y.; Wang, F. Improved gastric emptying in diabetic rats by irbesartan via decreased serum leptin and ameliorated gastric microcirculation. Genet. Mol. Res., 2014, 13(3), 7163-7172.
[64]
Hammersjö, R.; Roth, B.; Höglund, P.; Ohlsson, B. Esophageal and gastric dysmotilities are associated with altered glucose homeostasis and plasma levels of incretins and leptin. Rev. Diabet. Stud., 2016, 13(1), 79-90.
[65]
Gallagher, T.K.; Geoghegan, J.G.; Baird, A.W.; Winter, D.C. Implications of altered gastrointestinal motility in obesity. Obes. Surg., 2007, 17, 1399-1407.
[66]
Kiely, J.M.; Noh, J.H.; Graewin, S.J.; Pitt, H.A.; Swartz-Basile, D.A. Altered intestinal motility in leptin-deficient obese mice. J. Surg. Res., 2005, 124, 98-103.
[67]
Côté-Daigneault, J.; Poitras, P.; Rabasa-Lhoret, R.; Bouin, M. Plasma leptin concentrations and esophageal hypomotility in obese patients. Can. J. Gastroenterol. Hepatol., 2015, 29(1), 49-51.
[68]
Baudry, C.; Reichardt, F.; Marchix, J.; Bado, A.; Schemann, M.; des Varannes, S.B.; Neunlist, M.; Moriez, R. Diet-induced obesity has neuroprotective effects in murine gastric enteric nervous system: Involvement of leptin and glial cell line-derived neurotrophic factor. J. Physiol., 2012, 590(3), 533-544.
[69]
Li, J.; Ma, W.; Wang, S. Slower gastric emptying in high-fat diet induced obese rats is associated with attenuated plasma ghrelin and elevated plasma leptin and cholecystokinin concentrations. Regul. Pept., 2011, 171(1-3), 53-57.
[70]
Wang, L.; Barachina, M.D.; Martínez, V.; Wei, J.Y.; Taché, Y. Synergistic interaction between CCK and leptin to regulate food intake. Regul. Pept., 2000, 92(1-3), 79-85.
[71]
Heldsinger, A.; Grabauskas, G.; Song, I.; Owyang, C. Synergistic interaction between leptin and cholecystokinin in the rat nodose ganglia is mediated by PI3K and STAT3 signaling pathways: Implications for leptin as a regulator of short term satiety. J. Biol. Chem., 2011, 286(13), 11707-11715.
[72]
Gaigé, S.; Abysique, A.; Bouvier, M. Effects of leptin on cat intestinal motility. J. Physiol., 2003, 546, 267-277.
[73]
Guilmeau, S.; Buyse, M.; Tsocas, A.; Laigneau, J.P.; Bado, A. Duodenal leptin stimulates cholecystokinin secretion evidence of a positive leptin-cholecystokinin feedback loop. Diabetes, 2003, 52, 1664-1672.
[74]
Reichardt, F.; Krueger, D.; Schemann, M. Leptin excites enteric neurons of guinea-pig submucous and myenteric plexus. Neurogastroenterol. Motil., 2011, 23, E165-E170.
[75]
Cammisotto, P.G.; Levy, É.; Bukowiecki, L.J.; Bendayan, M. Cross-talk between adipose and gastric leptins for the control of food intake and energy metabolism. Prog. Histochem. Cytochem., 2010, 45(3), 143-200.
[76]
Florian, V.; Caroline, F.; Francis, C.; Camille, S.; Fabielle, A. Leptin modulates enteric neurotransmission in the rat proximal colon: An in vitro study. Regul. Pept., 2013, 185, 73-78.
[77]
Voinot, F.; Fischer, C.; Schmidt, C.; Ehret-Sabatier, L.; Angel, F. Controlled ingestion of kaolinite (5%) modulates enteric nitrergic innervation in rats. Fundam. Clin. Pharmacol., 2014, 28(4), 405-413.
[78]
Buckley, M.M.; O’Brien, R.; Devlin, M.; Creed, A.A.; Rae, M.G.; Hyland, N.P.; Quigley, E.M.; McKernan, D.P.; O’Malley, D. Leptin modifies the prosecretory and prokinetic effects of the inflammatory cytokine interleukin-6 on colonic function in Sprague-Dawley rats. Exp. Physiol., 2016, 101(12), 1477-1491.
[79]
Scherer, P.E.; Williams, S.; Fogliano, M.; Baldini, G.; Lodish, H.F. A novel serum protein similar to C1q, produced exclusively in adipocytes. J. Biol. Chem., 1995, 270, 26746-26749.
[80]
Hotta, K.; Funahashi, T.; Bodkin, N.L. Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys. Diabetes, 2001, 50, 1126-1133.
[81]
Fu, Y.; Luo, N.; Klein, R.L.; Garvey, W.T. Adiponectin promotes adipocyte differentiation, insulin sensitivity, and lipid accumulation. J. Lipid Res., 2005, 46, 1369-1379.
[82]
Maeda, K.; Okubo, K.; Shimomura, I.; Funahashi, T.; Matsuzawa, Y.; Matsubara, K. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1). Biochem. Biophys. Res. Commun., 1996, 221, 286-289.
[83]
Maeda, K.; Okubo, K.; Shimomura, I.; Mizuno, K.; Matsuzawa, Y.; Matsubara, K. Analysis of an expression profile of genes in the human adipose tissue. Gene, 1997, 190, 227-235.
[84]
Hu, E.; Liang, P.; Spiegelman, B.M. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J. Biol. Chem., 1996, 271, 10697-10703.
[85]
Arita, Y.; Kihara, S.; Ouchi, N.; Maeda, K.; Kuriyama, H.; Okamoto, Y.; Kumada, M.; Hotta, K.; Nishida, M.; Takahashi, M.; Nakamura, T.; Shimomura, I.; Muraguchi, M.; Ohmoto, Y.; Funahashi, T.; Matsuzawa, Y. Adipocyte-derived plasma protein adiponectin acts as a platelet-derived growth factor-BB-binding protein and regulates growth factor-induced common postreceptor signal in vascular smooth muscle cell. Circulation, 2002, 105, 2893-2898.
[86]
Brochu-Gaudreau, K.; Rehfeldt, C.; Blouin, R.; Bordignon, V.; Murphy, B.D.; Palin, M.F. Adiponectin action from head to toe. Endocrine, 2010, 37(1), 11-32.
[87]
Kentish, S.J.; Ratcliff, K.; Li, H.; Wittert, G.A.; Page, A.J. High fat diet induced changes in gastric vagal afferent response to adiponectin. Physiol. Behav., 2015, 152, 354-362.
[88]
Arita, Y.; Kihara, S.; Ouchi, N.; Takahashi, M.; Maeda, K.; Miyagawa, J.; Hotta, K.; Shimomura, I.; Nakamura, T.; Miyaoka, K.; Kuriyama, H.; Nishida, M.; Yamashita, S.; Okubo, K.; Matsubara, K.; Muraguchi, M.; Ohmoto, Y.; Funahashi, T.; Matsuzawa, Y. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem. Biophys. Res. Commun., 1999, 257, 79-83.
[89]
Ryo, M.; Nakamura, T.; Kihara, S. Adiponectin as a biomarker of the metabolic syndrome. Circ. J., 2004, 68, 975-981.
[90]
Cnop, M.; Havel, P.J.; Utzschneider, K.M. Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: Evidence for independent roles of age and sex. Diabetologia, 2003, 46, 459-469.
[91]
Weyer, C.; Funahashi, T.; Tanaka, S.; Hotta, K.; Matsuzawa, Y.; Pratley, R.E.; Tataranni, P.A. Hypoadiponectinemia in obesity and type 2 diabetes: Close association with insulin resistance and hyperinsulinemia. J. Clin. Endocrinol. Metab., 2001, 86, 1930-1935.
[92]
Yamauchi, T.; Kamon, J.; Ito, Y.; Tsuchida, A.; Yokomizo, T.; Kita, S.; Sugiyama, T.; Miyagishi, M.; Hara, K.; Tsunoda, M.; Murakami, K.; Ohteki, T.; Uchida, S.; Takekawa, S.; Waki, H.; Tsuno, N.H.; Shibata, Y.; Terauchi, Y.; Froguel, P.; Tobe, K.; Koyasu, S.; Taira, K.; Kitamura, T.; Shimizu, T.; Nagai, R.; Kadowaki, T. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature, 2003, 423, 762-769.
[93]
Yamauchi, T.; Iwabu, M.; Okada-Iwabu, M.; Kadowaki, T. Adiponectin receptors: A review of their structure, function and how they work. Best Pract. Res. Clin. Endocrinol. Metab., 2014, 28(1), 15-23.
[94]
Wang, Z.V.; Scherer, P.E. Adiponectin, the past two decades. J. Mol. Cell Biol., 2016, 8(2), 93-100.
[95]
González, C.R.; Caminos, J.E.; Gallego, R.; Tovar, S.; Vázquez, M.J.; Garcés, M.F.; Lopez, M.; García-Caballero, T.; Tena-Sempere, M.; Nogueiras, R.; Diéguez, C. Adiponectin receptor 2 is regulated by nutritional status, leptin and pregnancy in a tissue-specific manner. Physiol. Behav., 2010, 99, 91-99.
[96]
Qi, Y.; Takahashi, N.; Hileman, S.M.; Patel, H.R.; Berg, A.H.; Pajvani, U.B.; Scherer, P.E.; Ahima, R.S. Adiponectin acts in the brain to decrease body weight. Nat. Med., 2004, 10, 524-529.
[97]
Coope, A.; Milanski, M.; Araújo, E.P.; Tambascia, M.; Saad, M.J.; Geloneze, B.; Velloso, L.A. AdipoR1 mediates the anorexigenic and insulin/leptin-like actions of adiponectin in the hypothalamus. FEBS Lett., 2008, 582, 1471-1476.
[98]
Kadowaki, T.; Yamauchi, T.; Kubota, N. The physiological and pathophysiological role of adiponectin and adiponectin receptors in the peripheral tissues and CNS. FEBS Lett., 2008, 582, 74-80.
[99]
Oh, D.K.; Ciaraldi, T.; Henry, R.R. Adiponectin in health and disease. Diabetes Obes. Metab., 2007, 9, 282-289.
[100]
Palin, M.F.; Bordignon, V.V.; Murphy, B.D. Adiponectin and the control of female reproductive functions. Vitam. Horm., 2012, 90, 239-287.
[101]
Yamauchi, T.; Nio, Y.; Maki, T.; Kobayashi, M.; Takazawa, T.; Iwabu, M.; Okada, I.M.; Kawamoto, S. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat. Med., 2007, 13, 332-339.
[102]
Yamauchi, T.; Kadowaki, T. Adiponectin receptor as a key player in healthy longevity and obesity-related diseases. Cell Metab., 2013, 17, 185-196.
[103]
Holland, W.L.; Miller, R.A.; Wang, Z.V.; Sun, K.; Barth, B.M.; Bui, H.H.; Davis, K.E.; Bikman, B.T. Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat. Med., 2011, 17, 55-63.
[104]
Denzel, M.S.; Scimia, M.C.; Zumstein, P.M.; Walsh, K.; Ruiz-Lozano, P.; Ranscht, B. T-cadherin is critical for adiponectin-mediated cardioprotection in mice. J. Clin. Invest., 2010, 120, 4342-4352.
[105]
Hui, X.; Lam, K.S.; Vanhoutte, P.M.; Xu, A. Adiponectin and cardiovascular health: An update. Br. J. Pharmacol., 2012, 165, 574-590.
[106]
Ouchi, N.; Kihara, S.; Arita, Y.; Okamoto, Y.; Maeda, K.; Kuriyama, H.; Hotta, K.; Nishida, M.; Takahashi, M.; Muraguchi, M.; Ohmoto, Y.; Nakamura, T.; Yamashita, S.; Funahashi, T.; Matsuzawa, Y. Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway. Circulation, 2000, 102, 1296-1301.
[107]
Minokoshi, Y.; Alquier, T.; Furukawa, N.; Kim, Y.B.; Lee, A.; Xue, B.; Mu, J.; Foufelle, F.; Ferré, P.; Birnbaum, M.J.; Stuck, B.J.; Kahn, B.B. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature, 2004, 428, 569-574.
[108]
Wolf, G. The regulation of food intake by hypothalamic malonyl-coenzyme A: The MaloA hypothesis. Nutr. Rev., 2006, 64, 379-383.
[109]
Chen, H.; Montagnani, M.; Funahashi, T.; Shimomura, I.; Quon, M.J. Adiponectin stimulates production of nitric oxide in vascular endothelial cells. J. Biol. Chem., 2003, 278, 45021-45026.
[110]
Ewart, M.A.; Kohlhaas, C.F.; Salt, I.P. Inhibition of tumor necrosis factor alpha-stimulated monocyte adhesion to human aortic endothelial cells by AMP-activated protein kinase. Arterioscler. Thromb. Vasc. Biol., 2008, 28, 2255-2257.
[111]
Francisco, C.; Neves, J.S.; Falcão-Pires, I.; Leite-Moreira, A. Can adiponectin help us to target diastolic dysfunction? Cardiovasc. Drugs Ther., 2016, 6, 635-644.
[112]
Shklyaev, S.; Aslanidi, G.; Tennant, M.; Prima, V.; Kohlbrenner, E.; Kroutov, V.; Campbell-Thompson, M.; Crawford, J.; Shek, E.W.; Scarpace, P.J.; Zolotukhin, S. Sustained peripheral expression of transgene adiponectin offsets the development of diet-induced obesity in rats. Proc. Natl. Acad. Sci. USA, 2003, 100, 14217-14222.
[113]
Kubota, N.; Yano, W.; Kubota, T.; Yamauchi, T.; Itoh, S.; Kumagai, H.; Kozono, H.; Takamoto, I.; Okamoto, S.; Shiuchi, T.; Suzuki, R.; Satoh, H.; Tsuchida, A.; Moroi, M.; Sugi, K.; Noda, T.; Ebinuma, H.; Ueta, Y.; Kondo, T.; Araki, E.; Ezaki, O.; Nagai, R.; Tobe, K.; Terauchi, Y.; Ueki, K.; Minokoshi, Y.; Kadowaki, T. Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake. Cell Metab., 2007, 6, 55-68.
[114]
Idrizaj, E.; Garella, R.; Castellini, G.; Mohr, H.; Pellegata, N.S.; Francini, F.; Ricca, V.; Squecco, R.; Baccari, M.C. Adiponectin affects the mechanical responses in strips from the mouse gastric fundus. World J. Gastroenterol., 2018, 24(35), 4028-4035.
[115]
Vannucchi, M.G.; Garella, R.; Cipriani, G.; Baccari, M.C. Relaxin counteracts the altered gastric motility of dystrophic (mdx) mice: Functional and immunohistochemical evidence for the involvement of nitric oxide. Am. J. Physiol. Endocrinol. Metab., 2011, 300, 380-391.
[116]
Squecco, R.; Garella, R.; Idrizaj, E.; Nistri, S.; Francini, F.; Baccari, M.C. Relaxin affects smooth muscle biophysical properties and mechanical activity of the female mouse colon. Endocrinology, 2015, 156, 4398-4410.
[117]
Idrizaj, E.; Garella, R.; Francini, F.; Squecco, R.; Baccari, M.C. Relaxin influences ileal muscular activity through a dual signaling pathway in mice. World J. Gastroenterol., 2018, 24(8), 882-893.
[118]
Nour-Eldine, W.; Ghantous, C.M.; Zibara, K.; Dib, L.; Issaa, H.; Itani, H.; El-Zein, N.; Zeidan, A. Adiponectin attenuates angiotensin II-induced vascular smooth muscle cell remodeling through nitric oxide and the RhoA/ROCK pathway. Front. Pharmacol., 2016, 7, 86.
[119]
Matsuyama, H.; Thapaliya, S.; Takewaki, T. Cyclic GMP-associated apamin-sensitive nitrergic slow inhibitory junction potential in the hamster ileum. Br. J. Pharmacol., 1999, 128, 830-836.
[120]
Oh-I, S.; Shimizu, H.; Satoh, T.; Okada, S.; Adachi, S.; Inoue, K.; Eguchi, H.; Yamamoto, M.; Imaki, T.; Hashimoto, K.; Tsuchiya, T.; Monden, T.; Horiguchi, K.; Yamada, M.; Mori, M. Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature, 2006, 443(7112), 709-712.
[121]
Cowley, M.A.; Grove, K.L. To be or NUCB2, is nesfatin the answer? Cell Metab., 2006, 4, 421-422.
[122]
Brailoiu, G.C.; Dun, S.L.; Brailoiu, E.; Inan, S.; Yang, J.; Chang, J.K.; Dun, N.J. Nesfatin-1: distribution and interaction with a G protein-coupled receptor in the rat brain. Endocrinology, 2007, 148, 5088-5094.
[123]
Lin, P.; Le-Niculescu, H.; Hofmeister, R.; McCaffery, J.M.; Jin, M.; Hennemann, H.; McQuistan, T.; De Vries, L.; Farquhar, M.G. The mammalian calcium-binding protein, nucleobindin (CALNUC), is a Golgi resident protein. J. Cell Biol., 1998, 141, 1515-1527.
[124]
Stengel, A.; Taché, Y. Role of brain NUCB2/nesfatin-1 in the regulation of food intake. Curr. Pharm. Des., 2013, 19(39), 6955-6959.
[125]
Dore, R.; Levata, L.; Lehnert, H.; Schulz, C. Nesfatin-1: Functions and physiology of a novel regulatory peptide. J. Endocrinol., 2017, 232(1), R45-R65.
[126]
Senin, L.L.; Al-Massadi, O.; Barja-Fernandez, S.; Folgueira, C.; Castelao, C.; Tovar, S.A.; Leis, R.; Lago, F.; Baltar, J.; Baamonde, I.; Dieguez, C.; Casanueva, F.F.; Seoane, L.M. Regulation of NUCB2/nesfatin-1 production in rat’s stomach and adipose tissue is dependent on age, testosterone levels and lactating status. Mol. Cell. Endocrinol., 2015, 411, 105-112.
[127]
Ravussin, A.; Youm, Y.H.; Sander, J.; Ryu, S.; Nguyen, K.; Varela, L.; Shulman, G.I.; Sidorov, S.; Horvath, T.L.; Schultze, J.L.; Dixit, V.D. Loss of nucleobindin-2 causes insulin resistance in obesity without impacting satiety or adiposity. Cell Reports, 2018, 24(5), 1085-1092.
[128]
Stengel, A. Identification and characterization of nesfatin-1 immunoreactivity in endocrine cell types of the rat gastric oxyntic mucosa. Endocrinology, 2009, 150, 232-238.
[129]
Garcia-Galiano, D.; Navarro, V.M.; Gaytan, F.; Tena-Sempere, M. Expanding roles of NUCB2/nesfatin-1 in neuroendocrine regulation. J. Mol. Endocrinol., 2010, 45, 281-290.
[130]
Stengel, A.; Taché, Y. Nesfatin-1 role as possible new potent regulator of food intake. Regul. Pept., 2010, 163, 18-23.
[131]
Shimizu, H.; Oh-I, S.; Okada, S.; Mori, M. Nesfatin-1: An overview and future clinical application. Endocr. J., 2009, 56, 537-543.
[132]
Kolgazi, M.; Cantali-Ozturk, C.; Deniz, R.; Ozdemir-Kumral, Z.N.; Yuksel, M.; Sirvanci, S.; Yeğen, B.C. Nesfatin-1 alleviates gastric damage via direct antioxidant mechanisms. J. Surg. Res., 2015, 193(1), 111-118.
[133]
Su, Y.; Zhang, J.; Tang, Y.; Bi, F.; Liu, J.N. The novel function of nesfatin-1: Anti-hyperglycemia. Biochem. Biophys. Res. Commun., 2010, 391(1), 1039-1042.
[134]
Yang, M.; Zhang, Z.; Wang, C.; Li, K.; Li, S.; Boden, G.; Li, L.; Yang, G. Nesfatin-1 action in the brain increases insulin sensitivity through Akt/AMPK/TORC2 pathway in diet-induced insulin resistance. Diabetes, 2012, 61(8), 1959-1968.
[135]
Nakata, M.; Manaka, K.; Yamamoto, S.; Mori, M.; Yada, T. Nesfatin-1 enhances glucose-induced insulin secretion by promoting Ca(2+) influx through L-type channels in mouse islet β-cells. Endocr. J., 2011, 58(4), 305-313.
[136]
Prinz, P.; Goebel-Stengel, M.; Teuffel, P.; Rose, M.; Klapp, B.F.; Stengel, A. Peripheral and central localization of the nesfatin-1 receptor using autoradiography in rats. Biochem. Biophys. Res. Commun., 2016, 470(3), 521-527.
[137]
Ayada, C.; Turgut, G.; Turgut, S.; Guclu, Z. The effect of chronic peripheral nesfatin-1 application on blood pressure in normal and chronic restraint stressed rats: Related with circulating level of blood pressure regulators. Gen. Physiol. Biophys., 2015, 34, 81-88.
[138]
Yamawaki, H.; Takahashi, M.; Mukohda, M.; Morita, T.; Okada, M.; Hara, Y. A novel adipocytokine, nesfatin-1 modulates peripheral arterial contractility and blood pressure in rats. Biochem. Biophys. Res. Commun., 2012, 418, 676-681.
[139]
Stengel, A.; Goebel, M.; Wang, L.; Tache, ´.Y. Ghrelin, des-acyl ghrelin and nesfatin-1 in gastric X/A-like cells: Role as regulators of food intake and body weight. Peptides, 2010, 31, 357-369.
[140]
Atsuchi, K.; Asakawa, A.; Ushikai, M.; Ataka, K.; Tsai, M.; Koyama, K.; Sato, Y.; Kato, I.; Fujimiya, M.; Inui, A. Centrally administered nesfatin-1 inhibits feeding behaviour and gastroduodenal motility in mice. Neuroreport, 2010, 21(15), 1008-1011.
[141]
Yang, G.T.; Zhao, H.Y.; Kong, Y.; Sun, N.N.; Dong, A.Q. Study of the effects of nesfatin-1 on gastric function in obese rats. World J. Gastroenterol., 2017, 23(16), 2940-2947.
[142]
Wang, Q.; Guo, F.; Sun, X.; Gao, S.; Li, Z.; Gong, Y.; Xu, L. Effects of exogenous nesfatin-1 on gastric distention-sensitive neurons in the central nucleus of the amygdala and gastric motility in rats. Neurosci. Lett., 2014, 582, 65-70.
[143]
Watanabe, A.; Mochiki, E.; Kimura, A.; Kogure, N.; Yanai, M.; Ogawa, A.; Toyomasu, Y.; Ogata, K.; Ohno, T.; Suzuki, H.; Kuwano, H. Nesfatin-1 suppresses gastric contractions and inhibits interdigestive migrating contractions in conscious dogs. Dig. Dis. Sci., 2015, 60(6), 1595-1602.
[144]
Gao, S.; Guo, F.; Sun, X.; Zhang, N.; Gong, Y.; Xu, L. The inhibitory effects of nesfatin-1 in ventromedial hypothalamus on gastric function and its regulation by nucleus accumbens. Front. Physiol., 2017, 7, 634.
[145]
Tatemoto, K.; Hosoya, M.; Habata, Y.; Fujii, R.; Kakegawa, T.; Zou, M.X.; Kawamata, Y.; Fukusumi, S.; Hinuma, S.; Kitada, C.; Kurokawa, T.; Onda, H.; Fujino, M. Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem. Biophys. Res. Commun., 1998, 251(2), 471-476.
[146]
Medhurst, A.D.; Jennings, C.A.; Robbins, M.J.; Davis, R.P.; Ellis, C.; Winborn, K.Y.; Lawrie, K.W.; Hervieu, G.; Riley, G.; Bolaky, J.E.; Herrity, N.C.; Murdock, P.; Darker, J.G. Pharmacological and immunohistochemical characterization of the APJ receptor and its endogenous ligand apelin. J. Neurochem., 2003, 84(5), 1162-1172.
[147]
Kleinz, M.J.; Davenport, A.P. Emerging roles of apelin in biology and medicine. Pharmacol. Ther., 2005, 107(2), 198-211.
[148]
Hosoya, M.; Kawamata, Y.; Fukusumi, S.; Fujii, R.; Habata, Y.; Hinuma, S.; Kitada, C.; Honda, S.; Kurokawa, T.; Onda, H.; Nishimura, O.; Fujino, M. Molecular and functional characteristics of APJ. Tissue distribution of mRNA and interaction with the endogenous ligand apelin. J. Biol. Chem., 2000, 275(28), 21061-21067.
[149]
Reaux, A.; De Mota, N.; Skultetyova, I.; Lenkei, Z.; El Messari, S.; Gallatz, K.; Corvol, P.; Palkovits, M.; Llorens-Cortès, C. Physiological role of a novel neuropeptide, apelin, and its receptor in the rat brain. J. Neurochem., 2001, 77(4), 1085-1096.
[150]
O’Carroll, A.M.; Lolait, S.J.; Harris, L.E.; Pope, G.R. The apelin receptor APJ: journey from an orphan to a multifaceted regulator of homeostasis. J. Endocrinol., 2013, 219, R13-R35.
[151]
Reaux-Le Goazigo, A.; Alvear-Perez, R.; Zizzari, P.; Epelbaum, J.; Bluet-Pajot, M.T.; Llorens-Cortes, C. Cellular localization of apelin and its receptor in the anterior pituitary: evidence for a direct stimulatory action of apelin on ACTH release. Am. J. Physiol. Endocrinol. Metab., 2007, 292(1), E7-E15.
[152]
Galanth, C.; Hus-Citharel, A.; Li, B.; Llorens-Cortès, C. Apelin in the control of body fluid homeostasis and cardiovascular functions. Curr. Pharm. Des., 2012, 18(6), 789-798.
[153]
Lee, D.K.; Cheng, R.; Nguyen, T.; Fan, T.; Kariyawasam, A.P.; Liu, Y.; Osmond, D.H.; George, S.R.; O’Dowd, B.F. Characterization of apelin, the ligand for the APJ receptor. J. Neurochem., 2000, 74(1), 34-41.
[154]
Taheri, S.; Murphy, K.; Cohen, M.; Sujkovic, E.; Kennedy, A.; Dhillo, W.; Dakin, C.; Sajedi, A.; Ghatei, M.; Bloom, S. The effects of centrally administered apelin-13 on food intake, water intake and pituitary hormone release in rats. Biochem. Biophys. Res. Commun., 2002, 291(5), 1208-1212.
[155]
Wei, L.; Hou, X.; Tatemoto, K. Regulation of apelin mRNA expression by insulin and glucocorticoids in mouse 3T3-L1 adipocytes. Regul. Pept., 2005, 132, 27-32.
[156]
Boucher, J.; Masri, B.; Daviaud, D.; Gesta, S.; Guigne, C.; Mazzucotelli, A.; Castan-Laurell, I.; Tack, I.; Knibiehler, B.; Carpéné, C.; Audigier, Y.; Saulnier-Blache, J.S.; Valet, P. Apelin, a newly identified adipokine up-regulated by insulin and obesity. Endocrinology, 2005, 146, 1764-1771.
[157]
Bertrand, C.; Valet, P.; Castan-Laurell, I. Apelin and energy metabolism. Front. Physiol., 2015, 6, 115.
[158]
Chapman, N.A.; Dupré, D.J.; Rainey, J.K. The apelin receptor: Physiology, pathology, cell signalling, and ligand modulation of a peptide-activated class A GPCR. Biochem. Cell Biol., 2014, 92(6), 431-440.
[159]
Xu, N.; Wang, H.; Fan, L.; Chen, Q. Supraspinal administration of apelin-13 induces antinociception via the opioid receptor in mice. Peptides, 2009, 30(6), 1153-1157.
[160]
Jászberényi, M.; Bujdosó, E.; Telegdy, G. Behavioral, neuroendocrine and thermoregulatory actions of apelin-13. Neuroscience, 2004, 129(3), 811-816.
[161]
Fournel, A.; Drougard, A.; Duparc, T.; Marlin, A.; Brierley, S.M.; Castro, J.; Le-Gonidec, S.; Masri, B.; Colom, A.; Lucas, A.; Rousset, P.; Cenac, N.; Vergnolle, N.; Valet, P.; Cani, P.D.; Knauf, C. Apelin targets gut contraction to control glucose metabolism via the brain. Gut, 2017, 66(2), 258-269.
[162]
Guo, M.; Chen, F.; Lin, T.; Peng, Y.; Li, W.; Zhu, X.; Lin, L.; Chen, Y. Apelin-13 decreases lipid storage in hypertrophic adipocytes in vitro through the upregulation of AQP7 expression by the PI3K signaling pathway. Med. Sci. Monit., 2014, 20, 1345-1352.
[163]
Wang, G.; Anini, Y.; Wei, W.; Qi, X.; O’Carroll, A.M.; Mochizuki, T.; Wang, H.Q.; Hellmich, M.R.; Englander, E.W.; Greeley, G.H., Jr Apelin, a new enteric peptide: Localization in the gastrointestinal tract, ontogeny, and stimulation of gastric cell proliferation and of cholecystokinin secretion. Endocrinology, 2004, 145(3), 1342-1348.
[164]
Ohno, S.; Yakabi, K.; Ro, S.; Ochiai, M.; Onouchi, T.; Sakurada, T.; Takabayashi, H.; Ishida, S.; Takayama, K. Apelin-12 stimulates acid secretion through an increase of histamine release in rat stomachs. Regul. Pept., 2012, 174(1-3), 71-78.
[165]
Valle, A.; Hoggard, N.; Adams, A.C.; Roca, P.; Speakman, J.R. Chronic central administration of apelin-13 over 10 days increases food intake, body weight, locomotor activity and body temperature in C57BL/6 mice. J. Neuroendocrinol., 2007, 20, 79-84.
[166]
Konturek, S.J.; Konturek, J.W.; Pawlik, T.; Brzozowski, T. Brain–gut axis and its role in the control of food intake. J. Physiol. Pharmacol., 2004, 55, 137-154.
[167]
Yang, Y.J.; Lv, S.Y.; Xiu, M.H.; Xu, N.; Chen, Q. Intracerebroventricular administration of apelin-13 inhibits distal colonic transit in mice. Peptides, 2010, 31(12), 2241-2246.
[168]
Lv, S.Y.; Yang, Y.J.; Qin, Y.J.; Xiong, W.; Chen, Q. Effect of centrally administered apelin-13 on gastric emptying and gastrointestinal transit in mice. Peptides, 2011, 32(5), 978-982.
[169]
Wang, G.; Kundu, R.; Han, S.; Qi, X.; Englander, E.W.; Quertermous, T.; Greeley, G.H., Jr Ontogeny of apelin and its receptor in the rodent gastrointestinal tract. Regul. Pept., 2009, 158(1-3), 32-39.
[170]
Bülbül, M.; Sinen, O. Dual autonomic inhibitory action of central Apelin on gastric motor functions in rats. Auton. Neurosci., 2018, 212, 17-22.
[171]
Bülbül, M.; Sinen, O.; Gök, M.; Travagli, R.A. Apelin-13 inhibits gastric motility through vagal cholinergic pathway in rats. Am. J. Physiol. Gastrointest. Liver Physiol., 2018, 314(2), G201-G210.
[172]
Bülbül, M.; Sinen, O.; İzgüt-Uysal, V.N.; Akkoyunlu, G.; Öztürk, S.; Uysal, F. Peripheral apelin mediates stress-induced alterations in gastrointestinal motor functions depending on the nutritional status. Clin. Exp. Pharmacol. Physiol., 2019, 46(1), 29-39.
[173]
Stengel, A.; Goebel, M.; Wang, L.; Rivier, J.; Kobelt, P.; Mönnikes, H.; Lambrecht, N.W.; Taché, Y. Central nesfatin-1: Differential role of corticotropin-releasing factor2 receptor. Endocrinology, 2009, 150(11), 4911-4919.
[174]
Wattez, J.S.; Ravallec, R.; Cudennec, B.; Knauf, C.; Dhulster, P.; Valet, P.; Breton, C.; Vieau, D.; Lesage, J. Apelin stimulates both cholecystokinin and glucagon-like peptide 1 secretions in vitro and in vivo in rodents. Peptides, 2013, 48, 134-136.
[175]
Bülbül, M. 00; Sinen, O.; Birsen, İ.; Nimet İzgüt-Uysal, V. Peripheral apelin-13 administration inhibits gastrointestinal motor functions in rats: The role of cholecystokinin through CCK1 receptor-mediated pathway. Neuropeptide, 2017, 63, 91-97.
[176]
Blüher, M.; Mantzoros, C.S. From leptin to other adipokines in health and disease: Facts and expectations at the beginning of the 21st century. Metabolism, 2015, 64, 131-145.