[1]
Summer, J.; Somers, G. Laboratory Experiments.In: Biological Chemistry., Academic Press: New York, . 1949.
[2]
Bittiger, H.; Schnebli, H. Concanavalin A as a tool; Wiley: London, 1976.
[3]
Cavada, B.S. Lectinas de Canavalia brasiliensis Mart. Isolamento, Caracterização Parcial e Comportamento Durante a Germinação. Master Dissertation. Federal University of Ceara: Brazil,. 1980.
[4]
Moreira, R.A.; Cavada, B.S. Lectin from Canavalia brasiliensis [MART.]. Isolation, characterization and behavior during germination. Biol. Plant., 1984, 26, 113-120.
[5]
Cavada, B.S.; Vieira, C.C.; de Almeida Silva, L.M.; de Oliveira, J.T.A.; de Azevedo Moreira, R. Comportamento da lectina de sementes de Canavalia brasiliensis mart. durante a germinação em presença de luz. Acta Bot. Bras., 1990, 4(2)(Suppl. 1), 13-20.
[6]
Nascimento, K.S.; Rosa, P.A.J.; Nascimento, K.S.; Cavada, B.S.; Azevedo, A.M.; Aires-Barros, M.R. Partitioning and recovery of Canavalia brasiliensis lectin by aqueous two-phase systems using design of experiments methodology. Separ. Purif. Tech., 2010, 75(1), 48-54.
[7]
Iqbal, M.; Tao, Y.; Xie, S.; Zhu, Y.; Chen, D.; Wang, X.; Huang, L.; Peng, D.; Sattar, A.; Shabbir, M.A.B.; Hussain, H.I.; Ahmed, S.; Yuan, Z. Aqueous Two-Phase System [ATPS]: An overview and advances in its applications. Biol. Proced. Online, 2016, 18, 18.
[8]
Nascimento, K.S.; Azevedo, A.M.; Cavada, B.S.; Aires-Barros, M.R. Partitioning of Canavalia brasiliensis lectin in polyethylene glycol – sodium citrate aqueous two-phase systems. Sep. Sci. Technol., 2010, 45(15), 2180-2186.
[9]
Moreira, R. deA.; Ainouz, I.L.; De Oliveira, J.T.; Cavada, B.S. Plant lectins, chemical and biological aspects. Mem. Inst. Oswaldo Cruz, 1991, 86(Suppl. 2), 211-218.
[10]
Rüdiger, H.; Gabius, H.J. Plant lectins: Occurrence, biochemistry, functions and applications. Glycoconj. J., 2001, 18(8), 589-613.
[11]
Ramos, M.V.; Grangeiro, T.B.; Cavada, B.S.; Shepherd, I.; Lopes, R.O. de M.; Sampaio, A.H. Carbohydrate/glycan-binding specificity of legume lectins in respect to their proposed biological functions. Braz. Arch. Biol. Technol., 2000, 43(4), 349-359.
[12]
Miguel, E.C.; Miguel, T.B.A.; Pireda, S.; Marques, J.B.C.; Da Cunha, M.; Cajazeiras, J.B.; Pereira-Junior, F.N.; Nascimento, K.S.; Cavada, B.S. Seed structure in Canavalia brasiliensis Mart. ex benth. [Leguminosae] and subcellular localization of ConBr lectin: Implications for ConBr biological functions. Flora – Morphol. Distribution Funct. Ecol. Plants, 2015, 215, 46-53.
[13]
Oliveira, A.S. Produção e caracterização físico-química e biológica da cadeia alfa da lectina recombinante de Canavalia brasiliensis.PhD Thesis. Federal University of Ceara: Brazil,. 2017.
[14]
Ramos, M.V.; Cavada, B.S.; Mazard, A.M.; Rougé, P. Interaction of diocleinae lectins with glycoproteins based in surface plasmon resonance. Mem. Inst. Oswaldo Cruz, 2002, 97(2), 275-279.
[15]
Cavada, B.S.; Barbosa, T.; Arruda, S.; Grangeiro, T.B.; Barral-Netto, M. Revisiting proteus: Do minor changes in lectin structure matter in biological activity? Lessons from and potential biotechnological uses of the diocleinae subtribe lectins. Curr. Protein Pept. Sci., 2001, 2(2), 123-135.
[16]
Grangeiro, T.B.; Schriefer, A.; Calvete, J.J.; Raida, M.; Urbanke, C.; Barral-Netto, M.; Cavada, B.S. Molecular cloning and characterization of ConBr, the lectin of Canavalia brasiliensis seeds. Eur. J. Biochem., 1997, 248(1), 43-48.
[17]
Carrington, D.M.; Auffret, A.; Hanke, D.E. Polypeptide ligation occurs during post-translational modification of concanavalin A. Nature, 1985, 313(5997), 64-67.
[18]
Herman, E.M.; Shannon, L.M.; Chrispeels, M.J. Concanavalin A is synthesized as a glycoprotein precursor. Planta, 1985, 165(1), 23-29.
[19]
Chrispeels, M.J.; Hartl, P.M.; Sturm, A.; Faye, L. Characterization of the endoplasmic reticulum-associated precursor of concanavalin A. partial amino acid sequence and lectin activity. J. Biol. Chem., 1986, 261(22), 10021-10024.
[20]
Faye, L.; Chrispeels, M.J. Transport and processing of the glycosylated precursor of concanavalin A in jack-bean. Planta, 1987, 170(2), 217-224.
[21]
Bowles, D.J. Posttranslational processing of concanavalin A precursors in jackbean cotyledons. J. Cell Biol., 1986, 102(4), 1284-1297.
[22]
Bowles, D.J.; Pappin, D.J. Traffic and assembly of concanavalin A. Trends Biochem. Sci., 1988, 13(2), 60-64.
[23]
Sanz-Aparicio, J.; Hermoso, J.; Grangeiro, T.B.; Calvete, J.J.; Cavada, B.S. The crystal structure of Canavalia brasiliensis lectin suggests a correlation between its quaternary conformation and its distinct biological properties from concanavalin A. FEBS Lett., 1997, 405(1), 114-118.
[24]
Argos, P.; Tsukihara, T.; Rossmann, M.G. A structural comparison of concanavalin A and tomato bushy stunt virus protein. J. Mol. Evol., 1980, 15(3), 169-179.
[25]
Chelvanayagam, G.; Heringa, J.; Argos, P. Anatomy and evolution of proteins displaying the viral capsid jellyroll topology. J. Mol. Biol., 1992, 228(1), 220-242.
[26]
Loris, R.; Hamelryck, T.; Bouckaert, J.; Wyns, L. Legume lectin structure. Biochim. Biophys. Acta, 1998, 1383(1), 9-36.
[27]
Bezerra, E.H.S.; Rocha, B.A.M.; Nagano, C.S.; de Arruda Bezerra, G.; de Moura, T.R.; Bezerra, M.J.B.; Benevides, R.G.; Sampaio, A.H.; Assreuy, A.M.S.; Delatorre, P.; Cavada, B.S. Structural analysis of ConBr reveals molecular correlation between the carbohydrate recognition domain and endothelial NO synthase activation. Biochem. Biophys. Res. Commun., 2011, 408(4), 566-570.
[28]
Lee, H.C.; Goroncy, A.K.; Peisach, J.; Cavada, B.S.; Grangeiro, T.B.; Ramos, M.V.; Sampaio, A.H.; Dam, T.K.; Brewer, C.F. Demonstration of a conserved histidine and two water ligands at the Mn2+ site in diocleinae lectins by pulsed EPR spectroscopy. Biochemistry, 2000, 39(9), 2340-2346.
[29]
Delatorre, P.; Rocha, B.A.M.; Souza, E.P.; Oliveira, T.M.; Bezerra, G.A.; Moreno, F.B.M.B.; Freitas, B.T.; Santi-Gadelha, T.; Sampaio, A.H.; Azevedo, W.F., Jr; Cavada, B.S. Structure of a lectin from Canavalia gladiata seeds: New structural insights for old molecules. BMC Struct. Biol., 2007, 7, 52.
[30]
Brinda, K.V.; Mitra, N.; Surolia, A.; Vishveshwara, S. Determinants of quaternary association in legume lectins. Protein Sci., 2004, 13(7), 1735-1749.
[31]
Sinha, S.; Gupta, G.; Vijayan, M.; Surolia, A. Subunit assembly of plant lectins. Curr. Opin. Struct. Biol., 2007, 17(5), 498-505.
[32]
Kamp, R.M.; Calvete, J.J. Methods in Proteome and Protein Analysis; Springer Science & Business Media, 2004.
[33]
Wah, D.A.; Romero, A.; Gallego del Sol, F.; Cavada, B.S.; Ramos, M.V.; Grangeiro, T.B.; Sampaio, A.H.; Calvete, J.J. Crystal structure of native and Cd/Cd-substituted Dioclea guianensis seed lectin. A novel manganese-binding site and structural basis of dimer-tetramer association. J. Mol. Biol., 2001, 310(4), 885-894.
[34]
Nagano, C.S.; Calvete, J.J.; Barettino, D.; Pérez, A.; Cavada, B.S.; Sanz, L. Insights into the structural basis of the pH-dependent dimer–tetramer equilibrium through crystallographic analysis of recombinant diocleinae lectins. Biochem. J., 2008, 409(2), 417-428.
[35]
Zamora-Caballero, S.; Pérez, A.; Sanz, L.; Bravo, J.; Calvete, J.J. Quaternary structure of Dioclea grandiflora lectin assessed by equilibrium sedimentation and crystallographic analysis of recombinant mutants. FEBS Lett., 2015, 589(18), 2290-2296.
[36]
Lin, S.S.; Levitan, I.B.; Concanavalin, A. A tool to investigate neuronal plasticity. Trends Neurosci., 1991, 14(7), 273-277.
[37]
Scherer, W.J.; Udin, S.B. Concanavalin A reduces habituation in the tectum of the frog. Brain Res., 1994, 667(2), 209-215.
[38]
Kirner, A.; Deutsch, S.; Weiler, E.; Polak, E.H.; Apfelbach, R. Concanavalin A application to the olfactory epithelium reveals different sensory neuron populations for the odour pair D- and L-carvone. Behav. Brain Res., 2003, 138(2), 201-206.
[39]
Suzuki, T.; Okumura-Noji, K. NMDA receptor subunits epsilon 1 [NR2A] and epsilon 2 [NR2B] are substrates for fyn in the postsynaptic density fraction isolated from the rat brain. Biochem. Biophys. Res. Commun., 1995, 216(2), 582-588.
[40]
Clark, R.A.; Gurd, J.W.; Bissoon, N.; Tricaud, N.; Molnar, E.; Zamze, S.E.; Dwek, R.A.; McIlhinney, R.A.; Wing, D.R. Identification of lectin-purified neural glycoproteins, GPs 180, 116, and 110, with NMDA and AMPA receptor subunits: Conservation of glycosylation at the synapse. J. Neurochem., 1998, 70(6), 2594-2605.
[41]
Barauna, S.C.; Kaster, M.P.; Heckert, B.T.; do Nascimento, K.S.; Rossi, F.M.; Teixeira, E.H.; Cavada, B.S.; Rodrigues, A.L.S.; Leal, R.B. Antidepressant-like effect of lectin from Canavalia brasiliensis [ConBr] administered centrally in mice. Pharmacol. Biochem. Behav., 2006, 85(1), 160-169.
[43]
Guest, P.C.; Knowles, M.R.; Molon-Noblot, S.; Salim, K.; Smith, D.; Murray, F.; Laroque, P.; Hunt, S.P.; De Felipe, C.; Rupniak, N.M.; McAllister, G. Mechanisms of action of the antidepressants fluoxetine and the substance P antagonist L-000760735 are associated with altered neurofilaments and synaptic remodeling. Brain Res., 2004, 1002(1-2), 1-10.
[44]
Peng, L.; Gu, L.; Li, B.; Hertz, L. Fluoxetine and all other SSRIs are 5-HT2B agonists - importance for their therapeutic effects. Curr. Neuropharmacol., 2014, 12(4), 365-379.
[45]
Rieger, D.K.; Costa, A.P.; Budni, J.; Moretti, M.; Barbosa, S.G.R.; Nascimento, K.S.; Teixeira, E.H.; Cavada, B.S.; Rodrigues, A.L.S.; Leal, R.B. Antidepressant-like effect of Canavalia brasiliensis [ConBr] lectin in mice: Evidence for the involvement of the glutamatergic system. Pharmacol. Biochem. Behav., 2014, 122, 53-60.
[46]
Russi, M.A.; Vandresen-Filho, S.; Rieger, D.K.; Costa, A.P.; Lopes, M.W.; Cunha, R.M.S.; Teixeira, E.H.; Nascimento, K.S.; Cavada, B.S.; Tasca, C.I.; Leal, R.B. ConBr, a lectin from Canavalia brasiliensis seeds, protects against quinolinic acid-induced seizures in mice. Neurochem. Res., 2012, 37(2), 288-297.
[47]
Assreuy, A.M.; Shibuya, M.D.; Martins, G.J.; De Souza, M.L.; Cavada, B.S.; Moreira, R.A.; Oliveira, J.T.; Ribeiro, R.A.; Flores, C.A. Anti-inflammatory effect of glucose-mannose binding lectins isolated from brazilian beans. Mediators Inflamm., 1997, 6(3), 201-210.
[48]
Assreuy, A.M.S.; Fontenele, S.R.; de Freitas Pires, A.; Fernandes, D.C.; Rodrigues, N.V.; Bezerra, E.H.S.; Moura, T.R.; do Nascimento, K.S.; Cavada, B.S. Vasodilator effects of diocleinae lectins from the canavalia genus. Naunyn Schmiedebergs Arch. Pharmacol., 2009, 380(6), 509-521.
[49]
Menezes, G.B.; Rezende, R.M.; Pereira-Silva, P.E.M.; Klein, A.; Cara, D.C.; Francischi, J.N. Differential involvement of cyclooxygenase isoforms in neutrophil migration in vivo and in vitro. Eur. J. Pharmacol., 2008, 598(1-3), 118-122.
[50]
Barral-Netto, M.; Santos, S.B.; Barral, A.; Moreira, L.I.M.; Santos, C.F.; Moreira, R.A.; Oliveira, J.T.A.; Cavada, B.S. Human lymphocyte stimulation by legume lectins from the diocleae tribe. Immunol. Invest., 1992, 21(4), 297-303.
[51]
Rodriguez, D.; Cavada, B.S.; Abreu-de-Oliveira, J.T.; de-Azevedo-Moreira, R.; Russo, M. Differences in macrophage stimulation and leukocyte accumulation in response to intraperitoneal administration of glucose/mannose-binding plant lectins. Braz. J. Med. Biol. Res., 1992, 25(8), 823-826.
[52]
Gomes, J.C.; Rossi Ferreira, R.; Sousa Cavada, B.; Azevedo Moreira, R.; Oliveira, J.T.A. Histamine release induced by glucose [mannose]-specific lectins isolated from brazilian beans. comparison with concanavalin A. Agents Actions, 1994, 41(3-4), 132-135.
[53]
Ferreira, R.R.; Cavada, B.S.; Moreira, R.A.; Oliveira, J.T.; Gomes, J.C. Characteristics of the histamine release from hamster cheek pouch mast cells stimulated by lectins from brazilian beans and concanavalin A. Inflamm. Res., 1996, 45(9), 442-447.
[54]
Pinto, N.V.; Cavada, B.S.; Brito, L.F.; Pereira, R.I.; da Silva, M.T.L.; Castro, R.R.; de Freitas Pires, A.; Assreuy, A.M.S. Effects of canavalia lectins on acute inflammation in sensitized and non-sensitized rats. Inflammation, 2013, 36(3), 713-722.
[55]
Mollace, V. Modulation of prostaglandin biosynthesis by nitric oxide and nitric oxide donors. Pharmacol. Rev., 2005, 57(2), 217-252.
[56]
Andrade, J.L.; Arruda, S.; Barbosa, T.; Paim, L.; Ramos, M.V.; Cavada, B.S.; Barral-Netto, M. Lectin-induced nitric oxide production. Cell. Immunol., 1999, 194(1), 98-102.
[57]
de Freitas Pires, A.; Assreuy, A.M.S.; Lopes, É.A.B.; Celedônio, N.R.; Soares, C.E.A.; Rodrigues, N.V.F.C.; Sousa, P.L.; Benevides, R.G.; Nagano, C.S.; Cavada, B.S.; Leal-Cardoso, J.H.; Coelho-de-Souza, A.N.; Santos, C.F. Opioid-like antinociceptive effects of oral administration of a lectin purified from the seeds of Canavalia brasiliensis. Fundam. Clin. Pharmacol., 2013, 27(2), 201-209.
[58]
Iordache, F.; Ionita, M.; Mitrea, L.I.; Fafaneata, C.; Pop, A. Antimicrobial and antiparasitic activity of lectins. Curr. Pharm. Biotechnol., 2015, 16(2), 152-161.
[59]
Breitenbach Barroso Coelho, L.C.; Marcelino Dos Santos Silva, P.; Felix de Oliveira, W.; de Moura, M.C.; Viana Pontual, E.; Soares Gomes, F.; Guedes Paiva, P.M.; Napoleão, T.H.; Dos Santos Correia, M.T. Lectins as antimicrobial agents. J. Appl. Microbiol., 2018, 125(5), 1238-1252.
[60]
Gomes, B.S.; Siqueira, A.B.S.; de Cássia Carvalho Maia, R.; Giampaoli, V.; Teixeira, E.H.; Arruda, F.V.S.; do Nascimento, K.S.; de Lima, A.N.; Souza-Motta, C.M.; Cavada, B.S.; Porto, A.L. Antifungal activity of lectins against yeast of vaginal secretion. Braz. J. Microbiol., 2012, 43(2), 770-778.
[61]
Santiago, A.P.; Saavedra, E.; Pérez Campos, E.; Córdoba, F. Effect of plant lectins on Ustilago maydis in vitro. Cell. Mol. Life Sci., 2000, 57(13-14), 1986-1989.
[62]
Teixeira, E.H.; Napimoga, M.H.; Carneiro, V.A.; de Oliveira, T.M.; Cunha, R.M.S.; Havt, A.; Martins, J.L.; Pinto, V.P.T.; Gonçalves, R.B.; Cavada, B.S. In vitro inhibition of streptococci binding to enamel acquired pellicle by plant lectins. J. Appl. Microbiol., 2006, 101(1), 111-116.
[63]
Cavalcante, T.T.A.; Anderson Matias da Rocha, B.; Alves Carneiro, V.; Vassiliepe Sousa Arruda, F.; Fernandes do Nascimento, A.S.; Cardoso Sá, N.; do Nascimento, K.S.; Sousa Cavada, B.; Holanda Teixeira, E. Effect of lectins from diocleinae subtribe against oral streptococci. Molecules, 2011, 16(5), 3530-3543.
[64]
de Vasconcelos, M.A.; Cunha, C.O.; Arruda, F.V.S.; Carneiro, V.A.; Mercante, F.M.; do Nascimento Neto, L.G.; de Sousa, G.S.; Rocha, B.A.M.; Teixeira, E.H.; Cavada, B.S.; dos Santos, R.P. Lectin from Canavalia brasiliensis seeds [ConBr] is a valuable biotechnological tool to stimulate the growth of Rhizobium tropici in vitro. Molecules, 2012, 17(5), 5244-5254.
[65]
Souza, M.A.; Carvalho, F.C.; Ruas, L.P.; Ricci-Azevedo, R.; Roque-Barreira, M.C. The immunomodulatory effect of plant lectins: A review with emphasis on ArtinM properties. Glycoconj. J., 2013, 30(7), 641-657.
[66]
Ashraf, M.T.; Khan, R.H. Mitogenic lectins. Med. Sci. Monit., 2003, 9(11), RA265-RA269.
[67]
Barral-Netto, M.; Von Sohsten, R.L.; Teixeira, M.; dos Santos, W.L.; Pompeu, M.L.; Moreira, R.A.; Oliveira, J.T.; Cavada, B.S.; Falcoff, E.; Barral, A. In vivo protective effect of the lectin from Canavalia brasiliensis on BALB/c mice infected by Leishmania amazonensis. Acta Trop., 1996, 60(4), 237-250.
[68]
Black, C.D.; Kroczek, R.A.; Barbet, J.; Weinstein, J.N.; Shevach, E.M. Induction of IL-2 receptor expression in vivo: Response to concanavalin A. Cell. Immunol., 1988, 111(2), 420-432.
[69]
Reis, E.A.G.; Athanazio, D.A.; Cavada, B.S.; Teixeira, E.H.; de Paulo Teixeira Pinto, V.; Carmo, T.M.A.; Reis, A.; Trocolli, G.; Croda, J.; Harn, D.; Barral-Netto, M.; Reis, M.G. Potential immunomodulatory effects of plant lectins in Schistosoma mansoni infection. Acta Trop., 2008, 108(2-3), 160-165.
[70]
Silva, A.F.B.; Matos, M.P.V.; Ralph, M.T.; Silva, D.L.; de Alencar, N.M.; Ramos, M.V.; Lima-Filho, J.V. Comparison of immunomodulatory properties of mannose-binding lectins from Canavalia brasiliensis and Cratylia argentea in a mice model of salmonella infection. Int. Immunopharmacol., 2016, 31, 233-238.
[71]
Batista, J.; Ralph, M.T.; Vaz, R.V.; Souza, P.; Silva, A.B.; Nascimento, D.; Souza, L.T.; Ramos, M.V.; Mastroeni, P.; Lima-Filho, J.V. Plant lectins ConBr and CFL modulate expression toll-like receptors, pro-inflammatory cytokines and reduce the bacterial burden in macrophages infected with Salmonella enterica serovar typhimurium. Phytomedicine, 2017, 25, 52-60.
[72]
Shiba, T.; Tobe, K.; Koshio, O.; Yamamoto, R.; Shibasaki, Y.; Matsumoto, N.; Toyoshima, S.; Osawa, T.; Akanuma, Y.; Takaku, F. Concanavalin A-induced receptor aggregation stimulates the tyrosine kinase activity of the insulin receptor in intact cells. Biochem. J., 1990, 267(3), 787-794.
[73]
Rosen, O.M.; Herrera, R.; Olowe, Y.; Petruzzelli, L.M.; Cobb, M.H. Phosphorylation activates the insulin receptor tyrosine protein kinase. Proc. Natl. Acad. Sci. USA, 1983, 80(11), 3237-3240.
[74]
Cavada, B.S.; Iglesias, M.M.; Troncoso, M.F.; Teixeira, E.H.; Turyn, D.; Dominici, F.P. Glucose-mannose-binding lectins isolated from brazilian beans stimulate the autophosphorylation of the insulin receptor in vitro. Horm. Metab. Res., 2003, 35(2), 125-127.
[75]
Barbosa, T.; Arruda, S.; Cavada, B.; Grangeiro, T.B.; de Freitas, L.A.; Barral-Netto, M. In vivo lymphocyte activation and apoptosis by lectins of the diocleinae subtribe. Mem. Inst. Oswaldo Cruz, 2001, 96(5), 673-678.
[76]
Silva Fde, O.; Santos, Pd.; Figueirôa Ede, O.; de Melo, C.M.; de Andrade Lemoine Neves, J.K.; Arruda, F.V.; Cajazeiras, J.B.; do Nascimento, K.S.; Teixeira, E.H.; Cavada, B.S.; Porto, A.L.; Pereira, V.R. Antiproliferative effect of Canavalia brasiliensis lectin on B16F10 cells. Res. Vet. Sci., 2014, 96(2), 276-282.
[77]
Faheina-Martins, G.V.; da Silveira, A.L.; Ramos, M.V.; Marques-Santos, L.F.; Araujo, D.A.M. Influence of fetal bovine serum on cytotoxic and genotoxic effects of lectins in MCF-7 cells. J. Biochem. Mol. Toxicol., 2011, 25(5), 290-296.
[78]
Faheina-Martins, G.V.; da Silveira, A.L.; Cavalcanti, B.C.; Ramos, M.V.; Moraes, M.O.; Pessoa, C.; Araújo, D.A.M. Antiproliferative effects of lectins from Canavalia ensiformis and Canavalia brasiliensis in human leukemia cell lines. Toxicol. In Vitro, 2012, 26(7), 1161-1169.
[79]
Chang, C.P.; Yang, M.C.; Liu, H.S.; Lin, Y.S.; Lei, H.Y. Concanavalin A induces autophagy in hepatoma cells and has a therapeutic effect in a Murinein situhepatoma model. Hepatology, 2007, 45(2), 286-296.
[80]
Gastman, B.; Wang, K.; Han, J.; Zhu, Z.Y.; Huang, X.; Wang, G.Q.; Rabinowich, H.; Gorelik, E. A novel apoptotic pathway as defined by lectin cellular initiation. Biochem. Biophys. Res. Commun., 2004, 316(1), 263-271.
[81]
Suen, Y.K.; Fung, K.P.; Choy, Y.M.; Lee, C.Y.; Chan, C.W.; Kong, S.K. Concanavalin A induced apoptosis in murine macrophage PU5-1.8 cells through clustering of mitochondria and release of cytochrome c. Apoptosis, 2000, 5(4), 369-377.
[82]
Abreu, D.S.; Sousa, T.P.; Castro, C.B.; Sousa, M.N.V.; Silva, T.T.; Almeida-Neto, F.W.Q.; Queiros, M.V.A.; Rodrigues, B.S.F.; Oliveira, M.C.F.; Paulo, T.F.; Cavada, B.S.; Nascimento, K.S.; Temperini, M.L.A.; Diogenes, I.C.N. SAM of gliotoxin on gold: A natural product platform for sugar recognition based on the immobilization of Canavalia brasiliensis lectin (ConBr). Electrochim. Acta, 2017, 241, 116-123.
[83]
Castro, M.O.; de Santiago, M.Q.; Nascimento, K.S.; Sousa Cavada, B.; de Castro Miguel, E.; de Paula, A.J.; Ferreira, O.P. Hydrochar as protein support: Preservation of biomolecule properties with non-covalent immobilization. J. Mater. Sci., 2017, 52(23), 13378-13389.
[84]
Lord, J.M. The use of cytotoxic plant lectins in cancer therapy. Plant Physiol., 1987, 85(1), 1-3.
[85]
Hashim, O.H.; Jayapalan, J.J.; Lee, C.S. Lectins: An effective tool for screening of potential cancer biomarkers. PeerJ, 2017, 5, e3784.
[86]
De Mejía,E.G.; Prisecaru, V.I. Lectins as bioactive plant proteins: A potential in cancer treatment. Crit. Rev. Food Sci. Nutr., 2005, 45(6), 425-445.
[87]
Rosi, A.; Guidoni, L.; Luciani, A.M.; Mariutti, G.; Viti, V. RNA-lipid complexes released from the plasma membrane of human colon carcinoma cells. Cancer Lett., 1988, 39(2), 153-160.
[88]
Kaefer, C.; Komninou, E.R.; Campos, V.F.; de Leon, P.M.; Arruda, F.V.S.; Nascimento, K.S.; Teixeira, E.H.; Stefanello, F.M.; Barschak, A.G.; Deschamps, J.C.; Seixas, F.K.; Cavada, B.S.; Collares, T. Binding pattern and toxicological effects of lectins from genus canavalia on bovine sperm. Reprod. Toxicol., 2013, 38, 72-80.
[89]
Martins, A.M.C.; Monteiro, A.M.O.; Havt, A.; Barbosa, P.S.F.; Soares, T.F.; Evangelista, J.S.A.M.; de Menezes, D.B.; Fonteles, M.C.; Teixeira, E.H.; Pinto, V.P.T.; Nascimento, K.S.; Alencar, N.M.; Cavada, B.S.; Monteiro, H.S. Renal effects induced by the lectin from Vatairea macrocarpa seeds. J. Pharm. Pharmacol., 2005, 57(10), 1329-1333.
[90]
Havt, A.; Assreuy, A.M.S. Nascimento, N.R.F.do; Fonteles, M.C.; Pereira, L. de P.; Monteiro, S.M.N.; Barbosa, P.S.F.; Nascimento, K.S.; Cavada, B.S.; Martins, A.M.C.; Monteiro, H.S. The effect of Cratylia floribunda lectin on renal hemodynamics and ion transport. Braz. J. Pharm. Sci., 2015, 51(3), 755-761.
[91]
Teixeira, E.; Havt, A.; Barbosa, P.; Meneses, D.; Fonteles, M.; Monteiro, H.; Sampaio, A.; Cavada, B. Renal effects of the lectin from Canavalia brasiliensis seeds. Protein Pept. Lett., 2001, 8(6), 477-484.
[92]
Macedo, M.L.R.; Oliveira, C.F.R.; Oliveira, C.T. Insecticidal activity of plant lectins and potential application in crop protection. Molecules, 2015, 20(2), 2014-2033.
[93]
Reyes-Montaño, E.A.; Vega-Castro, N.A. Plant lectins with insecticidal and insectistatic activities.In Insecticides - Agriculture and Toxicology; Begum, G., Ed.; InTech, 2018.
[94]
Grangeiro, T.B. Clonagem, sequenciamento e expressão do gene da lectina (ConBr) de sementes de Canavalia brasiliensis. PhD Thesis.Federal University of Ceara: Brazil,. 1996.
[95]
Nogueira, N.A.P.; Grangeiro, M.B.; da Cunha, R.M.S.; Ramos, M.V.; Alves, M.A.O.; Teixeira, E.H.; Barral-Netto, M.; Calvete, J.J.; Cavada, B.S.; Grangeiro, T.B. Expression and purification of the recombinant ConBr [Canavalia brasiliensis lectin] produced in Escherichia coli cells. Protein Pept. Lett., 2002, 9(1), 59-66.
[96]
Carvalho, C.P.S.; Rocha, C.S.; Nepomuceno, D.R.; Oliveira, J.T.A.; Grangeiro, T.B. Expression of a Canavalia brasiliensis lectin (ConBr) precursor in Pichia pastoris. Protein Pept. Lett., 2008, 15(4), 327-332.
[97]
Dam, T.; Cavada, B.; Grangeiro, T.; Santos, C.; Ceccatto, V.; de Sousa, F.; Oscarson, S.; Brewer, C. Thermodynamic binding studies of lectins from the diocleinae subtribe to deoxy analogs of the core trimannoside of asparagine-linked oligosaccharides. J. Biol. Chem., 2000, 275, 16119-16126.
[98]
Dam, T.; Cavada, B.; Grangeiro, T.; Santos, C.; de Sousa, F.; Oscarson, S.; Brewer, C. Diocleinae lectins are A group of proteins with conserved binding sites for the core trimannoside of asparagine-linked oligosaccharides and differential specificities for complex carbohydrates. J. Biol. Chem., 1998, 273, 12082-12088.