Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

A Review on Electrospun Luminescent Nanofibers: Photoluminescence Characteristics and Potential Applications

Author(s): Gibin George and Zhiping Luo*

Volume 16, Issue 3, 2020

Page: [321 - 362] Pages: 42

DOI: 10.2174/1573413715666190112121113

Abstract

Background: Photoluminescent materials have been used for diverse applications in the fields of science and engineering, such as optical storage, biological labeling, noninvasive imaging, solid-state lasers, light-emitting diodes, theranostics/theragnostics, up-conversion lasers, solar cells, spectrum modifiers, photodynamic therapy remote controllers, optical waveguide amplifiers and temperature sensors. Nanosized luminescent materials could be ideal candidates in these applications.

Objective: This review is to present a brief overview of photoluminescent nanofibers obtained through electrospinning and their emission characteristics.

Methods: To prepare bulk-scale nanosized materials efficiently and cost-effectively, electrospinning is a widely used technique. By the electrospinning method, a sufficiently high direct-current voltage is applied to a polymer solution or melt; and at a certain critical point when the electrostatic force overcomes the surface tension, the droplet is stretched to form nanofibers. Polymer solutions or melts with a high degree of molecular cohesion due to intermolecular interactions are the feedstock. Subsequent calcination in air or specific gas may be required to remove the organic elements to obtain the desired composition.

Results: The luminescent nanofibers are classified based on the composition, structure, and synthesis material. The photoluminescent emission characteristics of the nanofibers reveal intriguing features such as polarized emission, energy transfer, fluorescent quenching, and sensing. An overview of the process, controlling parameters and techniques associated with electrospinning of organic, inorganic and composite nanofibers are discussed in detail. The scope and potential applications of these luminescent fibers also conversed.

Conclusion: The electrospinning process is a matured technique to produce nanofibers on a large scale. Organic nanofibers have exhibited superior fluorescent emissions for waveguides, LEDs and lasing devices, and inorganic nanofibers for high-end sensors, scintillators, and catalysts. Multifunctionalities can be achieved for photovoltaics, sensing, drug delivery, magnetism, catalysis, and so on. The potential of these nanofibers can be extended but not limited to smart clothing, tissue engineering, energy harvesting, energy storage, communication, safe data storage, etc. and it is anticipated that in the near future, luminescent nanofibers will find many more applications in diverse scientific disciplines.

Keywords: Application, electrospinning, polymer nanofibers, ceramic nanofibers, photoluminescence, fluorescent probe.

Graphical Abstract

[1]
Camposeo, A.; Di Benedetto, F.; Stabile, R.; Neves, A.A.R.; Cingolani, R.; Pisignano, D. Laser emission from electrospun polymer nanofibers. Small, 2009, 5(5), 562-566.
[http://dx.doi.org/10.1002/smll.200801165] [PMID: 19189330]
[2]
Camposeo, A.; Persano, L.; Pisignano, D. Light-emitting electrospun nanofibers for nanophotonics and optoelectronics. Macromol. Mater. Eng., 2013, 298, 487-503.
[http://dx.doi.org/10.1002/mame.201200277]
[3]
McCann, J.T.; Li, D.; Xia, Y. Electrospinning of nanofibers with core-sheath, hollow, or porous structures. J. Mater. Chem., 2005, 15, 735-738.
[http://dx.doi.org/10.1039/b415094e]
[4]
Zhao, Y.; Cao, X.; Jiang, L. Bio-mimic multichannel microtubes by a facile method. J. Am. Chem. Soc., 2007, 129(4), 764-765.
[http://dx.doi.org/10.1021/ja068165g] [PMID: 17243804]
[5]
Wang, X.; Zhang, K.; Zhu, M.; Yu, H.; Zhou, Z.; Chen, Y.; Hsiao, B.S. Continuous polymer nanofiber yarns prepared by self-bundling electrospinning method. Polymer (Guildf.), 2008, 49, 2755-2761.
[http://dx.doi.org/10.1016/j.polymer.2008.04.015]
[6]
Zhang, D.; Meng, L.; Xu, Q.; Bai, S.; Yang, Z.; Qin, Y. Electrospinning multi-layered nano-solenoid and reticular micro-tubular structure on a microfiber. Mater. Lett., 2013, 98, 153-156.
[http://dx.doi.org/10.1016/j.matlet.2013.02.011]
[7]
Augustine, R.; Sarry, F.; Kalarikkal, N.; Thomas, S.; Badie, L.; Rouxel, D. Surface acoustic wave device with reduced insertion loss by electrospinning P(VDF–TrFE)/ZnO nanocomposites. Nano-Micro Lett., 2016, 8(3), 282-290.
[http://dx.doi.org/10.1007/s40820-016-0088-2] [PMID: 30460288]
[8]
Sami, S.K.; Siddiqui, S.; Shrivastava, S.; Lee, N-E.; Chung, C-H. The pine-needle-inspired structure of zinc oxide nanorods grown on electrospun nanofibers for high-performance flexible supercapacitors. Small, 2017, 13(46) 1702142
[http://dx.doi.org/10.1002/smll.201702142] [PMID: 29045044]
[9]
Liang, J.; Yuan, C.; Li, H.; Fan, K.; Wei, Z.; Sun, H.; Ma, J. Growth of SnO2 nanoflowers on n-doped carbon nanofibers as anode for Li- and Na-ion batteries. Nano-Micro Lett., 2018, 10(2), 21.
[http://dx.doi.org/10.1007/s40820-017-0172-2] [PMID: 30393670]
[10]
Lee, J.; Yoon, J.; Kim, J-H.; Lee, T.; Byun, H. Electrospun PAN–GO composite nanofibers as water purification membranes. J. Appl. Polym. Sci., 2018, 135, 45858.
[http://dx.doi.org/10.1002/app.45858]
[11]
George, G.; Jackson, S.L.; Luo, C.Q.; Fang, D.; Luo, D.; Hu, D.; Wen, J.; Luo, Z. Effect of doping on the performance of high-crystalline SrMnO3 perovskite nanofibers as a supercapacitor electrode. Ceram. Int., 2018, 44, 21982-21992.
[http://dx.doi.org/10.1016/j.ceramint.2018.08.313]
[12]
George, G.; Elias, L.; Hegde, A.C.; Anandhan, S. Morphological and structural characterisation of sol-gel electrospun Co3O4 nanofibres and their electro-catalytic behaviour. RSC Advances, 2015, 5, 40940-40949.
[http://dx.doi.org/10.1039/C5RA06368J]
[13]
Grimsdale, A.C.; Chan, K.L.; Martin, R.E.; Jokisz, P.G.; Holmes, A.B. Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. Chem. Rev., 2009, 109(3), 897-1091.
[http://dx.doi.org/10.1021/cr000013v] [PMID: 19228015]
[14]
Di Camillo, D.; Fasano, V.; Ruggieri, F.; Santucci, S.; Lozzi, L.; Camposeo, A.; Pisignano, D. Near-field electrospinning of light-emitting conjugated polymer nanofibers. Nanoscale, 2013, 5(23), 11637-11642.
[http://dx.doi.org/10.1039/c3nr03094f] [PMID: 24114142]
[15]
Di Benedetto, F.; Camposeo, A.; Pagliara, S.; Mele, E.; Persano, L.; Stabile, R.; Cingolani, R.; Pisignano, D. Patterning of light-emitting conjugated polymer nanofibres. Nat. Nanotechnol., 2008, 3(10), 614-619.
[http://dx.doi.org/10.1038/nnano.2008.232] [PMID: 18839001]
[16]
Zhong, W.; Li, F.; Chen, L.; Chen, Y.; Wei, Y. A novel approach to electrospinning of pristine and aligned MEH-PPV using binary solvents. J. Mater. Chem., 2012, 22, 5523-5530.
[http://dx.doi.org/10.1039/c2jm15970h]
[17]
Yeh, C-T.; Chen, C-Y. PH-Responsive and pyrene based electrospun nanofibers for DNA adsorption and detection. RSC Advances, 2017, 7, 6023-6030.
[http://dx.doi.org/10.1039/C6RA26714A]
[18]
Zhang, W.; Huang, Z.; Yan, E.; Wang, C.; Xin, Y.; Zhao, Q.; Tong, Y. Preparation of poly(phenylene vinylene) nanofibers by electrospinning. Mater. Sci. Eng. A, 2007, 443, 292-295.
[http://dx.doi.org/10.1016/j.msea.2006.05.147]
[19]
Okuzaki, H.; Takahashi, T.; Miyajima, N.; Suzuki, Y.; Kuwabara, T. Spontaneous formation of poly(p -phenylenevinylene) nanofiber yarns through electrospinning of a precursor. Macromolecules, 2006, 39, 4276-4278.
[http://dx.doi.org/10.1021/ma0608673]
[20]
Xin, Y.; Huang, Z.; Yang, P.; Jiang, Z.; Wang, C.; Shao, C. Controlling the deposition of light-emitting nanofibers/microfibers by the electrospinning of a poly(p-phenylene vinylene) polyelectrolyte precursor. J. Appl. Polym. Sci., 2009, 114, 1864-1869.
[http://dx.doi.org/10.1002/app.30686]
[21]
Chuangchote, S.; Fujita, M.; Sagawa, T.; Yoshikawa, S. Fabrication and characterizations of poly(3-hexylthiophene) nanofibers. MRS Proceedings, 2010, 1270, pp. 1270-HH14-07. 2010.
[http://dx.doi.org/10.1557/PROC-1270-HH14-07]
[22]
Li, D.; Babel, A.; Jenekhe, S.A.; Xia, Y. Nanofibers of conjugated polymers prepared by electrospinning with a two-capillary spinneret. Adv. Mater., 2004, 16, 2062-2066.
[http://dx.doi.org/10.1002/adma.200400606]
[23]
Zhao, Q.; Xin, Y.; Huang, Z.; Liu, S.; Yang, C.; Li, Y. Using poly[2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene] as shell to fabricate the highly fluorescent nanofibers by coaxial electrospinning. Polymer (Guildf.), 2007, 48, 4311-4315.
[http://dx.doi.org/10.1016/j.polymer.2007.04.068]
[24]
Fasano, V.; Polini, A.; Morello, G.; Moffa, M.; Camposeo, A.; Pisignano, D. Bright light emission and waveguiding in conjugated polymer nanofibers electrospun from organic salt added solutions. Macromolecules, 2013, 46(15), 5935-5942.
[http://dx.doi.org/10.1021/ma400145a] [PMID: 23956464]
[25]
Lee, C-C.; Lai, S-Y.; Su, W-B.; Chen, H-L.; Chung, C-L.; Chen, J-H. Relationship between the microstructure development and the photoluminescence efficiency of electrospun poly(9,9-dioctylfluorene-2,7-diyl) fibers. J. Phys. Chem. C, 2013, 117, 20387-20396.
[http://dx.doi.org/10.1021/jp4043478]
[26]
Senthamizhan, A.; Celebioglu, A.; Bayir, S.; Gorur, M.; Doganci, E.; Yilmaz, F.; Uyar, T. Highly fluorescent pyrene-functional polystyrene copolymer nanofibers for enhanced sensing performance of TNT. ACS Appl. Mater. Interfaces, 2015, 7(38), 21038-21046.
[http://dx.doi.org/10.1021/acsami.5b07184] [PMID: 26334455]
[27]
Lv, Y-Y.; Xu, W.; Lin, F-W.; Wu, J.; Xu, Z-K. Electrospun nanofibers of porphyrinated polyimide for the ultra-sensitive detection of trace TNT. Sens. Actuators B Chem., 2013, 184, 205-211.
[http://dx.doi.org/10.1016/j.snb.2013.04.094]
[28]
Chen, L-N.; Kuo, C-C.; Chiu, Y-C.; Chen, W-C. Ultra metal ions and pH sensing characteristics of thermoresponsive luminescent electrospun nanofibers prepared from poly(HPBO-co-NIPAAm-co-SA). RSC Advances, 2014, 4, 45345-45353.
[http://dx.doi.org/10.1039/C4RA07422J]
[29]
Chiu, Y-C.; Kuo, C-C.; Hsu, J-C.; Chen, W-C. Thermoresponsive luminescent electrospun fibers prepared from poly(DMAEMA-co-SA-co-StFl) multifunctional random copolymers. ACS Appl. Mater. Interfaces, 2010, 2(11), 3340-3347.
[http://dx.doi.org/10.1021/am100760a] [PMID: 20964308 ]
[30]
Xue, W.; Lin, J-Y.; Liu, B.; Shi, N-E.; Yu, M-N.; Wu, W-D.; Zhu, W-S.; Xie, L-H.; Wang, L-H.; Huang, W. Exploring side-chain length effect on β-phase of polyfluorene derivatives in electrospinning and their optical behavior. Polymer (Guildf.), 2018, 153(26), 338-343.
[http://dx.doi.org/10.1016/j.polymer.2018.05.025]
[31]
Wang, Y.; Wang, N.; Yu, Z.; Li, G.; Zhang, X. Novel dye-containing copolyimides: Synthesis, characterization and effect of chain entanglements on developed electrospun nanofiber morphologies. J. Polym. Res., 2015, 22, 65.
[http://dx.doi.org/10.1007/s10965-015-0713-7]
[32]
Kuo, C-C.; Tung, Y-C.; Lin, C-H.; Chen, W-C. Novel luminescent electrospun fibers prepared from conjugated rod-coil block copolymer of poly[2,7-(9,9-dihexylfluorene)]-block-poly(methyl methacrylate). Macromol. Rapid Commun., 2008, 29, 1711-1715.
[http://dx.doi.org/10.1002/marc.200800491]
[33]
Zhang, Q.; Jia, D.; Yang, Z.; Duan, X.; Chen, Q.; Zhou, Y. Synthesis of novel cobalt-containing polysilazane nanofibers with fluorescence by electrospinning. Polymers (Basel), 2016, 8(10), 350.
[http://dx.doi.org/10.3390/polym8100350] [PMID: 30974640]
[34]
Ferreira, I.; Baptista, A.C.; Leitão, J.P.; Soares, J.; Fortunato, E.; Martins, R.; Borges, J.P. Strongly photosensitive and fluorescent F8T2 electrospun fibers. Macromol. Mater. Eng., 2013, 298, 174-180.
[http://dx.doi.org/10.1002/mame.201200009]
[35]
Yen, H-J.; Wu, J-H.; Wang, W-C.; Liou, G-S. High-efficiency photoluminescence wholly aromatic triarylamine-based polyimide nanofiber with aggregation-induced emission enhancement. Adv. Opt. Mater., 2013, 1, 668-676.
[http://dx.doi.org/10.1002/adom.201300181]
[36]
Jiang, Z.; Huang, Z.; Yang, P.; Chen, J.; Xin, Y.; Xu, J. High PL-efficiency ZnO nanocrystallites/PPV composite nanofibers. Compos. Sci. Technol., 2008, 68, 3240-3244.
[http://dx.doi.org/10.1016/j.compscitech.2008.08.010]
[37]
Xin, Y.; Lin, T.; Li, S.; Ling, Z.; Liu, G.; Huang, Z.; Lin, J. Preparation and photoluminescence of single conjugated polymer-TiO2 composite nanofibers. J. Lumin., 2012, 132, 738-742.
[http://dx.doi.org/10.1016/j.jlumin.2011.10.013]
[38]
Wang, S.; Sun, Z.; Yan, E.; Sun, L.; Huang, N.; Zang, W.; Ni, L. Spectrum-control of poly(p-phenylene vinylene) nanofibers fabricated by electrospinning with highly photoluminescent ZnS quantum dots. Int. J. Electrochem. Sci., 2014, 9, 549-569.
[39]
Li, W.; Xin, Y.; Jiang, Z.; Huang, Z.; Wang, C. Preparation and characterization of in situ electrospun ZnS nanoparticles/PPV nanofibers. Pigm. Resin Technol., 2015, 44, 74-78.
[http://dx.doi.org/10.1108/PRT-09-2013-0084]
[40]
Song, Y.; Zhan, N.; Yu, M.; Yang, Q.; Zhang, C.; Wang, H.; Li, Y. Fabrication of poly(4-vinylpyridine) nanofiber and fluorescent poly(4-vinylpyridine)/porphyrin nanofiber by electrospinning. Chem. Res. Chin. Univ., 2008, 24, 722-725.
[41]
Zhang, W.; Yan, E.; Huang, Z.; Wang, C.; Xin, Y.; Zhao, Q.; Tong, Y. Preparation and study of PPV/PVA nanofibers via electrospinning PPV precursor alcohol solution. Eur. Polym. J., 2007, 43, 802-807.
[http://dx.doi.org/10.1016/j.eurpolymj.2006.11.015]
[42]
Xin, Y.; Huang, Z.; Jiang, Z.; Che, L.; Sun, M.; Wang, C.; Liu, S. Fluorescent poly(p-phenylene vinylene)/poly(ethylene oxide) nanofibers obtained by electrospinning. J. Polym. Res., 2011, 18, 477-482.
[http://dx.doi.org/10.1007/s10965-010-9439-8]
[43]
Wang, C.; Yan, E.; Li, G.; Sun, Z.; Wang, S.; Tong, Y.; Li, W.; Xin, Y.; Huang, Z.; Yan, P. Tunable photoluminescence of poly(phenylene vinylene) nanofibers by doping of semiconductor quantum dots and polymer. Synth. Met., 2010, 160, 1382-1386.
[http://dx.doi.org/10.1016/j.synthmet.2010.01.039]
[44]
Tan, S.; Feng, X.; Zhao, B.; Zou, Y.; Huang, X. Preparation and photoluminescence properties of electrospun nanofibers containing PMO-PPV and Eu(ODBM)3phen. Mater. Lett., 2008, 62, 2419-2421.
[http://dx.doi.org/10.1016/j.matlet.2007.12.036]
[45]
Campoy-Quiles, M.; Ishii, Y.; Sakai, H.; Murata, H. Highly polarized luminescence from aligned conjugated polymer electrospun nanofibers. Appl. Phys. Lett., 2008, 92 213305
[http://dx.doi.org/10.1063/1.2936998]
[46]
Ishii, Y.; Murata, H. True photoluminescence spectra revealed in electrospun light-emitting single nanofibers. J. Mater. Chem., 2012, 22, 4695-4703.
[http://dx.doi.org/10.1039/c2jm14831e]
[47]
Cho, M.Y.; Cho, K.; Kim, S. Luminescence shift of electrospun ZnO/MEH-PPV/PEO composite nanofibers. J. Lumin., 2013, 134, 79-82.
[http://dx.doi.org/10.1016/j.jlumin.2012.09.009]
[48]
Zhou, R.; Chen, W.; Jiang, X.; Wang, S.; Gong, Q. Enhanced exciton migration in electrospun poly[2-methoxy-5- (2′-ethylhexyloxy)-1,4- phenylenevinylene]/poly(vinyl pyrrolidone) nanofibers. Appl. Phys. Lett., 2010, 96 133309
[http://dx.doi.org/10.1063/1.3374336]
[49]
Wutticharoenmongkol, P.; Supaphol, P.; Srikhirin, T.; Kerdcharoen, T.; Osotchan, T. Electrospinning of polystyrene/poly(2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylene vinylene) blends. J. Polym. Sci., B, Polym. Phys., 2005, 43, 1881-1891.
[http://dx.doi.org/10.1002/polb.20478]
[50]
Babel, A.; Li, D.; Xia, Y.; Jenekhe, S.A. Electrospun nanofibers of blends of conjugated polymers: Morphology, optical properties, and field-effect transistors. Macromolecules, 2005, 38, 4705-4711.
[http://dx.doi.org/10.1021/ma047529r]
[51]
Balderas, U.; Falcony, C.; Moggio, I.; Arias, E.; Mondragón, M. A photoluminescence study of electrospun fibers of conjugated poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylene] blended with poly(9-vinylcarbazole). Polymer (Guildf.), 2013, 54, 2062-2066.
[http://dx.doi.org/10.1016/j.polymer.2013.02.015]
[52]
Mondragón, M.; Balderas, J.U.; Jiménez, G.L.; Sánchez-Espíndola, M.E.; Falcony, C. Energy transfer and compatibility analysis of PVK/MEH-PPV blends processed via electrospraying and electrospinning. Org. Electron., 2014, 15, 2993-2999.
[http://dx.doi.org/10.1016/j.orgel.2014.08.040]
[53]
Madhugiri, S.; Dalton, A.; Gutierrez, J.; Ferraris, J.P.; Balkus, K.J., Jr Electrospun MEH-PPV/SBA-15 composite nanofibers using a dual syringe method. J. Am. Chem. Soc., 2003, 125(47), 14531-14538.
[http://dx.doi.org/10.1021/ja030326i] [PMID: 14624602]
[54]
Kuo, C-C.; Wang, C-T.; Chen, W-C. Highly-aligned electrospun luminescent nanofibers prepared from polyfluorene/PMMA blends: Fabrication, morphology, photophysical properties and sensory applications. Macromol. Mater. Eng., 2008, 293, 999-1008.
[http://dx.doi.org/10.1002/mame.200800224]
[55]
Kuo, C-C.; Lin, C-H.; Chen, W-C. Morphology and photophysical properties of light-emitting electrospun nanofibers prepared from poly(fluorene) derivative/PMMA blends. Macromolecules, 2007, 40, 6959-6966.
[http://dx.doi.org/10.1021/ma071182l]
[56]
Terra, I.A.A.; Sanfelice, R.C.; Valente, G.T.; Correa, D.S. Optical sensor based on fluorescent PMMA/PFO electrospun nanofibers for monitoring volatile organic compounds. J. Appl. Polym. Sci., 2018, 135, 46128.
[http://dx.doi.org/10.1002/app.46128]
[57]
Chen, H-C.; Wang, C-T.; Liu, C-L.; Liu, Y-C.; Chen, W-C. Full color light-emitting electrospun nanofibers prepared from PFO/MEH-PPV/PMMA ternary blends. J. Polym. Sci., B, Polym. Phys., 2009, 47, 463-470.
[http://dx.doi.org/10.1002/polb.21651]
[58]
Kuo, C-C.; Lin, C-H.; Tzeng, P.; Chen, W-C. Morphology and photophysical properties of luminescent electrospun fibers prepared from diblock and triblock polyfluorene-block-poly(2-vinylpyridine)/PEO blends. J. Polym. Res., 2011, 18, 1091-1100.
[http://dx.doi.org/10.1007/s10965-010-9511-4]
[59]
Vázquez-Guilló, R.; Calero, A.; Valente, A.J.M.; Burrows, H.D.; Mateo, C.R.; Mallavia, R. Novel electrospun luminescent nanofibers from cationic polyfluorene/cellulose acetate blend. Cellulose, 2013, 20, 169-177.
[http://dx.doi.org/10.1007/s10570-012-9809-y]
[60]
Wang, C-T.; Kuo, C-C.; Chen, H-C.; Chen, W-C. Non-woven and aligned electrospun multicomponent luminescent polymer nanofibers: effects of aggregated morphology on the photophysical properties. Nanotechnology, 2009, 20(37) 375604
[http://dx.doi.org/10.1088/0957-4484/20/37/375604] [PMID: 19706951]
[61]
Park, S.K.; Dhakal, K.P.; Kim, J.; Kim, J.H.; Rho, H. Fabrication and optical characterization of electrospun poly(3-buthylthiophene) nanofibers. Synth. Met., 2011, 161, 1088-1091.
[http://dx.doi.org/10.1016/j.synthmet.2011.03.020]
[62]
Yin, K.; Zhang, L.; Lai, C.; Zhong, L.; Smith, S.; Fong, H.; Zhu, Z. Photoluminescence anisotropy of uni-axially aligned electrospun conjugated polymer nanofibers of MEH-PPV and P3HT. J. Mater. Chem., 2010, 21, 444-448.
[http://dx.doi.org/10.1039/C0JM02713H]
[63]
Kim, J.; Lee, T.S. Full-color emissive poly(ethylene oxide) electrospun nanofibers containing a single hyperbranched conjugated polymer for large-scale, flexible light-emitting sheets. Macromol. Rapid Commun., 2016, 37(4), 303-310.
[http://dx.doi.org/10.1002/marc.201500532] [PMID: 26641028]
[64]
Cheng, C-C.; Wang, Y-S.; Chang, F-C.; Lee, D-J.; Yang, L-C.; Chen, J-K. Supramolecular assembly-induced enhanced emission of electrospun nanofibers. Chem. Commun. (Camb.), 2015, 51(4), 672-675.
[http://dx.doi.org/10.1039/C4CC07971J] [PMID: 25415758]
[65]
Xue, R.; Ge, C.; Richardson, K.; Palmer, A.; Viapiano, M.; Lannutti, J.J. Microscale sensing of oxygen via encapsulated porphyrin nanofibers: effect of indicator and polymer “core” permeability. ACS Appl. Mater. Interfaces, 2015, 7(16), 8606-8614.
[http://dx.doi.org/10.1021/acsami.5b00403] [PMID: 25850567]
[66]
Wolf, C.; Tscherner, M.; Köstler, S. Ultra-fast opto-chemical sensors by using electrospun nanofibers as sensing layers. Sens. Actuators B Chem., 2015, 209, 1064-1069.
[http://dx.doi.org/10.1016/j.snb.2014.11.070]
[67]
Wu, M-C.; Chan, S-H.; Lin, T-F.; Lu, C-F.; Su, W-F. Detection of volatile organic compounds using electrospun P3HT/PMMA fibrous film. J. Taiwan Inst. Chem. Eng., 2017, 78, 552-560.
[http://dx.doi.org/10.1016/j.jtice.2017.06.036]
[68]
Kuo, C-C.; Wang, C-T.; Chen, W-C. Poly(3-hexylthiophene)/poly(methyl methacrylate) core-shell electrospun fibers for sensory applications. Macromol. Symp., 2009, 279, 41-47.
[http://dx.doi.org/10.1002/masy.200950506]
[69]
Petropoulou, A.; Christodoulou, K.; Polydorou, C.; Krasia‐Christoforou, T.; Riziotis, C. Cost-effective polymethacrylate-based electrospun fluorescent fibers toward ammonia sensing. Macromol. Mater. Eng., 2017, 302 1600453
[http://dx.doi.org/10.1002/mame.201600453]
[70]
Chen, B-Y.; Kuo, C-C.; Huang, Y-S.; Lu, S-T.; Liang, F-C.; Jiang, D-H. Novel highly selective and reversible chemosensors based on dual-ratiometric fluorescent electrospun nanofibers with pH- and Fe(3+)-modulated multicolor fluorescence emission. ACS Appl. Mater. Interfaces, 2015, 7(4), 2797-2808.
[http://dx.doi.org/10.1021/am508029x] [PMID: 25585636]
[71]
Kuo, C-C.; Tung, Y-C.; Chen, W-C. Morphology and pH sensing characteristics of new luminescent electrospun fibers prepared from poly(phenylquinoline)-block-polystyrene/polystyrene blends. Macromol. Rapid Commun., 2010, 31(1), 65-70.
[http://dx.doi.org/10.1002/marc.200900566] [PMID: 21590838]
[72]
Deng, C.; Gong, P.; He, Q.; Cheng, J.; He, C.; Shi, L.; Zhu, D.; Lin, T. Highly fluorescent TPA-PBPV nanofibers with amplified sensory response to TNT. Chem. Phys. Lett., 2009, 483, 219-223.
[http://dx.doi.org/10.1016/j.cplett.2009.10.060]
[73]
Sun, X.; Liu, Y.; Shaw, G.; Carrier, A.; Dey, S.; Zhao, J.; Lei, Y. Fundamental study of electrospun pyrene–polyethersulfone nanofibers using mixed solvents for sensitive and selective explosives detection in aqueous solution. ACS Appl. Mater. Interfaces, 2015, 7(24), 13189-13197.
[http://dx.doi.org/10.1021/acsami.5b03655] [PMID: 26030223]
[74]
Tzeng, P.; Kuo, C-C.; Lin, S-T.; Chiu, Y-C.; Chen, W-C. New thermoresponsive luminescent electrospun nanofibers prepared from poly[2,7-(9,9-dihexylfluorene)]-block-poly(n-isopropylacrylamide)/PMMA blends. Macromol. Chem. Phys., 2010, 211, 1408-1416.
[http://dx.doi.org/10.1002/macp.201000088]
[75]
Chiu, Y-C.; Chen, Y.; Kuo, C-C.; Tung, S-H.; Kakuchi, T.; Chen, W-C. Synthesis, morphology, and sensory applications of multifunctional rod-coil-coil triblock copolymers and their electrospun nanofibers. ACS Appl. Mater. Interfaces, 2012, 4(7), 3387-3395.
[http://dx.doi.org/10.1021/am300315v] [PMID: 22712723]
[76]
Wohnhaas, C.; Friedemann, K.; Busko, D.; Landfester, K.; Baluschev, S.; Crespy, D.; Turshatov, A. All organic nanofibers as ultralight versatile support for triplet–triplet annihilation upconversion. ACS Macro Lett., 2013, 2, 446-450.
[http://dx.doi.org/10.1021/mz400100j]
[77]
Lee, E-M.; Gwon, S-Y.; Son, Y-A.; Kim, S-H. Modulation of a fluorescence switch of nanofiber mats containing photochromic spironaphthoxazine and D-π-A charge transfer dye. J. Lumin., 2012, 132, 1427-1431.
[http://dx.doi.org/10.1016/j.jlumin.2012.01.034]
[78]
Fasano, V.; Moffa, M.; Camposeo, A.; Persano, L.; Pisignano, D. Controlled atmosphere electrospinning of organic nanofibers with improved light emission and waveguiding properties. Macromolecules, 2015, 48(21), 7803-7809.
[http://dx.doi.org/10.1021/acs.macromol.5b01377] [PMID: 26617419]
[79]
Tang, S.S.; Shao, C.L.; Li, S.Z. Electrospun nanofibers of poly(vinyl pyrrolidone)/Eu3+ and its photoluminescence properties. Chin. Chem. Lett., 2007, 18, 465-468.
[http://dx.doi.org/10.1016/j.cclet.2007.01.040]
[80]
Tang, S.; Shao, C.; Liu, Y.; Mu, R. Electrospun nanofibers of poly(acrylonitrile)/Eu3+ and their photoluminescence properties. J. Phys. Chem. Solids, 2010, 71, 273-278.
[http://dx.doi.org/10.1016/j.jpcs.2009.12.076]
[81]
Itankar, S.G.; Dandekar, M.P.; Kondawar, S.B.; Bahirwar, B.M. Eu3+ -doped polystyrene and polyvinylidene fluoride nanofibers made by electrospinning for photoluminescent fabric designing. Luminescence, 2017, 32(8), 1535-1540.
[http://dx.doi.org/10.1002/bio.3356] [PMID: 28634993]
[82]
Li, M.; Zhang, Z.; Cao, T.; Sun, Y.; Liang, P.; Shao, C.; Liu, Y. Electrospinning preparation and photoluminescence properties of poly (methyl methacrylate)/Eu3+ ions composite nanofibers and nanoribbons. Mater. Res. Bull., 2012, 47, 321-327.
[http://dx.doi.org/10.1016/j.materresbull.2011.11.029]
[83]
Zhang, X.; Wen, S.; Hu, S.; Chen, Q.; Fong, H.; Zhang, L.; Liu, L. Luminescence properties of Eu(III) complex/polyvinylpyrrolidone electrospun composite nanofibers. J. Phys. Chem. C, 2010, 114, 3898-3903.
[http://dx.doi.org/10.1021/jp9119843]
[84]
Bai, J.; Gu, H.; Hou, Y.; Wang, S. Luminescence properties and molecular mechanics calculation of bis-β-diketonate Eu3+ complex/polymer hybrid fibers. Opt. Mater., 2018, 79, 310-316.
[http://dx.doi.org/10.1016/j.optmat.2018.03.029]
[85]
Zhang, H.; Song, H.; Dong, B.; Han, L.; Pan, G.; Bai, X.; Fan, L.; Lu, S.; Zhao, H.; Wang, F. Electrospinning preparation and luminescence properties of europium complex/polymer composite fibers. J. Phys. Chem. C, 2008, 112, 9155-9162.
[http://dx.doi.org/10.1021/jp7115005]
[86]
Yu, H.; Li, T.; Chen, B.; Wu, Y.; Li, Y. Preparation of aligned Eu(DBM)3phen/PS fibers by electrospinning and their luminescence properties. J. Colloid Interface Sci., 2013, 400, 175-180.
[http://dx.doi.org/10.1016/j.jcis.2013.03.017] [PMID: 23578517]
[87]
Zhang, H.; Song, H.; Han, L.; Dong, B.; Pan, G.; Zhao, H.; Dai, Q.; Qin, R.; Qu, X.; Lu, S. Electrospinning preparation of uniaxially aligned ternary terbium complex/polymer composite fibers and considerably improved photostability. J. Nanosci. Nanotechnol., 2010, 10(3), 2070-2076.
[http://dx.doi.org/10.1166/jnn.2010.2068] [PMID: 20355629]
[88]
Tian, J.; Ma, Q.; Dong, X.; Yang, M.; Yang, Y.; Wang, J.; Yu, W.; Liu, G. Flexible composite nanobelts: Facile electrospinning construction, structure and color-tunable photoluminescence. J. Mater. Sci. Mater. Electron., 2015, 26, 8413-8420.
[http://dx.doi.org/10.1007/s10854-015-3509-y]
[89]
Kim, J-M.; Jeong, Y-K.; Sohn, Y.; Kang, J-G. Synthesis and photophysical properties of an Eu(II)-complex/PS blend: role of Ag nanoparticles in surface-enhanced luminescence. Langmuir, 2012, 28(25), 9842-9848.
[http://dx.doi.org/10.1021/la301547z] [PMID: 22656326]
[90]
Li, S.; Zhao, X. Oxygen sensing nanofibers doped with red-emitting Eu(III) complex: Synthesis, characterization, mechanism, and sensing performance. Synth. Met., 2011, 161, 737-742.
[http://dx.doi.org/10.1016/j.synthmet.2011.01.023]
[91]
Wang, Y.; Li, B.; Zhang, L.; Zuo, Q.; Li, P.; Zhang, J.; Su, Z. High-performance oxygen sensors based on Eu(III) complex/polystyrene composite nanofibrous membranes prepared by electrospinning. ChemPhysChem, 2011, 12(2), 349-355.
[http://dx.doi.org/10.1002/cphc.201000884] [PMID: 21275027]
[92]
Wang, X.; Wang, J.; Tsunashima, R.; Pan, K.; Cao, B.; Song, Y-F. Electrospun self-supporting nanocomposite films of Na9[EuW10O36]·32H2O/PAN as pH-modulated luminescent switch. Ind. Eng. Chem. Res., 2013, 52, 2598-2603.
[http://dx.doi.org/10.1021/ie302712s]
[93]
Shu, D.; Xi, P.; Li, S.; Li, C.; Wang, X.; Cheng, B. Morphologies and properties of PET nano porous luminescence fiber: Oil absorption and fluorescence-indicating functions. ACS Appl. Mater. Interfaces, 2018, 10(3), 2828-2836.
[http://dx.doi.org/10.1021/acsami.7b16655] [PMID: 29294290]
[94]
Sun, X.; Li, B.; Song, L.; Gong, J.; Zhang, L. Electrospinning preparation and photophysical properties of one-dimensional (1D) composite nanofibers doped with erbium(III) complexes. J. Lumin., 2010, 130, 1343-1348.
[http://dx.doi.org/10.1016/j.jlumin.2010.02.024]
[95]
Tang, S.; Shao, C.; Liu, Y.; Li, S.; Mu, R. Electrospun nanofibers of poly(ethylene oxide)/teraamino-phthalocyanine copper(II) hybrids and its photoluminescence properties. J. Phys. Chem. Solids, 2007, 68, 2337-2340.
[http://dx.doi.org/10.1016/j.jpcs.2007.07.014]
[96]
Zhang, H.; Lei, B.; Dong, H.; Liu, Y. Oxygen sensing properties of Cu(I) complex/polystyrene composite nanofibers prepared by electrospinning. J. Nanosci. Nanotechnol., 2011, 11(11), 9840-9845.
[http://dx.doi.org/10.1166/jnn.2011.5241] [PMID: 22413306]
[97]
Bai, S-Q.; Kai, D.; Ke, K.L.; Lin, M.; Jiang, L.; Jiang, Y.; Young, D.J.; Loh, X.J.; Li, X.; Hor, T.S.A. A triazolyl-pyridine-supported cui dimer: Tunable luminescence and fabrication of composite fibers. ChemPlusChem, 2015, 80(8), 1235-1240.
[http://dx.doi.org/10.1002/cplu.201500202] [PMID: 31973300]
[98]
Jiménez, G.L.; Balderas, J.U.; Falcony, C.; Caro, R.; Salmerón-Quiroz, B.B.; Mondragón, M. Morphology and photoluminescence properties of electrospun microfibers of poly(9-vinylcarbazole)/tris-(8-hydroxyquinoline)aluminum and poly(9-vinylcarbazole)/4,7-diphenyl-1,10-phenanthroline blends. Opt. Mater., 2015, 42, 462-467.
[http://dx.doi.org/10.1016/j.optmat.2015.01.042]
[99]
Yan, E.; Huang, Z.; Xin, Y.; Zhao, Q.; Zhang, W. Polyvinylpyrrolidone/Tris(8-Quinolinolato) aluminum hybrid polymer fibers by electrospinning. Mater. Lett., 2006, 60, 2969-2973.
[http://dx.doi.org/10.1016/j.matlet.2006.02.045]
[100]
Mondragón, M.; Garzón, A-S.; Caro, R. Improving photoluminescence of poly(9-vinylcarbazole)/4,7-diphenyl-1,10-phenanthroline/tris-(8-hydroxyquinoline) aluminum fibers via coaxial electrospinning. J. Appl. Polym. Sci., 2016, 133, 44019.
[http://dx.doi.org/10.1002/app.44019]
[101]
Dhakal, K.P.; Lee, H.; Kim, J. White light-emitting LED using electrospun Alq3/P3BT composite microfibers. Synth. Met., 2014, 190, 44-47.
[http://dx.doi.org/10.1016/j.synthmet.2014.02.002]
[102]
Zhang, J.; Li, Y.; Hui, C.; Zhu, J. Nanofibers doped with a phosphorescent iridium complex: Synthesis, characterization, and photophysical property study. Synth. Met., 2011, 161, 1166-1171.
[http://dx.doi.org/10.1016/j.synthmet.2011.03.025]
[103]
Zhou, C.; Shi, Y.; Ding, X.; Li, M.; Luo, J.; Lu, Z.; Xiao, D. Development of a fast and sensitive glucose biosensor using iridium complex-doped electrospun optical fibrous membrane. Anal. Chem., 2013, 85(2), 1171-1176.
[http://dx.doi.org/10.1021/ac303107d] [PMID: 23215003]
[104]
Chang, T.; Han, G.; Zhang, Y. Improved photoluminescence performance from polymer nanofibers doped with phosphorescent Ir(III) complex. Opt. Mater., 2014, 37, 147-154.
[http://dx.doi.org/10.1016/j.optmat.2014.05.014]
[105]
Mitra, J.; Ghosh, M.; Bordia, R.K.; Sharma, A. Photoluminescent electrospun submicron fibers of hybrid organosiloxane and derived silica. RSC Advances, 2013, 3, 7591-7600.
[http://dx.doi.org/10.1039/c3ra23408h]
[106]
Wang, M.; Li, X.; Hua, W.; Shen, L.; Yu, X.; Wang, X. Electrospun poly(acrylic acid)/silica hydrogel nanofibers scaffold for highly efficient adsorption of lanthanide ions and its photoluminescence performance. ACS Appl. Mater. Interfaces, 2016, 8(36), 23995-24007.
[http://dx.doi.org/10.1021/acsami.6b08294] [PMID: 27537710]
[107]
Gao, W.; Wang, X.; Xu, W.; Xu, S. Luminescent composite polymer fibers: in situ synthesis of silver nanoclusters in electrospun polymer fibers and application. Mater. Sci. Eng. C, 2014, 42, 333-340.
[http://dx.doi.org/10.1016/j.msec.2014.05.020] [PMID: 25063126]
[108]
Wang, F.; Shi, D.; Lan, T.; Zhang, Y.; Shao, Z. One-step preparation of carboxymethyl cellulose/polyoxyethylene nanofiber mats containing silver nanoparticles. Integr. Ferroelectr., 2016, 169, 50-57.
[http://dx.doi.org/10.1080/10584587.2016.1162613]
[109]
Lin, H-J.; Chen, C-Y. Thermo-responsive electrospun nanofibers doped with 1,10-phenanthroline-based fluorescent sensor for metal ion detection. J. Mater. Sci., 2016, 51, 1620-1631.
[http://dx.doi.org/10.1007/s10853-015-9485-z]
[110]
Yoon, J.; Chae, S.K.; Kim, J-M. Colorimetric sensors for volatile organic compounds (VOCs) based on conjugated polymer-embedded electrospun fibers. J. Am. Chem. Soc., 2007, 129(11), 3038-3039.
[http://dx.doi.org/10.1021/ja067856+] [PMID: 17315999]
[111]
Davis, B.W.; Niamnont, N.; Dillon, R.; Bardeen, C.J.; Sukwattanasinitt, M.; Cheng, Q. FRET detection of proteins using fluorescently doped electrospun nanofibers and pattern recognition. Langmuir, 2011, 27(10), 6401-6408.
[http://dx.doi.org/10.1021/la2006925] [PMID: 21491867]
[112]
Gao, R.; Cao, D.; Guan, Y.; Yan, D. Flexible self-supporting nanofibers thin films showing reversible photochromic fluorescence. ACS Appl. Mater. Interfaces, 2015, 7(18), 9904-9910.
[http://dx.doi.org/10.1021/acsami.5b01996] [PMID: 25897557]
[113]
Romano, L.; Camposeo, A.; Manco, R.; Moffa, M.; Pisignano, D. Core-shell electrospun fibers encapsulating chromophores or luminescent proteins for microscopically controlled molecular release. Mol. Pharm., 2016, 13(3), 729-736.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00560] [PMID: 26870885]
[114]
Park, M.; Lee, K.S.; Shim, J.; Liu, Y.; Lee, C.; Cho, H.; Kim, M.J.; Park, S-J.; Yun, Y.J.; Kim, H.Y.; Son, D.I. Environment friendly, transparent nanofiber textiles consolidated with high efficiency PLEDs for wearable electronics. Org. Electron., 2016, 36, 89-96.
[http://dx.doi.org/10.1016/j.orgel.2016.05.030]
[115]
Ner, Y.; Grote, J.G.; Stuart, J.A.; Sotzing, G.A. White luminescence from multiple-dye-doped electrospun DNA nanofibers by fluorescence resonance energy transfer. Angew. Chem. Int. Ed. Engl., 2009, 48(28), 5134-5138.
[http://dx.doi.org/10.1002/anie.200900885] [PMID: 19504507]
[116]
Ner, Y.; Grote, J.G.; Stuart, J.A.; Sotzing, G.A. Enhanced fluorescence in electrospun dye-doped DNA nanofibers. Soft Matter, 2008, 4, 1448-1453.
[http://dx.doi.org/10.1039/b717581g]
[117]
Di Benedetto, F.; Mele, E.; Camposeo, A.; Athanassiou, A.; Cingolani, R.; Pisignano, D. Photoswitchable organic nanofibers. Adv. Mater., 2008, 20, 314-318.
[http://dx.doi.org/10.1002/adma.200700980]
[118]
Camposeo, A.; Di Benedetto, F.; Stabile, R.; Cingolani, R.; Pisignano, D. Electrospun dye-doped polymer nanofibers emitting in the near infrared. Appl. Phys. Lett., 2007, 90 143115
[http://dx.doi.org/10.1063/1.2720262]
[119]
Liang, X.; Li, Y.; Peng, W.; Bai, J.; Zhang, C.; Yang, Q. Efficient method for fabrication of fluorescein derivative/PDAC composite nanofibers and characteristics of their photoluminescent properties. Eur. Polym. J., 2008, 44, 3156-3162.
[http://dx.doi.org/10.1016/j.eurpolymj.2008.07.016]
[120]
Wei, J.; Yang, S.; Wang, L.; Wang, C-F.; Chen, L.; Chen, S. Electrospun fluorescein-embedded nanofibers towards fingerprint recognition and luminescent patterns. RSC Advances, 2013, 3, 19403-19408.
[http://dx.doi.org/10.1039/c3ra42328j]
[121]
Ishii, Y.; Omori, K.; Satozono, S.; Fukuda, M. Dye-doped submicron fiber waveguides composed of hole- and electron-transport materials. Org. Electron., 2017, 41, 215-220.
[http://dx.doi.org/10.1016/j.orgel.2016.11.007]
[122]
Chang, C-C.; Huang, C-M.; Chang, Y-H.; Kuo, C. Enhancement of light scattering and photoluminescence in electrospun polymer nanofibers. Opt. Express, 2010, 18(Suppl. 2), A174-A184.
[http://dx.doi.org/10.1364/OE.18.00A174] [PMID: 20588586]
[123]
Wang, S.; Yang, Q.; Du, J.; Bai, J.; Li, Y. Variety of photoluminescence intensity of fluorescent whitening agents introduced into polyacrylonitrile nanofibers. J. Appl. Polym. Sci., 2007, 103, 2382-2386.
[http://dx.doi.org/10.1002/app.25342]
[124]
Dhakal, K.P.; Lee, H.; Woo Lee, J.; Joo, J.; Guthold, M.; Kim, J. Electrospinning and optical characterization of organic rubrene nanofibers. J. Appl. Phys., 2012, 111 123504
[http://dx.doi.org/10.1063/1.4729537]
[125]
Qin, Z.; Zhang, P.; Wu, Z.; Yin, M.; Geng, Y.; Pan, K. Coaxial electrospinning for flexible uniform white-light-emitting porous fibrous membrane. Mater. Des., 2018, 147, 175-181.
[http://dx.doi.org/10.1016/j.matdes.2018.03.040]
[126]
Freire, M.G.; Teles, A.R.R.; Ferreira, R.A.S.; Carlos, L.D.; Lopes-da-Silva, J.A.; Coutinho, J.A.P. Electrospun nanosized cellulose fibers using ionic liquids at room temperature. Green Chem., 2011, 13, 3173-3180.
[http://dx.doi.org/10.1039/c1gc15930e]
[127]
Kaerkitcha, N.; Sagawa, T. Amplified polarization properties of electrospun nanofibers containing fluorescent dyes and helical polymer. Photochem. Photobiol. Sci., 2018, 17(3), 342-351.
[http://dx.doi.org/10.1039/C7PP00413C] [PMID: 29445786]
[128]
Wang, Y.; La, A.; Ding, Y.; Liu, Y.; Lei, Y. Novel signal-amplifying fluorescent nanofibers for naked-eye-based ultrasensitive detection of buried explosives and explosive vapors. Adv. Funct. Mater., 2012, 22, 3547-3555.
[http://dx.doi.org/10.1002/adfm.201200047]
[129]
Vohra, V.; Calzaferri, G.; Destri, S.; Pasini, M.; Porzio, W.; Botta, C. Toward white light emission through efficient two-step energy transfer in hybrid nanofibers. ACS Nano, 2010, 4(3), 1409-1416.
[http://dx.doi.org/10.1021/nn9017922] [PMID: 20131877]
[130]
Vohra, V.; Devaux, A.; Dieu, L-Q.; Scavia, G.; Catellani, M.; Calzaferri, G.; Botta, C. Energy transfer in fluorescent nanofibers embedding dye-loaded zeolite L crystals. Adv. Mater., 2009, 21, 1146-1150.
[http://dx.doi.org/10.1002/adma.200801693]
[131]
Danks, E.A.; Hall, S.R.; Schnepp, Z. The evolution of ‘sol-gel’ chemistry as a technique for materials synthesis. Mater. Horiz., 2016, 3, 91-112.
[http://dx.doi.org/10.1039/C5MH00260E]
[132]
Wu, H.; Sun, Y.; Lin, D.; Zhang, R.; Zhang, C.; Pan, W. GaN nanofibers based on electrospinning: facile synthesis, controlled assembly, precise doping, and application as high performance UV photodetector. Adv. Mater., 2009, 21, 227-231.
[http://dx.doi.org/10.1002/adma.200800529]
[133]
Lin, D.; Wu, H.; Zhang, R.; Pan, W. Preparation of ZnS nanofibers via electrospinning. J. Am. Ceram. Soc., 2007, 90, 3664-3666.
[http://dx.doi.org/10.1111/j.1551-2916.2007.01942.x]
[134]
Chen, L-J.; Lee, C-R.; Chuang, Y-J.; Wu, Z-H.; Chen, C. Compositionally controlled band gap and photoluminescence of ZnSSe nanofibers by electrospinning. CrystEngComm, 2015, 17, 4434-4438.
[http://dx.doi.org/10.1039/C5CE00477B]
[135]
Luo, Z.; Moch, J.G.; Johnson, S.S.; Chen, C.C. A review on X-ray detection using nanomaterials. Curr. Nanosci., 2017, 13, 364-372.
[http://dx.doi.org/10.2174/1573413713666170329164615]
[136]
George, G.; Jackson, S.L.; Mobley, Z.R.; Gautam, B.R.; Fang, D.; Peng, J.; Luo, D.; Wen, J.; Davis, J.E.; Ila, D.; Luo, Z. Fast luminescence from rare-earth-codoped BaSiF6 nanowires with high aspect ratios. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2018, 6, 7285-7294.
[http://dx.doi.org/10.1039/C8TC01651H]
[137]
Liu, Y.; Li, D.; Ma, Q.; Dong, X.; Xi, X.; Yu, W.; Wang, X.; Wang, J.; Liu, G. Er3+ doped BaYF5 nanofibers: Facile construction technique, structure and upconversion luminescence. J. Mater. Sci. Mater. Electron., 2016, 27, 5277-5283.
[http://dx.doi.org/10.1007/s10854-016-4425-5]
[138]
Yang, R.; Song, W.; Liu, S.; Qin, W. Electrospinning preparation and upconversion luminescence of yttrium fluoride nanofibers. CrystEngComm, 2012, 14, 7895-7897.
[http://dx.doi.org/10.1039/c2ce26160j]
[139]
Li, D.; Dong, X.; Yu, W.; Wang, J.; Liu, G. Synthesis and upconversion luminescence properties of YF3:Yb3+/Er3+ hollow nanofibers derived from Y2O3:Yb3+/Er3+ hollow nanofibers. J. Nanopart. Res., 2013, 15, 1704.
[http://dx.doi.org/10.1007/s11051-013-1704-4]
[140]
Li, D.; Dong, X.; Yu, W.; Wang, J.; Liu, G. Fabrication and luminescence of YF3:Tb3+ hollow nanofibers. J. Mater. Sci. Mater. Electron., 2013, 24, 3041-3048.
[http://dx.doi.org/10.1007/s10854-013-1209-z]
[141]
Liu, Y.; Li, D.; Ma, Q.; Yu, W.; Xi, X.; Dong, X.; Wang, J.; Liu, G. Fabrication of novel Ba4Y3F17:Er3+ nanofibers with upconversion fluorescence via combination of electrospinning with fluorination. J. Mater. Sci. Mater. Electron., 2016, 27, 11666-11673.
[http://dx.doi.org/10.1007/s10854-016-5302-y]
[142]
Dali, L.; Guolei, W.; Biao, D.; Xue, B.; Yu, W.; Hongwei, S.; Lin, X. Electrospinning preparation and properties of NaGdF4:Eu3+ nanowires. Solid State Sci., 2010, 12, 1837-1842.
[http://dx.doi.org/10.1016/j.solidstatesciences.2010.08.011]
[143]
George, G.; Simpson, M.D.; Gautam, B.R.; Fang, D.; Peng, J.; Wen, J.; Davis, J.E.; Ila, D.; Luo, Z. Luminescence characteristics of rare-earth-doped barium hexafluorogermanate BaGeF6 nanowires: Fast subnanosecond decay time and high sensitivity in H2O2 detection. RSC Advances, 2018, 8, 39296-39306.
[http://dx.doi.org/10.1039/C8RA07806H]
[144]
Li, G.; Hou, Z.; Peng, C.; Wang, W.; Cheng, Z.; Li, C.; Lian, H.; Lin, J. Electrospinning derived one-dimensional LaOCl:Ln3+ (Ln = Eu/Sm, Tb, Tm) nanofibers, nanotubes and microbelts with multicolor-tunable emission properties. Adv. Funct. Mater., 2010, 20, 3446-3456.
[http://dx.doi.org/10.1002/adfm.201001114]
[145]
Yu, H.; Yu, A.; Li, Y.; Song, Y.; Wu, Y.; Sheng, C.; Chen, B. Energy transfer processes in electrospun LaOCl:Ce/Tb nanofibres. J. Alloys Compd., 2016, 683, 256-262.
[http://dx.doi.org/10.1016/j.jallcom.2016.05.048]
[146]
Kong, Q.; Wang, J.; Dong, X.; Yu, W.; Liu, G. Synthesis and luminescence properties of LaOCl:Eu3+ nanostructures via the combination of electrospinning with chlorination technique. J. Mater. Sci. Mater. Electron., 2013, 24, 4745-4756.
[http://dx.doi.org/10.1007/s10854-013-1469-7]
[147]
Kong, Q.; Wang, J.; Dong, X.; Yu, W.; Liu, G. Synthesis and luminescence properties of LaOCl:Nd3+ nanostructures via combination of electrospinning with chlorination technique. Mater. Express, 2014, 4, 13-22.
[http://dx.doi.org/10.1166/mex.2014.1147]
[148]
Kong, Q.; Wang, J.; Dong, X.; Yu, W.; Liu, G. Synthesis and luminescence properties of Yb3+–Er3+ co-doped LaOCl nanostructures. J. Mater. Sci., 2014, 49, 2919-2931.
[http://dx.doi.org/10.1007/s10853-013-8003-4]
[149]
Wu, S.; Dong, X.; Wang, J.; Kong, Q.; Yu, W.; Liu, G. Facile electrospinning fabrication and photoluminescence of LaOI:Tb3+ one-dimensional nanomaterials. J. Mater. Sci. Mater. Electron., 2014, 25, 1053-1062.
[http://dx.doi.org/10.1007/s10854-013-1686-0]
[150]
Wu, S.; Yu, W.; Dong, X.; Wang, J.; Liu, G. A feasible strategy to synthesize LaOI:Yb3+/Ho3+ upconversion luminescence nanostructures via succeeding to the morphologies of precursors. Chem. Eng. J., 2015, 266, 189-198.
[http://dx.doi.org/10.1016/j.cej.2014.12.070]
[151]
Ma, W.; Dong, X.; Wang, J.; Yu, W.; Liu, G. Electrospinning preparation of LaOBr:Tb3+ nanostructures and their photoluminescence properties. J. Mater. Sci., 2013, 48, 2557-2565.
[http://dx.doi.org/10.1007/s10853-012-7046-2]
[152]
Yu, W.S.; Zhu, C.S.; Ma, Q.L.; Ma, W.W.; Wang, J.X.; Dong, X.T. Fabrication and characterization of LaOBr:Eu3+ luminescent nanofibers. Adv. Mat. Res., 2015, 1118, 92-96.
[153]
Ma, W.; Yu, W.; Dong, X.; Wang, J.; Liu, G. Electrospinning preparation and up-conversion luminescence properties of LaOBr:Er3+ nanofibers and nanoribbons. Chem. Eng. J., 2014, 244, 531-539.
[http://dx.doi.org/10.1016/j.cej.2014.02.005]
[154]
Ma, W.; Yu, W.; Dong, X.; Wang, J.; Liu, G. Preparation and up-conversion luminescence properties of LaOBr:Yb3+/Er3+ nanofibers via electrospinning. Luminescence, 2014, 29(7), 908-913.
[http://dx.doi.org/10.1002/bio.2640] [PMID: 24523144]
[155]
Ma, W.; Dong, X.; Wang, J.; Yu, W.; Liu, G. Controlled synthesis and near-infrared luminescence of LaOBr:Nd3+ nanofibers and nanobelts. J. Nanosci. Nanotechnol., 2014, 14(8), 6196-6201.
[http://dx.doi.org/10.1166/jnn.2014.8865] [PMID: 25936086]
[156]
Guo, X.; Wang, J.; Dong, X.; Yu, W.; Liu, G. New strategy to achieve La2O2CN2:Eu3+ novel luminescent one-dimensional nanostructures. CrystEngComm, 2014, 16, 5409-5417.
[http://dx.doi.org/10.1039/C4CE00223G]
[157]
Guo, X.; Yu, W.; Dong, X.; Wang, J.; Ma, Q.; Liu, G.; Yang, M. A technique to fabricate La2O2CN2:Tb3+ nanofibers and nanoribbons with the same morphologies as the precursors. Eur. J. Inorg. Chem., 2015, 2015, 389-396.
[http://dx.doi.org/10.1002/ejic.201402860]
[158]
Guo, X.; Yu, W.; Dong, X.; Wang, J.; Ma, Q.; Liu, G.; Yang, M. Fabrication and upconversion luminescent properties of Er3+-doped and Er3+/Yb3+ codoped La2O2CN2 nanofibers. J. Am. Ceram. Soc., 2015, 98, 1215-1222.
[http://dx.doi.org/10.1111/jace.13466]
[159]
Wang, H.Y.; Yang, Y.; Wang, Y.; Zhao, Y.Y.; Li, X.; Wang, C. Luminescent properties of rare-earth oxyfluoride nanofibers prepared via electrospinning. J. Nanosci. Nanotechnol., 2009, 9(2), 1522-1525.
[http://dx.doi.org/10.1166/jnn.2009.C193] [PMID: 19441561]
[160]
Suryamas, A.B.; Munir, M.M.; Ogi, T. Khairurrijal; Okuyama, K. Intense green and yellow emissions from electrospun BCNO phosphor nanofibers. J. Mater. Chem., 2011, 21, 12629-12631.
[http://dx.doi.org/10.1039/c1jm12654g]
[161]
Gu, Y.; Zhang, Q.; Wang, H.; Li, Y. CaSi2O2N2:Eu nanofiber mat based on electrospinning: Facile synthesis, uniform arrangement, and application in white LEDs. J. Mater. Chem., 2011, 21, 17790-17797.
[http://dx.doi.org/10.1039/c1jm13351a]
[162]
Zhao, H.; Cui, B.; Wang, H.; Zhang, Q.; Li, Y. Facile synthesis of Ca0.68Si9Al3(ON)16:Eu2+ microbelts mat with the enhanced fluorescence and mechanical performance. J. Solid State Chem., 2016, 233, 374-380.
[http://dx.doi.org/10.1016/j.jssc.2015.10.044]
[163]
Zhang, B.; Zou, H.; Song, Y.; Guan, H.; Zhou, X.; Shi, Z.; Sheng, Y. Electrospinning fabrication and luminescence properties of Lu2O2S:Eu3+ fibers. CrystEngComm, 2017, 19, 699-707.
[http://dx.doi.org/10.1039/C6CE02391F]
[164]
Han, L.; Pan, M.; Lv, Y.; Gu, Y.; Wang, X.; Li, D.; Kong, Q.; Dong, X. Fabrication of Y2O2S:Eu3+ hollow nanofibers by sulfurization of Y2O3:Eu3+ hollow nanofibers. J. Mater. Sci. Mater. Electron., 2015, 26, 677-684.
[http://dx.doi.org/10.1007/s10854-014-2449-2]
[165]
Han, L.; Pan, M.; Hu, Y.; Xie, Y.; Liu, Y.; Li, D.; Dong, X. A novel scheme to obtain Y2O2S:Er3+ upconversion luminescent hollow nanofibers via precursor templating. J. Am. Ceram. Soc., 2015, 98, 2817-2822.
[http://dx.doi.org/10.1111/jace.13696]
[166]
Lu, X.; Yang, M.; Yang, L.; Ma, Q.; Dong, X.; Tian, J.Y. 2O2S:Yb3+, Er3+ nanofibers: Novel fabrication technique, structure and up-conversion luminescent characteristics. J. Mater. Sci. Mater. Electron., 2015, 26, 4078-4084.
[http://dx.doi.org/10.1007/s10854-015-2947-x]
[167]
Viswanathamurthi, P.; Bhattarai, N.; Kim, H.Y.; Lee, D.R. The photoluminescence properties of zinc oxide nanofibres prepared by electrospinning. Nanotechnology, 2004, 15, 320.
[http://dx.doi.org/10.1088/0957-4484/15/3/015]
[168]
Lee, D.Y.; Cho, J-E.; Cho, N-I.; Lee, M-H.; Lee, S-J.; Kim, B-Y. characterization of electrospun aluminum-doped zinc oxide nanofibers. Thin Solid Films, 2008, 517, 1262-1267.
[http://dx.doi.org/10.1016/j.tsf.2008.05.027]
[169]
Santangelo, S.; Patanè, S.; Frontera, P.; Pantò, F.; Triolo, C.; Stelitano, S.; Antonucci, P. Effect of calcium- and/or aluminum-incorporation on morphological, structural and photoluminescence properties of electro-spun zinc oxide fibers. Mater. Res. Bull., 2017, 92, 9-18.
[http://dx.doi.org/10.1016/j.materresbull.2017.03.062]
[170]
Wang, H.; Wang, Y.; Yang, Y.; Li, X.; Wang, C. Photoluminescence properties of the rare-earth ions in the TiO2 host nanofibers prepared via electrospinning. Mater. Res. Bull., 2009, 44, 408-414.
[http://dx.doi.org/10.1016/j.materresbull.2008.05.001]
[171]
Cacciotti, I.; Bianco, A.; Pezzotti, G.; Gusmano, G. Synthesis, thermal behaviour and luminescence properties of rare earth-doped titania nanofibers. Chem. Eng. J., 2011, 166, 751-764.
[http://dx.doi.org/10.1016/j.cej.2010.07.008]
[172]
Nasr, M.; Abou Chaaya, A.; Abboud, N.; Bechelany, M.; Viter, R.; Eid, C.; Khoury, A.; Miele, P. Photoluminescence: A very sensitive tool to detect the presence of anatase in rutile phase electrospun TiO2 nanofibers. Superlattices Microstruct., 2015, 77, 18-24.
[http://dx.doi.org/10.1016/j.spmi.2014.10.034]
[173]
Cacciotti, I.; Bianco, A.; Pezzotti, G.; Gusmano, G. Terbium and ytterbium-doped titania luminescent nanofibers by means of electrospinning technique. Mater. Chem. Phys., 2011, 126, 532-541.
[http://dx.doi.org/10.1016/j.matchemphys.2011.01.034]
[174]
Chen, J.; Song, Y.; Sheng, Y.; Chang, M.; Xie, X.; Abualrejal, M.M.A.; Guan, H.; Shi, Z.; Zou, H. Luminescence properties and Judd–Ofelt analysis of SiO2:Ln3+ (Eu, Tb) hollow nanofibers fabricated by co-axial electrospinning method. J. Alloys Compd., 2017, 716, 144-155.
[http://dx.doi.org/10.1016/j.jallcom.2017.05.070]
[175]
Viswanathamurthi, P.; Bhattarai, N.; Kim, H.Y.; Khil, M.S.; Lee, D.R.; Suh, E-K. GeO2 fibers: preparation, morphology and photoluminescence property. J. Chem. Phys., 2004, 121(1), 441-445.
[http://dx.doi.org/10.1063/1.1755666] [PMID: 15260565]
[176]
Wu, J.; Coffer, J.L. Strongly emissive erbium-doped tin oxide nanofibers derived from sol gel/electrospinning methods. J. Phys. Chem. C, 2007, 111, 16088-16091.
[http://dx.doi.org/10.1021/jp076338y]
[177]
Wu, J.; Coffer, J.L. Emissive erbium-doped silicon and germanium oxide nanofibers derived from an electrospinning process. Chem. Mater., 2007, 19, 6266-6276.
[http://dx.doi.org/10.1021/cm702226x]
[178]
Lu, X.; Liu, X.; Zhang, W.; Wang, C.; Wei, Y. Large-scale synthesis of tungsten oxide nanofibers by electrospinning. J. Colloid Interface Sci., 2006, 298(2), 996-999.
[http://dx.doi.org/10.1016/j.jcis.2006.01.032] [PMID: 16457838]
[179]
Sun, C.; Deng, J.; Kong, L.; Chen, L.; Shen, Z.; Cao, Y.; Zhang, H.; Wang, X. Structure and photoluminescence properties of β-Ga2O3 nanofibres synthesized via electrospinning method. IOP Conf. Ser. Mater. Sci. Eng., 2017, 275, 012046.
[http://dx.doi.org/10.1088/1757-899X/275/1/012046]
[180]
Luo, S.; Fan, J.; Liu, W.; Zhang, M.; Song, Z.; Lin, C.; Wu, X.; Chu, P.K. Synthesis and low-temperature photoluminescence properties of SnO2 nanowires and nanobelts. Nanotechnology, 2006, 17(6), 1695-1699.
[http://dx.doi.org/10.1088/0957-4484/17/6/025] [PMID: 26558579]
[181]
Zhang, Y.; Li, J.; Li, Q.; Zhu, L.; Liu, X.; Zhong, X.; Meng, J.; Cao, X. Preparation of In2O3 ceramic nanofibers by electrospinning and their optical properties. Scr. Mater., 2007, 56, 409-412.
[http://dx.doi.org/10.1016/j.scriptamat.2006.10.032]
[182]
Yu, H.; Li, Y.; Lan, X.; Liang, Z. Electrospinning preparation and luminescence properties of La2O3:Ce3+/Tb3+ nanofibers. J. Mater. Sci. Mater. Electron., 2017, 28, 8832-8836.
[http://dx.doi.org/10.1007/s10854-017-6611-5]
[183]
Li, J-M.; Zeng, X-L.; Dong, Y-H.; Xu, Z-A. White-light emission and weak antiferromagnetism from cubic rare-earth oxide Eu2O3 electrospun nanostructures. CrystEngComm, 2013, 15, 2372-2377.
[http://dx.doi.org/10.1039/c3ce26770a]
[184]
Tao, S.; Li, G.; Yin, J. Fluorescent nanofibrous membranes for trace detection of TNT vapor. J. Mater. Chem., 2007, 17, 2730-2736.
[http://dx.doi.org/10.1039/b618122h]
[185]
Li, Q.; Yan, R.; Dong, L.M.; Zhang, Y.F. Electrospinning preparation and luminescene properties of CaTiO3: RE (Eu3+/Gd3+) nanofibers. Dig. J. Nanomater. Biostruct., 2017, 12, 59-65.
[186]
Peng, C.; Hou, Z.; Zhang, C.; Li, G.; Lian, H.; Cheng, Z.; Lin, J. Synthesis and luminescent properties of CaTiO3: Pr3+ microfibers prepared by electrospinning method. Opt. Express, 2010, 18(7), 7543-7553.
[http://dx.doi.org/10.1364/OE.18.007543] [PMID: 20389776]
[187]
Haranath, D.; Khan, A.F.; Chander, H. Bright red luminescence and energy transfer of Pr3+ -doped (Ca,Zn)TiO3 phosphor for long decay applications. J. Phys. D Appl. Phys., 2006, 39, 4956.
[http://dx.doi.org/10.1088/0022-3727/39/23/009]
[188]
Li, H.; Huang, S.; Zhang, W.; Pan, W. Visible photoluminescence from amorphous barium titanate nanofibers. J. Alloys Compd., 2013, 551, 131-135.
[http://dx.doi.org/10.1016/j.jallcom.2012.10.046]
[189]
Chen, X.; Wang, Q.; Wu, X.; Wang, T.; Tang, Y.; Duan, Z.; Sun, D.; Zhao, X.; Wang, F.; Shi, W. Piezoelectric/photoluminescence effect in one-dimensional lead-free nanofibers. Scr. Mater., 2018, 145, 81-84.
[http://dx.doi.org/10.1016/j.scriptamat.2017.10.018]
[190]
Sang, R.L.; Chen, Y.; Zhang, Q.J.; Wang, L. Structural and photoluminescence characteristics of ZnTiO3:Pb2+ nanofibers produced by electrospinning. Key Eng. Mater., 2013, 562-565, 908-913.
[http://dx.doi.org/10.4028/www.scientific.net/KEM.562-565.908]
[191]
Hou, Z.; Yang, P.; Li, C.; Wang, L.; Lian, H.; Quan, Z.; Lin, J. Preparation and luminescence properties of YVO4:Ln and Y(V, P)O4:Ln (Ln = Eu3+, Sm3+, Dy3+) nanofibers and microbelts by sol-gel/electrospinning process. Chem. Mater., 2008, 20, 6686-6696.
[http://dx.doi.org/10.1021/cm801538t]
[192]
Hou, Z.; Chai, R.; Zhang, M.; Zhang, C.; Chong, P.; Xu, Z.; Li, G.; Lin, J. Fabrication and luminescence properties of one-dimensional CaMoO(4): Ln(3+) (Ln = Eu, Tb, Dy) nanofibers via electrospinning process. Langmuir, 2009, 25(20), 12340-12348.
[http://dx.doi.org/10.1021/la9016189] [PMID: 19583182]
[193]
Xu, L.; Song, H.; Dong, B.; Wang, Y.; Bai, X.; Wang, G.; Liu, Q. Electrospinning preparation and photoluminescence properties of lanthanum phosphate nanowires and nanotubes. J. Phys. Chem. C, 2009, 113, 9609-9615.
[http://dx.doi.org/10.1021/jp900916j]
[194]
Hou, Z.; Wang, L.; Lian, H.; Chai, R.; Zhang, C.; Cheng, Z.; Lin, J. Preparation and luminescence properties of Ce3+ and/or Tb3+ doped LaPO4 nanofibers and microbelts by electrospinning. J. Solid State Chem., 2009, 182, 698-708.
[http://dx.doi.org/10.1016/j.jssc.2008.12.021]
[195]
Yang, Y.; Liu, B.; Zhang, Y.; Lv, X.; Wei, L.; Wang, X. Fabrication and luminescence of BiPO4:Tb3+/Ce3+ nanofibers by electrospinning. Superlattices Microstruct., 2016, 90, 227-235.
[http://dx.doi.org/10.1016/j.spmi.2015.12.020]
[196]
Chen, J.; Sheng, Y.; Zhou, X.A.; Abualrejal, M.M.; Chang, M.; Shi, Z.; Zou, H. Dendrimer-based preparation and luminescence studies of SiO2 fibers doping Eu3+ activator in interstitial sites. RSC Advances, 2016, 6, 16452-16460.
[http://dx.doi.org/10.1039/C5RA25859F]
[197]
Zhang, Y.; Liu, Y.; Li, X.; Wang, Q.J.; Xie, E. Room temperature enhanced red emission from novel Eu(3+) doped ZnO nanocrystals uniformly dispersed in nanofibers. Nanotechnology, 2011, 22(41) 415702
[http://dx.doi.org/10.1088/0957-4484/22/41/415702] [PMID: 21914938]
[198]
Chang, M.; Sheng, Y.; Song, Y.; Zheng, K.; Zhou, X.; Zou, H. Luminescence properties and Judd–Ofelt analysis of TiO2:Eu3+ nanofibers via polymer-based electrospinning method. RSC Advances, 2016, 6, 52113-52121.
[http://dx.doi.org/10.1039/C6RA07509F]
[199]
Fang, D.; Zhang, M.; Luo, Z.; Cao, T.; Wang, Q.; Zhou, Z.; Jiang, M.; Xiong, C. Photoluminescent properties of Eu3+ doped electrospun CeO2 nanofibers. Opt. Mater., 2014, 38, 1-5.
[http://dx.doi.org/10.1016/j.optmat.2014.08.006]
[200]
Suryamas, A.B.; Munir, M.M.; Ogi, T.; Christopher, J. Hogan, J.; Okuyama, K. Photoluminescent ZrO2:Eu3+ nanofibers prepared via electrospinning. Jpn. J. Appl. Phys., 2010, 49 115003
[http://dx.doi.org/10.1143/JJAP.49.115003]
[201]
Gu, Y.; Shen, H.; Li, L.; Liu, W.; Wang, W.; Xu, D. Electrospinning synthesis and photoluminescence properties of SnO2:xEu3+. Chem. Res. Chin. Univ., 2014, 30, 879-884.
[http://dx.doi.org/10.1007/s40242-014-4252-2]
[202]
Liu, L.X.; Ma, Z.W.; Xie, Y.Z.; Su, Y.R.; Zhao, H.T.; Zhou, M.; Zhou, J.Y.; Li, J.; Xie, E.Q. Photoluminescence of rare earth3+ doped uniaxially aligned HfO2 nanotubes prepared by sputtering with electrospun polyvinylpyrolidone nanofibers as templates. J. Appl. Phys., 2010, 107 024309
[http://dx.doi.org/10.1063/1.3290974]
[203]
Yu, H.; Li, Y.; Song, Y.; Wu, Y.; Chen, B.; Li, P. Preparation and luminescent properties of Gd2O3:Eu3+ nanofibres made by electrospinning. Ceram. Int., 2016, 42, 1307-1313.
[http://dx.doi.org/10.1016/j.ceramint.2015.09.066]
[204]
Dong, G.; Chi, Y.; Xiao, X.; Liu, X.; Qian, B.; Ma, Z.; Wu, E.; Zeng, H.; Chen, D.; Qiu, J. Fabrication and optical properties of Y2O3: Eu3+ nanofibers prepared by electrospinning. Opt. Express, 2009, 17(25), 22514-22519.
[http://dx.doi.org/10.1364/OE.17.022514] [PMID: 20052176]
[205]
Zhang, H.; Chen, J.; Guo, H. Electrospinning Synthesis and luminescent properties of Lu2O3:Eu3+ nanofibers. J. Rare Earths, 2010, 28, 232-235.
[http://dx.doi.org/10.1016/S1002-0721(10)60331-6]
[206]
Zhao, J.; Zhang, W.; Xie, E.; Ma, Z.; Zhao, A.; Liu, Z. Structure and photoluminescence of β-Ga2O3:Eu3+ nanofibers prepared by electrospinning. Appl. Surf. Sci., 2011, 257, 4968-4972.
[http://dx.doi.org/10.1016/j.apsusc.2010.12.157]
[207]
Yu, H.; Song, H.; Pan, G.; Qin, R.; Fan, L.; Zhang, H.; Bai, X.; Li, S.; Zhao, H.; Lu, S. Preparation and luminescent properties of YVO4:Eu3+ nanofibers by electrospinning. J. Nanosci. Nanotechnol., 2008, 8(3), 1432-1436.
[http://dx.doi.org/10.1166/jnn.2008.361] [PMID: 18468169]
[208]
Liu, Y.; Gong, Y.; Mellott, N.P.; Wang, B.; Ye, H.; Wu, Y. Luminescence of delafossite-type CuAlO2 fibers with Eu substitution for Al cations. Sci. Technol. Adv. Mater., 2016, 17(1), 200-209.
[http://dx.doi.org/10.1080/14686996.2016.1172024] [PMID: 27877870]
[209]
Dong, G.; Xiao, X.; Liu, X.; Qian, B.; Zhang, Q.; Lin, G.; Ma, Z.; Chen, D.; Qiu, J. Intense red and yellow emissions from Sr2SiO4:Eu3+ (Eu2+) electrospun nanofibers. J. Electrochem. Soc., 2009, 156, J347-J350.
[http://dx.doi.org/10.1149/1.3223667]
[210]
Shen, H.; Liu, R.; Yang, M.; Zhou, J.; Gu, Y.; Yang, H.; Wang, W.; Xu, D. Electrospinning synthesis and photoluminescence properties of one-dimensional LuBO3:Ln3+ (Ln = Tb, Eu) nanofibers. Phys. Status Solidi., A Appl. Mater. Sci., 2013, 210, 1839-1845.
[http://dx.doi.org/10.1002/pssa.201329139]
[211]
Shen, H.; Feng, S.; Wang, Y.; Gu, Y.; Zhou, J.; Yang, H.; Feng, G.; Li, L.; Wang, W.; Liu, X.; Xu, D. Synthesis and photoluminescence properties of GdBO3:Ln3+ (Ln=Eu, Tb) nanofibers by electrospinning. J. Alloys Compd., 2013, 550, 531-535.
[http://dx.doi.org/10.1016/j.jallcom.2012.10.156]
[212]
Hou, Z.; Lian, H.; Zhang, M.; Wang, L.; Lü, M.; Zhang, C.; Lin, J. Preparation and luminescence properties of Gd2MoO6:Eu3+ nanofibers and nanobelts by electrospinning. J. Electrochem. Soc., 2009, 156, J209-J214.
[http://dx.doi.org/10.1149/1.3138702]
[213]
Bi, F.; Dong, X.; Wang, J.; Liu, G.; Bi, F.; Dong, X.; Wang, J.; Liu, G. Electrospinning preparation and photoluminescence properties of Y3Al5O12:Eu3+ nanobelts. Mater. Res., 2015, 18, 411-416.
[http://dx.doi.org/10.1590/1516-1439.351314]
[214]
Yim, C.J.; Unithrattil, S.; Chung, W.J.; Im, W.B. Comparative study of optical and structural properties of electrospun 1-dimensional CaYAl3O7:Eu3+ nanofibers and bulk phosphor. Mater. Charact., 2014, 95, 27-35.
[http://dx.doi.org/10.1016/j.matchar.2014.06.002]
[215]
Xie, M.; Luo, C. Synthesis and luminescence properties of Li2BaSiO4:Eu3+ phosphors. Phys. Status Solidi Rapid Res. Lett., 2012, 6, 412-414.
[http://dx.doi.org/10.1002/pssr.201206316]
[216]
Yim, C.J.; Unithrattil, S.; Chung, W.J.; Im, W.B. Preparation of electrospun pyrochlore-structure KGdTa2O7:Eu3+ phosphor: the optical and structural properties for white light emitting diode applications. J. Nanosci. Nanotechnol., 2013, 13(12), 7850-7854.
[http://dx.doi.org/10.1166/jnn.2013.8113] [PMID: 24266151]
[217]
Hou, Z.; Cheng, Z.; Li, G.; Wang, W.; Peng, C.; Li, C.; Ma, P.; Yang, D.; Kang, X.; Lin, J. Electrospinning-derived Tb2(WO4)3:Eu(3+) nanowires: energy transfer and tunable luminescence properties. Nanoscale, 2011, 3(4), 1568-1574.
[http://dx.doi.org/10.1039/c0nr00774a] [PMID: 21327213]
[218]
Peng, C.; Li, G.; Hou, Z.; Shang, M.; Lin, J. Electrospinning synthesis and luminescent properties of one-dimensional Ca2Gd8(SiO4)6O2:Eu3+ microfibers and microbelts. Mater. Chem. Phys., 2012, 136, 1008-1014.
[http://dx.doi.org/10.1016/j.matchemphys.2012.08.040]
[219]
Song, H.; Yu, H.; Pan, G.; Bai, X.; Dong, B.; Zhang, X.; Hark, S.K. Electrospinning preparation, structure, and photoluminescence properties of YBO3:Eu3+ nanotubes and nanowires. Chem. Mater., 2008, 20, 4762-4767.
[http://dx.doi.org/10.1021/cm8007864]
[220]
Qin, C.; Qin, L.; Chen, G.; Lin, T. One-dimensional Eu3+ and Tb3+ doped LaBO3 nanofibers: Fabrication and improved luminescence performances. Mater. Lett., 2013, 106, 436-438.
[http://dx.doi.org/10.1016/j.matlet.2013.05.105]
[221]
Peng, C.; Li, G.; Kang, X.; Li, C.; Lin, J. The fabrication of one-dimensional Ca4Y6(SiO4)6O: Ln3+ (Ln=Eu, Tb) phosphors by electrospinning method and their luminescence properties. J. Colloid Interface Sci., 2011, 355(1), 89-95.
[http://dx.doi.org/10.1016/j.jcis.2010.11.082] [PMID: 21186034]
[222]
Abualrejal, M.M.A.; Zou, H.; Chen, J.; Song, Y.; Sheng, Y. Electrospinning synthesis and photoluminescence properties of one-dimensional SiO2:Tb3+ nanofibers and nanobelts. Adv. Nanopart., 2017, 6, 33-47.
[http://dx.doi.org/10.4236/anp.2017.62004]
[223]
Du, P.; Song, L.; Xiong, J.; Xi, Z.; Jin, D.; Wang, L. Preparation and the luminescent properties of Tb3+-doped Gd2O3 fluorescent nanofibers via electrospinning. Nanotechnology, 2011, 22(3) 035602
[http://dx.doi.org/10.1088/0957-4484/22/3/035602] [PMID: 21149966]
[224]
Xie, Y.; Ma, Z.; Liu, L.; Su, Y.; Zhao, H.; Liu, Y.; Zhang, Z.; Duan, H.; Li, J.; Xie, E. Oxygen defects-modulated green photoluminescence of Tb-doped ZrO2 nanofibers. Appl. Phys. Lett., 2010, 97 141916
[http://dx.doi.org/10.1063/1.3496471]
[225]
Zhao, J.; Zhang, W.; Xie, E.; Liu, Z.; Feng, J.; Liu, Z. Photoluminescence properties of β-Ga2O3:Tb3+ nanofibers prepared by electrospinning. Mater. Sci. Eng. B, 2011, 176, 932-936.
[http://dx.doi.org/10.1016/j.mseb.2011.05.004]
[226]
Song, L.; Du, P.; Xiong, J.; Fan, X.; Jiao, Y. Preparation and luminescence properties of terbium-doped lanthanum oxide nanofibers by electrospinning. J. Lumin., 2012, 132, 171-174.
[http://dx.doi.org/10.1016/j.jlumin.2011.08.007]
[227]
Li, X.; Chen, Y.; Qian, Q.; Liu, X.; Xiao, L.; Chen, Q. Preparation and photoluminescence characteristics of Tb-, Sm- and Dy-doped Y2O3 nanofibers by electrospinning. J. Lumin., 2012, 132, 81-85.
[http://dx.doi.org/10.1016/j.jlumin.2011.07.003]
[228]
Li, B.; Zhang, H.; Lan, A.; Tang, H. One-dimensional CdWO4:Tb3+ nanofibers: Electrospinning fabrication and luminescence. Chem. Phys. Lett., 2015, 636, 22-25.
[http://dx.doi.org/10.1016/j.cplett.2015.07.010]
[229]
Li, Q.; Liu, Z.P.; Dong, L.M.; Zhang, Y.F. Facile synthesis and luminescene properties of CePO4:Tb3+ by electrospinning. Dig. J. Nanomater. Biostruct., 2016, 11, 1311-1317.
[230]
Bi, F.; Dong, X.; Wang, J.; Liu, G. Electrospinning preparation and photoluminescence properties of Y3Al5O12:Tb3+ nanostructures. Luminescence, 2015, 30(6), 751-759.
[http://dx.doi.org/10.1002/bio.2816] [PMID: 25428033]
[231]
Peng, C.; Shang, M.; Li, G.; Hou, Z.; Geng, D.; Lin, J. Electrospinning synthesis and luminescence properties of one-dimensional La(9.33)(SiO4)6O2: Ln3+ (Ln = Ce, Eu, Tb) microfibers. Dalton Trans., 2012, 41(16), 4780-4788.
[http://dx.doi.org/10.1039/c2dt12220k] [PMID: 22382636]
[232]
Song, L.; Du, P.; Jiang, Q.; Cao, H.; Xiong, J. Synthesis and luminescence of high-brightness Gd2O2SO4:Tb3+ nanopieces and the enhanced luminescence by alkali metal ions co-doping. J. Lumin., 2014, 150, 50-54.
[http://dx.doi.org/10.1016/j.jlumin.2014.01.043]
[233]
Huang, Z.; Huang, S.; Ou, G.; Pan, W. Systhesis, phase transformation and photoluminescence properties of Eu:La(1-x)Gd(x)VO4 nanofibers by electrospinning method. Nanoscale, 2012, 4(16), 5065-5070.
[http://dx.doi.org/10.1039/c2nr31135f] [PMID: 22772795]
[234]
Lu, Q.; Liu, Q.; Zhuang, J.; Liu, G.; Wei, Q. Ce3+-doped Lu2Si2O7 luminescent fibers derived from electrospinning: Facile preparation and flexible fiber molding. J. Mater. Sci., 2013, 48, 8471-8482.
[http://dx.doi.org/10.1007/s10853-013-7664-3]
[235]
Lu, Q.; Liu, Q.; Wei, Q.; Liu, G.; Zhuang, J. Preparation and characterization of Lu2SiO5:Ce3+ luminescent ceramic fibers via electrospinning. Ceram. Int., 2013, 39, 8159-8164.
[http://dx.doi.org/10.1016/j.ceramint.2013.03.090]
[236]
Li, B.; Zhang, H.; Lan, A.; Tang, H. Ca(3−x)Srx(PO4)2:Eu2+ nanofibers: Electrospinning fabrication and tunable luminescence. Superlattices Microstruct., 2015, 86, 425-429.
[http://dx.doi.org/10.1016/j.spmi.2015.08.014]
[237]
Li, X.; Yu, M.; Hou, Z.; Li, G.; Ma, P.; Wang, W.; Cheng, Z.; Lin, J. One-dimensional GdVO4:Ln3+ (Ln=Eu, Dy, Sm) nanofibers: Electrospinning preparation and luminescence properties. J. Solid State Chem., 2011, 184, 141-148.
[http://dx.doi.org/10.1016/j.jssc.2010.11.019]
[238]
Chen, Z.; Trofimov, A.A.; Jacobsohn, L.G.; Xiao, H.; Kornev, K.G.; Xu, D.; Peng, F. Permeation and optical properties of YAG:Er3+ fiber membrane scintillators prepared by novel sol-gel/electrospinning method. J. Sol-Gel Sci. Technol., 2017, 83, 35-43.
[http://dx.doi.org/10.1007/s10971-017-4387-y]
[239]
Liu, Z.; Yuwen, M.; Liu, J.; Yu, C.; Xuan, T.; Li, H. Electrospinning, optical properties and white led applications of one-dimensional CaAl12O19:Mn4+ nanofiber phosphors. Ceram. Int., 2017, 43, 5674-5679.
[http://dx.doi.org/10.1016/j.ceramint.2017.01.105]
[240]
Hassan, M.S.; Kang, Y-S.; Kim, B-S.; Kim, I-S.; Kim, H-Y.; Khil, M-S. Synthesis of praseodymium oxide nanofiber by electrospinning. Superlattices Microstruct., 2011, 50, 139-144.
[http://dx.doi.org/10.1016/j.spmi.2011.05.010]
[241]
Hou, Z.; Zhang, C.; Li, C.; Xu, Z.; Cheng, Z.; Li, G.; Wang, W.; Peng, C.; Lin, J. Luminescent porous silica fibers as drug carriers. Chemistry, 2010, 16(48), 14513-14519.
[http://dx.doi.org/10.1002/chem.201000900] [PMID: 21077051]
[242]
Kumar, K.S.; Song, C-G.; Bak, G.M.; Heo, G.; Seong, M-J.; Yoon, J-W. Phase control of yttrium (Y)-doped TiO2 nanofibers and intensive visible photoluminescence. J. Alloys Compd., 2014, 617, 683-687.
[http://dx.doi.org/10.1016/j.jallcom.2014.08.067]
[243]
Das, K.; Sharma, S.N.; Kumar, M.; De, S.K. Morphology dependent luminescence properties of co doped TiO2 nanostructures. J. Phys. Chem. C, 2009, 113, 14783-14792.
[http://dx.doi.org/10.1021/jp9048956]
[244]
Jia, C.W.; Zhao, J.G.; Duan, H.G.; Xie, E.Q. Visible photoluminescence from Er3+-doped TiO2 nanofibres by electrospinning. Mater. Lett., 2007, 61, 4389-4392.
[http://dx.doi.org/10.1016/j.matlet.2007.02.010]
[245]
Bai, J.; Zhao, R.; Han, G.; Li, Z.; Diao, G. Synthesis of 1D upconversion CeO2:Er, Yb nanofibers via electrospinning and their performance in dye-sensitized solar cells. RSC Advances, 2015, 5, 43328-43333.
[http://dx.doi.org/10.1039/C5RA06917C]
[246]
Zhang, X.; Xu, D.; Zhou, G.; Wang, X.; Liu, H.; Yu, Z.; Zhang, G.; Zhu, L. Color tunable up-conversion emission from ZrO2:Er3+, Yb3+ textile fibers. RSC Advances, 2016, 6, 103973-103980.
[http://dx.doi.org/10.1039/C6RA20388D]
[247]
Wu, J.; Coffer, J.L.; Wang, Y.; Schulze, R. Oxidized germanium as a broad-band sensitizer for Er-doped SnO2 nanofibers. J. Phys. Chem. C, 2009, 113, 12-16.
[http://dx.doi.org/10.1021/jp8080996]
[248]
Liu, L.; Wang, Y.; Su, Y.; Ma, Z.; Xie, Y.; Zhao, H.; Chen, C.; Zhang, Z.; Xie, E. Synthesis and white light emission of rare earth-doped HfO2 nanotubes. J. Am. Ceram. Soc., 2011, 94, 2141-2145.
[http://dx.doi.org/10.1111/j.1551-2916.2010.04375.x]
[249]
Li, J-M.; Wei, D-P.; Hu, Y-B. Jie-Fang; Xu, Z.-A. Synthesis of ultrafine green-emitting BaCO3 nanowires with 18.5 nm-diameter by CO2 vapor-assisted electrospinning. CrystEngComm, 2014, 16, 964-968.
[http://dx.doi.org/10.1039/c3ce41988f]
[250]
Dong, Q.Z.; He, L.; Li, W.S.; Sun, W.M. The fabrication of one-dimensional BaAl12O19:Mn2+ phosphors by electrospinning method. Mater. Sci., 2016, 852, 565-572.
[251]
Fu, Y.; Li, X.; Sun, C.; Ren, Z.; Weng, W.; Mao, C.; Han, G. pH-triggered SrTiO3:Er nanofibers with optically monitored and controlled drug delivery functionality. ACS Appl. Mater. Interfaces, 2015, 7(45), 25514-25521.
[http://dx.doi.org/10.1021/acsami.5b08953] [PMID: 26544158]
[252]
Li, X.; Zhang, Q.; Ahmad, Z.; Huang, J.; Ren, Z.; Weng, W.; Han, G.; Mao, C. Near-infrared luminescent CaTiO3:Nd3+ nanofibers with tunable and trackable drug release kinetics. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(37), 7449-7456.
[http://dx.doi.org/10.1039/C5TB01158B] [PMID: 27398215]
[253]
Yu, H.; Wang, S.; Zhou, L.; Wang, W.; Wang, M. Fabrication and luminescent properties of Eu3+ doped lanthanide oxide nanowires and nanotubes by electrospinning. Proceedings of the 2009 Asia-Pacific Power and Energy Engineering Conference, 2009, pp. 1-4.
[254]
Miriyala, N.; Prashanthi, K.; Thundat, T. Oxygen vacancy dominant strong visible photoluminescence from BiFeO3 nanotubes. Phys. Status Solidi Rapid Res. Lett., 2013, 7, 668-671.
[http://dx.doi.org/10.1002/pssr.201308069]
[255]
Philip, G.G.; Senthamizhan, A.; Natarajan, T.S.; Chandrasekaran, G.; Therese, H.A. The effect of gadolinium doping on the structural, magnetic and photoluminescence properties of electrospun bismuth ferrite nanofibers. Ceram. Int., 2015, 41, 13361-13365.
[http://dx.doi.org/10.1016/j.ceramint.2015.07.122]
[256]
Keereeta, Y.; Thongtem, T.; Thongtem, S. Fabrication of ZnWO4 nanofibers by a high direct voltage electrospinning process. J. Alloys Compd., 2011, 509, 6689-6695.
[http://dx.doi.org/10.1016/j.jallcom.2011.03.140]
[257]
Wannapop, S.; Thongtem, T.; Thongtem, S. Photoemission and energy gap of MgWO4 particles connecting as nanofibers synthesized by electrospinning-calcination combinations. Appl. Surf. Sci., 2012, 258, 4971-4976.
[http://dx.doi.org/10.1016/j.apsusc.2012.01.133]
[258]
Xu, X.; Zhao, S.; Liang, K.; Zeng, J. Electrospinning preparation and luminescence properties of one-dimensional SrWO4:Sm3+ nanofibers. J. Mater. Sci. Mater. Electron., 2014, 25, 3324-3331.
[http://dx.doi.org/10.1007/s10854-014-2021-0]
[259]
Wannapop, S.; Thongtem, T.; Thongtem, S. Characterization of SrWO4–PVA and SrWO4 spiders’ webs synthesized by electrospinning. Ceram. Int., 2011, 37, 3499-3507.
[http://dx.doi.org/10.1016/j.ceramint.2011.06.005]
[260]
Keereeta, Y.; Thongtem, T.; Thongtem, S. Synthesis of lanthanum tungstate interconnecting nanoparticles by high voltage electrospinning. Appl. Surf. Sci., 2015, 351, 1075-1080.
[http://dx.doi.org/10.1016/j.apsusc.2015.05.194]
[261]
Song, L.; Liu, S.; Lu, Q.; Zhao, G. Fabrication and characterization of electrospun orthorhombic InVO4 nanofibers. Appl. Surf. Sci., 2012, 258, 3789-3794.
[http://dx.doi.org/10.1016/j.apsusc.2011.12.029]
[262]
Rambabu, U.; Han, S-D. Synthesis and luminescence properties of broad band greenish-yellow emitting LnVO4:Bi3+ and (Ln1, Ln2)VO4:Bi3+ (Ln=La, Gd and Y) as down conversion phosphors. Ceram. Int., 2013, 39, 701-708.
[http://dx.doi.org/10.1016/j.ceramint.2012.06.081]
[263]
Liu, Y.; Huang, Y.; Seo, H.J.; Wu, Y. Blueshift in near-band-edge emission in Y3+-doped CuAlO2 nanofibers. Opt. Mater. Express, 2014, 4, 2602-2607.
[http://dx.doi.org/10.1364/OME.4.002602]
[264]
Dong, G.; Liang, M.; Qin, H.; Chai, G.; Zhang, X.; Ma, Z.; Peng, M.; Qiu, J. Controllable fabrication and broadband near-infrared luminescence of various Ni2+-activated ZnAl2O4 nanostructures by a single-nozzle electrospinning technique. Phys. Chem. Chem. Phys., 2012, 14(39), 13594-13600.
[http://dx.doi.org/10.1039/c2cp42235b] [PMID: 22962668]
[265]
Yang, D.; Zhao, G.; Pan, Q.; Liang, M.; Ma, Z.; Dong, G.; Chen, D.; Qiu, J. Electrospun Nd3+-doped spinel nanoparticles/nanofibers with both excitation and emission wavelengths in the optical window of cells and tissues. Mater. Express, 2013, 3, 210-216.
[http://dx.doi.org/10.1166/mex.2013.1119]
[266]
Wang, L.; Hou, Z.; Quan, Z.; Lian, H.; Yang, P.; Lin, J. Preparation and luminescence properties of Mn2+-doped ZnGa2O4 nanofibers via electrospinning process. Mater. Res. Bull., 2009, 44, 1978-1983.
[http://dx.doi.org/10.1016/j.materresbull.2009.06.008]
[267]
Wang, L.; Liu, X.; Hou, Z.; Li, C.; Yang, P.; Cheng, Z.; Lian, H.; Lin, J. Electrospinning synthesis and luminescence properties of one-dimensional Zn2SiO4:Mn2+ microfibers and microbelts. J. Phys. Chem. C, 2008, 112, 18882-18888.
[http://dx.doi.org/10.1021/jp806392a]
[268]
Dong, G.; Xiao, X.; Zhang, L.; Ma, Z.; Bao, X.; Peng, M.; Zhang, Q.; Qiu, J. Preparation and optical properties of red, green and blue afterglow electrospun nanofibers. J. Mater. Chem., 2011, 21, 2194-2203.
[http://dx.doi.org/10.1039/C0JM02851G]
[269]
Du, P.; Song, L.; Xiong, J.; Cao, H.; Xi, Z.; Guo, S.; Wang, N.; Chen, J. Electrospinning fabrication and luminescent properties of SrMoO4:Sm3+ nanofibers. J. Alloys Compd., 2012, 540, 179-183.
[http://dx.doi.org/10.1016/j.jallcom.2012.06.025]
[270]
He, L.; Jia, B.; Che, L.; Li, W.; Sun, W. Preparation and optical properties of afterglow Sr2MgSi2O7:Eu2+, Dy3+ electrospun nanofibers. J. Lumin., 2016, 172, 317-322.
[http://dx.doi.org/10.1016/j.jlumin.2015.12.012]
[271]
Zhu, Y.; Chen, Z.; Ge, M. Preparation of Sr2MgSi2O7:Eu2+, Dy3+ nanofiber by electrospinning assisted solid-state reaction. J. Mater. Sci. Mater. Electron., 2014, 25, 2857-2862.
[http://dx.doi.org/10.1007/s10854-014-1952-9]
[272]
Xin, S.; Wang, Y.; Dong, P.; Zeng, W.; Zhang, J. Preparation, characterization, and luminescent properties of CaAl2O4:Eu2+, Nd3+ nanofibers using core-sheath CaAl2O4:Eu2+, Nd3+/carbon nanofibers as templates. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2013, 1, 8156-8160.
[http://dx.doi.org/10.1039/c3tc31356e]
[273]
Dong, G.; Xiao, X.; Liu, X.; Qian, B.; Ma, Z.; Chen, D.; Qiu, J. Preparation and optical properties of long afterglow europium-doped Ca(Sr)Al2Si2O8 electrospun nanofibers. J. Electrochem. Soc., 2009, 156, J356-J360.
[http://dx.doi.org/10.1149/1.3223986]
[274]
Xu, C.; Guo, J.; Li, Y.; Seo, H.J. Enhanced luminescence of Ca2MgSi2O7:Eu2+ fibers by sol-gel assisted electrospinning. Opt. Mater., 2013, 35, 893-897.
[http://dx.doi.org/10.1016/j.optmat.2012.10.048]
[275]
Esfahani, H.; Jose, R.; Ramakrishna, S. Electrospun ceramic nanofiber mats today: Synthesis, properties, and applications. Materials (Basel), 2017, 10(11), 1238.
[http://dx.doi.org/10.3390/ma10111238] [PMID: 29077074]
[276]
Suryamas, A.B.; Munir, M.M.; Iskandar, F.; Okuyama, K. Photoluminescent and crystalline properties of Y3−xAl5O12:Cex3+ phosphor nanofibers prepared by electrospinning. J. Appl. Phys., 2009, 105 064311
[http://dx.doi.org/10.1063/1.3095483]
[277]
Mondal, K.; Hartman, K.; Dasgupta, D.; Trifon, G.; Dasari, M. Synthesis and characterization of Y2Ti2O7 and ErxY2−xTi2O7 nanofibers. J. Sol-Gel Sci. Technol., 2015, 73, 265-269.
[http://dx.doi.org/10.1007/s10971-014-3574-3]
[278]
Liu, Y.; Olson, T.L.; Wu, Y. Luminescence and microstructure of Nd doped Y2Si2O7 electrospun fibers. J. Am. Ceram. Soc., 2014, 97, 2390-2393.
[http://dx.doi.org/10.1111/jace.13070]
[279]
Bi, F.; Dong, X.; Wang, J.; Liu, G. Facile electrospinning preparation and up-conversion luminescence performance of Y3Al5O12:Er3+, Yb3+ nanobelts. J. Inorg. Organomet. Polym. Mater., 2014, 24, 407-415.
[http://dx.doi.org/10.1007/s10904-013-9999-2]
[280]
Wang, L.; Hou, Z.; Quan, Z.; Li, C.; Yang, J.; Lian, H.; Yang, P.; Lin, J. One-dimensional Ce3+- and/or Tb3+-doped X1-Y2SiO5 nanofibers and microbelts: electrospinning preparation and luminescent properties. Inorg. Chem., 2009, 48(14), 6731-6739.
[http://dx.doi.org/10.1021/ic9006789] [PMID: 19522469]
[281]
Mani, K.P.; George, V.; Ramakrishnan, B.P.; Joseph, C.; Viswambharan, U.N.; Abraham, I.M. Synthesis and photoluminescence studies of one dimensional Sm2MoO6 nanofibers derived from electrospinning process. J. Mater. Res. Technol., 2015, 4, 224-227.
[http://dx.doi.org/10.1016/j.jmrt.2015.01.005]
[282]
Fu, Y.; Gong, S.; Liu, X.; Xu, G.; Ren, Z.; Li, X.; Han, G. Crystallization and concentration modulated tunable upconversion luminescence of Er3+ doped PZT nanofibers. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2014, 3, 382-389.
[http://dx.doi.org/10.1039/C4TC01784F]
[283]
Gao, L.; Li, C. Preparation and photoluminescence properties of electrospun nanofibers of C60/PVK. J. Lumin., 2010, 130, 236-239.
[http://dx.doi.org/10.1016/j.jlumin.2009.08.015]
[284]
Yang, P.; Zhan, S.; Huang, Z.; Zhai, J.; Wang, D.; Xin, Y.; Zhang, L.; Sun, M.; Shao, C. The fabrication of PPV/C60 composite nanofibers with highly optoelectric response by optimization solvents and electrospinning technology. Mater. Lett., 2011, 65, 537-539.
[http://dx.doi.org/10.1016/j.matlet.2010.10.038]
[285]
Bounioux, C.; Itzhak, R.; Avrahami, R.; Zussman, E.; Frey, J.; Katz, E.A.; Yerushalmi-Rozen, R. Electrospun fibers of functional nanocomposites composed of single-walled carbon nanotubes, fullerene derivatives, and poly(3-hexylthiophene). J. Polym. Sci., B, Polym. Phys., 2011, 49, 1263-1268.
[http://dx.doi.org/10.1002/polb.22281]
[286]
Amirian, M.; Chakoli, A.N.; Sui, J.H.; Cai, W. Enhanced mechanical and photoluminescence effect of poly(l-lactide) reinforced with functionalized multiwalled carbon nanotubes. Polym. Bull., 2012, 68, 1747-1763.
[http://dx.doi.org/10.1007/s00289-012-0700-7]
[287]
Adhikary, P.; Biswas, A.; Mandal, D. Improved sensitivity of wearable nanogenerators made of electrospun Eu3+ doped P(VDF-HFP)/graphene composite nanofibers for self-powered voice recognition. Nanotechnology, 2016, 27(49) 495501
[http://dx.doi.org/10.1088/0957-4484/27/49/495501] [PMID: 27831929]
[288]
Zhai, Y.; Bai, X.; Cui, H.; Zhu, J.; Liu, W.; Zhang, T.; Dong, B.; Pan, G.; Xu, L.; Zhang, S.; Song, H. Carbon dot/polyvinylpyrrolidone hybrid nanofibers with efficient solid-state photoluminescence constructed using an electrospinning technique. Nanotechnology, 2018, 29(2) 025706
[http://dx.doi.org/10.1088/1361-6528/aa99be] [PMID: 29125471]
[289]
Alam, A-M.; Liu, Y.; Park, M.; Park, S-J.; Kim, H-Y. Preparation and characterization of optically transparent and photoluminescent electrospun nanofiber composed of carbon quantum dots and polyacrylonitrile blend with polyacrylic acid. Polymer (Guildf.), 2015, 59, 35-41.
[http://dx.doi.org/10.1016/j.polymer.2014.12.061]
[290]
Safaei, B.; Youssefi, M.; Rezaei, B.; Irannejad, N. Synthesis and properties of photoluminescent carbon quantum dot/polyacrylonitrile composite nanofibers. Smart Sci., 2018, 6, 117-124.
[http://dx.doi.org/10.1080/23080477.2017.1399318]
[291]
He, J.; He, Y.; Chen, Y.; Zhang, X.; Hu, C.; Zhuang, J.; Lei, B.; Liu, Y. Construction and multifunctional applications of carbon Dots/PVA nanofibers with phosphorescence and thermally activated delayed fluorescence. Chem. Eng. J., 2018, 347, 505-513.
[http://dx.doi.org/10.1016/j.cej.2018.04.110]
[292]
Zhai, Y.; Bai, X.; Zhu, J.; Sun, X.; Pan, G.; Dong, B.; Xu, L.; Xu, W.; Zhang, S.; Song, H. Luminescence carbon dot-based nanofibers for a water-insoluble drug release system and their monitoring of drug release. J. Mater. Chem. B Mater. Biol. Med., 2018, 6, 3579-3585.
[http://dx.doi.org/10.1039/C8TB00117K]
[293]
Lin, M.; Zou, H.Y.; Yang, T.; Liu, Z.X.; Liu, H.; Huang, C.Z. An inner filter effect based sensor of tetracycline hydrochloride as developed by loading photoluminescent carbon nanodots in the electrospun nanofibers. Nanoscale, 2016, 8(5), 2999-3007.
[http://dx.doi.org/10.1039/C5NR08177G] [PMID: 26781447]
[294]
Li, S.; Zhou, S.; Xu, H.; Xiao, L.; Wang, Y.; Shen, H.; Wang, H.; Yuan, Q. Luminescent properties and sensing performance of a carbon quantum dot encapsulated mesoporous silica/polyacrylonitrile electrospun nanofibrous membrane. J. Mater. Sci., 2016, 51, 6801-6811.
[http://dx.doi.org/10.1007/s10853-016-9967-7]
[295]
Zhang, P.; Zhao, X.; Ji, Y.; Ouyang, Z.; Wen, X.; Li, J.; Su, Z.; Wei, G. Electrospinning graphene quantum dots into a nanofibrous membrane for dual-purpose fluorescent and electrochemical biosensors. J. Mater. Chem. B Mater. Biol. Med., 2015, 3, 2487-2496.
[http://dx.doi.org/10.1039/C4TB02092H]
[296]
Liao, B.; Wang, W.; Long, P.; Deng, X.; He, B.; Liu, Q.; Yi, S. The carbon nanoparticles grafted with copolymers of styrene and spiropyran with reversibly photoswitchable fluorescence. Carbon, 2015, 91, 30-37.
[http://dx.doi.org/10.1016/j.carbon.2015.04.030]
[297]
Wang, Y.; Zhu, Y.; Huang, J.; Cai, J.; Zhu, J.; Yang, X.; Shen, J.; Li, C. Perovskite quantum dots encapsulated in electrospun fiber membranes as multifunctional supersensitive sensors for biomolecules, metal ions and pH. Nanoscale Horiz., 2017, 2, 225-232.
[http://dx.doi.org/10.1039/C7NH00057J]
[298]
Wang, Y.; Zhu, Y.; Huang, J.; Cai, J.; Zhu, J.; Yang, X.; Shen, J.; Jiang, H.; Li, C. CsPbBr3 perovskite quantum dots-based monolithic electrospun fiber membrane as an ultrastable and ultrasensitive fluorescent sensor in aqueous medium. J. Phys. Chem. Lett., 2016, 7(21), 4253-4258.
[http://dx.doi.org/10.1021/acs.jpclett.6b02045] [PMID: 27734662]
[299]
Tsai, P-C.; Chen, J-Y.; Ercan, E.; Chueh, C-C.; Tung, S-H.; Chen, W-C. Uniform luminous perovskite nanofibers with color-tunability and improved stability prepared by one-step core/shell electrospinning. Small, 2018, 14(22) e1704379
[http://dx.doi.org/10.1002/smll.201704379] [PMID: 29709108]
[300]
Sultana, A.; Alam, M.M.; Sadhukhan, P.; Ghorai, U.K.; Das, S.; Middya, T.R.; Mandal, D. Organo-lead halide perovskite regulated green light emitting poly(vinylidene fluoride) electrospun nanofiber mat and its potential utility for ambient mechanical energy harvesting application. Nano Energy, 2018, 49, 380-392.
[http://dx.doi.org/10.1016/j.nanoen.2018.04.057]
[301]
Abitbol, T.; Wilson, J.T.; Gray, D.G. Electrospinning of fluorescent fibers from CdSe/ZnS quantum dots in cellulose triacetate. J. Appl. Polym. Sci., 2011, 119, 803-810.
[http://dx.doi.org/10.1002/app.32782]
[302]
Xiaoqiang, L.; Chen, S.; Hua, Q.; Hong, S.; Kenji, O. Fabrication of fluorescent poly(l-lactide-co-caprolactone) fibers with quantum-dot incorporation from emulsion electrospinning for chloramphenicol detection. J. Appl. Polym. Sci., 2017, 134, 44584.
[http://dx.doi.org/10.1002/app.44584]
[303]
Zhu, L.; Yang, S.; Wang, J.; Wang, C-F.; Chen, L.; Chen, S. Quantum-dot-embedded polymeric fiber films with photoluminescence and superhydrophobicity. Mater. Lett., 2013, 99, 54-56.
[http://dx.doi.org/10.1016/j.matlet.2012.03.118]
[304]
Başlak, C.; Köysüren, Ö.; Kuş, M. Electrospun Nanofibers with CdTe QDs, CdTeSe QDs and CdTe/CdS Core-Shell QDs In: Proceedings of the 2017 IEEE 7th International Conference, Nanomaterials: Application and Properties (NAP); Odessa, UkraineSeptember 10-15, 2017IEEE, 2017; pp. 03NNSA39-1.
[http://dx.doi.org/10.1109/NAP.2017.8190290]
[305]
Demir, M.M.; Soyal, D.; Ünlü, C.; Kuş, M.; Özçelik, S. Controlling spontaneous emission of CdSe nanoparticles dispersed in electrospun fibers of polycarbonate urethane. J. Phys. Chem. C, 2009, 113, 11273-11278.
[http://dx.doi.org/10.1021/jp903899s]
[306]
Wang, H.; Lu, X.; Zhao, Y.; Wang, C. Preparation and characterization of ZnS:Cu/PVA composite nanofibers via electrospinning. Mater. Lett., 2006, 60, 2480-2484.
[http://dx.doi.org/10.1016/j.matlet.2006.01.021]
[307]
Dhandayuthapani, B.; Poulose, A.C.; Nagaoka, Y.; Hasumura, T.; Yoshida, Y.; Maekawa, T.; Kumar, D.S. Biomimetic smart nanocomposite: in vitro biological evaluation of zein electrospun fluorescent nanofiber encapsulated CdS quantum dots. Biofabrication, 2012, 4(2) 025008
[http://dx.doi.org/10.1088/1758-5082/4/2/025008] [PMID: 22592161]
[308]
Kim, B-S.; Song, H-M.; Lee, C-S.; Lee, S-G.; Son, Y-A. Preparation of luminescing nanocrystal and its application to electrospinning. Fibers Polym., 2008, 9, 534-537.
[http://dx.doi.org/10.1007/s12221-008-0085-2]
[309]
Altıntas, Y.; Kiremitler, N.B.; Genç, S.; Onses, M.S.; Mutlugün, E. FRET enabled light harvesting within quantum dot loaded nanofibers. J. Phys. D Appl. Phys., 2018, 51 065111
[http://dx.doi.org/10.1088/1361-6463/aaa55a]
[310]
Liu, H.; Edel, J.B.; Bellan, L.M.; Craighead, H.G. Electrospun polymer nanofibers as subwavelength optical waveguides incorporating quantum dots. Small, 2006, 2(4), 495-499.
[http://dx.doi.org/10.1002/smll.200500432] [PMID: 17193073]
[311]
Zhu, J.; Wei, S.; Patil, R.; Rutman, D.; Kucknoor, A.S.; Wang, A.; Guo, Z. Ionic liquid assisted electrospinning of quantum dots/elastomer composite nanofibers. Polymer (Guildf.), 2011, 52, 1954-1962.
[http://dx.doi.org/10.1016/j.polymer.2011.02.051]
[312]
Liu, Y.; Wang, J.; Che, Q.; Yang, P.; Yue, Y. Hydrophobic and hydrophilic quantum dots embedded in poly(vinyl pyrrolidone) fibers with bright photoluminescence. Nanosci. Nanotechnol. Lett., 2018, 7, 105-110.
[http://dx.doi.org/10.1166/nnl.2015.1911]
[313]
Saito, T.; Kimura, S.; Nishiyama, Y.; Isogai, A. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules, 2007, 8(8), 2485-2491.
[http://dx.doi.org/10.1021/bm0703970] [PMID: 17630692]
[314]
Yao, J.; Ji, P.; Wang, B.; Wang, H.; Chen, S. Color-tunable luminescent macrofibers based on CdTe QDs-loaded bacterial cellulose nanofibers for pH and glucose sensing. Sens. Actuators B Chem., 2018, 254, 110-119.
[http://dx.doi.org/10.1016/j.snb.2017.07.071]
[315]
Sui, X.; Shao, C.; Liu, Y. Photoluminescence of polyethylene oxide-ZnO composite electrospun fibers. Polymer (Guildf.), 2007, 48, 1459-1463.
[http://dx.doi.org/10.1016/j.polymer.2007.01.039]
[316]
Zhang, Z.; Shao, C.; Gao, F.; Li, X.; Liu, Y. Enhanced ultraviolet emission from highly dispersed ZnO quantum dots embedded in poly(vinyl pyrrolidone) electrospun nanofibers. J. Colloid Interface Sci., 2010, 347(2), 215-220.
[http://dx.doi.org/10.1016/j.jcis.2010.03.052] [PMID: 20400088]
[317]
Sui, X.M.; Shao, C.L.; Liu, Y.C. White-light emission of polyvinyl alcohol/ZnO hybrid nanofibers prepared by electrospinning. Appl. Phys. Lett., 2005, 87 113115
[http://dx.doi.org/10.1063/1.2048808]
[318]
Wang, C.; Yan, E.; Huang, Z.; Zhao, Q.; Xin, Y. Fabrication of highly photoluminescent TiO2/PPV hybrid nanoparticle-polymer fibers by electrospinning. Macromol. Rapid Commun., 2007, 28, 205-209.
[http://dx.doi.org/10.1002/marc.200600626]
[319]
Liu, S.; Tan, L.; Li, X.; Fu, J.; Chronakis, I.S.; Ge, M. Gold nanoparticles-gelatin hybrid fibers with bright photoluminescence. Mater. Lett., 2014, 135, 1-4.
[http://dx.doi.org/10.1016/j.matlet.2014.07.070]
[320]
Zhang, J.; Li, X.; Li, S.; Zhang, J.C.; Yan, X.; Yu, G.F.; Yang, D.P.; Long, Y.Z. Ultrasensitive fluorescence lifetime tuning in patterned polymer composite nanofibers with plasmonic nanostructures for multiplexing. Macromol. Rapid Commun., 2018, 40(5)1800022
[http://dx.doi.org/10.1002/marc.201800022] [PMID: 29675910]
[321]
Senthamizhan, A.; Celebioglu, A.; Uyar, T. Ultrafast on-site selective visual detection of TNT at sub-ppt level using fluorescent gold cluster incorporated single nanofiber. Chem. Commun. (Camb.), 2015, 51(26), 5590-5593.
[http://dx.doi.org/10.1039/C4CC01190B] [PMID: 24949681]
[322]
Baptista, A.C.; Botas, A.M.; Almeida, A.P.C.; Nicolau, A.T.; Falcão, B.P.; Soares, M.J.; Leitão, J.P.; Martins, R.; Borges, J.P.; Ferreira, I. Down conversion photoluminescence on PVP/Ag-nanoparticles electrospun composite fibers. Opt. Mater., 2015, 39, 278-281.
[http://dx.doi.org/10.1016/j.optmat.2014.11.015]
[323]
Senthamizhan, A.; Celebioglu, A.; Uyar, T. Real-time selective visual monitoring of Hg(2+) detection at ppt level: An approach to lighting electrospun nanofibers using gold nanoclusters. Sci. Rep., 2015, 5, 10403.
[http://dx.doi.org/10.1038/srep10403] [PMID: 26020609]
[324]
Ortaç, B.; Kayaci, F.; Vural, H.A.; Deniz, A.E.; Uyar, T. Photoluminescent electrospun polymeric nanofibers incorporating germanium nanocrystals. React. Funct. Polym., 2013, 73, 1262-1267.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2013.06.007]
[325]
İncel, A.; Varlikli, C.; McMillen, C.D.; Demir, M.M. Triboluminescent electrospun mats with blue-green emission under mechanical force. J. Phys. Chem. C, 2017, 121, 11709-11716.
[http://dx.doi.org/10.1021/acs.jpcc.7b02875]
[326]
Lu, X.; Li, L.; Zhang, W.; Wang, C. Preparation and characterization of Ag(2)S nanoparticles embedded in polymer fibre matrices by electrospinning. Nanotechnology, 2005, 16(10), 2233-2237.
[http://dx.doi.org/10.1088/0957-4484/16/10/043] [PMID: 20818001]
[327]
Di Benedetto, F.; Camposeo, A.; Persano, L.; Laera, A.M.; Piscopiello, E.; Cingolani, R.; Tapfer, L.; Pisignano, D. Light-emitting nanocomposite CdS-polymer electrospun fibres via in situ nanoparticle generation. Nanoscale, 2011, 3(10), 4234-4239.
[http://dx.doi.org/10.1039/c1nr10399g] [PMID: 21901210]
[328]
Bashouti, M.; Salalha, W.; Brumer, M.; Zussman, E.; Lifshitz, E. Alignment of colloidal CdS nanowires embedded in polymer nanofibers by electrospinning. ChemPhysChem, 2006, 7(1), 102-106.
[http://dx.doi.org/10.1002/cphc.200500428] [PMID: 16363016]
[329]
Lu, X.; Zhao, Y.; Wang, C.; Wei, Y. Fabrication of CdS nanorods in PVP fiber matrices by electrospinning. Macromol. Rapid Commun., 2005, 26, 1325-1329.
[http://dx.doi.org/10.1002/marc.200500300]
[330]
Wang, Q.; Chen, Y.; Liu, R.; Liu, H.; Li, Z. Fabrication and characterization of electrospun CdS-OH/Polyacrylonitrile hybrid nanofibers. Compos., Part A Appl. Sci. Manuf., 2012, 43, 1869-1876.
[http://dx.doi.org/10.1016/j.compositesa.2012.07.023]
[331]
Yang, Y.; Wang, H.; Lu, X.; Zhao, Y.; Li, X.; Wang, C. Electrospinning of carbon/CdS coaxial nanofibers with photoluminescence and conductive properties. Mater. Sci. Eng. B, 2007, 140, 48-52.
[http://dx.doi.org/10.1016/j.mseb.2007.03.010]
[332]
Hernández-Martínez, D.; Nicho, M.E.; Hu, H.; León-Silva, U.; Arenas-Arrocena, M.C.; García-Escobar, C.H. Electrospinning of P3HT-PEO-CdS fibers by solution method and their properties. Mater. Sci. Semicond. Process., 2017, 61, 50-56.
[http://dx.doi.org/10.1016/j.mssp.2016.12.039]
[333]
Lu, X.; Zhao, Y.; Wang, C. Fabrication of PbS nanoparticles in polymer-fiber matrices by electrospinning. Adv. Mater., 2005, 17, 2485-2488.
[http://dx.doi.org/10.1002/adma.200500196]
[334]
Ye, J.; Chen, Y.; Zhou, W.; Wang, X.; Guo, Z.; Hu, Y. Preparation of polymer@PbS hybrid nanofibers by surface-initiated atom transfer radical polymerization and acidolysis by H2S. Mater. Lett., 2009, 63, 1425-1427.
[http://dx.doi.org/10.1016/j.matlet.2009.03.041]
[335]
Mthethwa, T.P.; Moloto, M.J.; De Vries, A.; Matabola, K.P. Properties of electrospun CdS and CdSe filled poly(methyl methacrylate) (PMMA) nanofibres. Mater. Res. Bull., 2011, 46, 569-575.
[http://dx.doi.org/10.1016/j.materresbull.2010.12.022]
[336]
Cao, Y.; Liu, N.; Yang, P.; Shi, R.; Ma, Q.; Zhang, A.; Zhu, Y.; Wang, J.; Wang, J. High luminescent fibers with hybrid SiO2-coated CdTe nanocrystals fabricated by electrospinning technique. Mater. Chem. Phys., 2015, 149-150, 51-58.
[http://dx.doi.org/10.1016/j.matchemphys.2014.09.030]
[337]
Cho, K.; Kim, M.; Choi, J.; Kim, K.; Kim, S. Synthesis and characterization of electrospun polymer nanofibers incorporated with CdTe nanoparticles. Synth. Met., 2010, 160, 888-891.
[http://dx.doi.org/10.1016/j.synthmet.2010.01.041]
[338]
Wang, S.; Li, Y.; Wang, Y.; Yang, Q.; Wei, Y. Introducing CTAB into CdTe/PVP nanofibers enhances the photoluminescence intensity of CdTe nanoparticles. Mater. Lett., 2007, 61, 4674-4678.
[http://dx.doi.org/10.1016/j.matlet.2007.03.016]
[339]
Wang, S.; Li, Y.; Bai, J.; Yang, Q.; Song, Y.; Zhang, C. Characterization and photoluminescence studies of CdTe nanoparticles before and after transfer from liquid phase to polystyrene. Bull. Mater. Sci., 2009, 32, 487-491.
[http://dx.doi.org/10.1007/s12034-009-0072-2]
[340]
Sun, H.; Zhang, H.; Zhang, J.; Wei, H.; Ju, J.; Li, M.; Yang, B. White-light emission nanofibers obtained from assembling aqueous single-colored CdTe NCs into a PPV precursor and PVA matrix. J. Mater. Chem., 2009, 19, 6740-6744.
[http://dx.doi.org/10.1039/b909089d]
[341]
Nakhaei, O.; Shahtahmassebi, N.; Azhir, E. Co-precipitation synthesis of CaF2:Er nanocomposites and photoluminescence characterizations of electrospun polyvinyl alcohol/CaF2:Er nanofibers. Indian J. Phys., 2014, 88, 1245-1250.
[http://dx.doi.org/10.1007/s12648-014-0574-7]
[342]
Dong, G.; Liu, X.; Xiao, X.; Qian, B.; Ruan, J.; Ye, S.; Yang, H.; Chen, D.; Qiu, J. Photoluminescence of Ag nanoparticle embedded Tb3+/Ce3+ codoped NaYF4/PVP nanofibers prepared by electrospinning. Nanotechnology, 2009, 20(5) 055707
[http://dx.doi.org/10.1088/0957-4484/20/5/055707] [PMID: 19417366 ]
[343]
Dong, B.; Song, H.; Yu, H.; Zhang, H.; Qin, R.; Bai, X.; Pan, G.; Lu, S.; Wang, F.; Fan, L.; Dai, Q. Upconversion properties of Ln3+ doped NaYF4/Polymer composite fibers prepared by electrospinning. J. Phys. Chem. C, 2008, 112, 1435-1440.
[http://dx.doi.org/10.1021/jp076958z]
[344]
Gangwar, A.K.; Gupta, A.; Kedawat, G.; Kumar, P.; Singh, B.P.; Singh, N.; Srivastava, A.K.; Dhakate, S.R.; Gupta, B.K. Highly luminescent dual mode polymeric nanofibers based flexible mat for white security paper and encrypted nanotaggants applications. Chemistry, 2018, 24(38), 9477-9484.
[http://dx.doi.org/10.1002/chem.201800715] [PMID: 29790610]
[345]
Liu, K-C.; Zhang, Z-Y.; Shan, C-X.; Feng, Z-Q.; Li, J-S.; Song, C-L.; Bao, Y-N.; Qi, X-H.; Dong, B. A flexible and superhydrophobic upconversion-luminescence membrane as an ultrasensitive fluorescence sensor for single droplet detection. Light Sci. Appl., 2016, 5(8) e16136
[http://dx.doi.org/10.1038/lsa.2016.136] [PMID: 30167183]
[346]
Bao, Y.; Luu, Q.A.N.; Zhao, Y.; Fong, H.; May, P.S.; Jiang, C. Upconversion polymeric nanofibers containing lanthanide-doped nanoparticles via electrospinning. Nanoscale, 2012, 4(23), 7369-7375.
[http://dx.doi.org/10.1039/c2nr32204h] [PMID: 23026874]
[347]
Chen, Y.; Liu, S.; Hou, Z.; Ma, P.; Yang, D.; Li, C.; Lin, J. Multifunctional electrospinning composite fibers for orthotopic cancer treatment in vivo. Nano Res., 2015, 8, 1917-1931.
[http://dx.doi.org/10.1007/s12274-014-0701-y]
[348]
Hsu, C-Y.; Liu, Y-L. Rhodamine B-anchored silica nanoparticles displaying white-light photoluminescence and their uses in preparations of photoluminescent polymeric films and nanofibers. J. Colloid Interface Sci., 2010, 350(1), 75-82.
[http://dx.doi.org/10.1016/j.jcis.2010.06.011] [PMID: 20599206]
[349]
Wang, Y.; Tang, J.; Huang, L.; Wang, Y.; Huang, Z.; Liu, J.; Xu, Q.; Shen, W.; Belfiroe, L.A. Enhanced emission of nano SiO2-carried Eu3+ complexes and highly luminescent hybrid nanofibers. Opt. Mater., 2013, 35, 1395-1403.
[http://dx.doi.org/10.1016/j.optmat.2013.02.007]
[350]
Kamil, M.A.R.; Suhaimi, N.F.M.; Edwin, E.E.; Dian, W.; Abdul Halim, N.H. Optical characteristics of erbium-doped SiO2/PVA electrospun nanofibers. Adv. Mat. Res., 2015, 1108, 59-66.
[351]
Jo, S.; Kim, J.; Noh, J.; Kim, D.; Jang, G.; Lee, N.; Lee, E.; Lee, T.S. Conjugated polymer dots-on-electrospun fibers as a fluorescent nanofibrous sensor for nerve gas stimulant. ACS Appl. Mater. Interfaces, 2014, 6(24), 22884-22893.
[http://dx.doi.org/10.1021/am507206x] [PMID: 25431844]
[352]
Dong, G.; Liu, X.; Xiao, X.; Zhang, Q.; Lin, G.; Ma, Z.; Chen, D.; Qiu, J. Tunable emission of BCNO nanoparticle-embedded polymer electrospun nanofibers. Electrochem. Solid-State Lett., 2009, 12, K53-K55.
[http://dx.doi.org/10.1149/1.3137021]
[353]
de Melo, E.F.; Alves, K.G.B.; Junior, S.A.; de Melo, C.P. Synthesis of fluorescent PVA/polypyrrole-ZnO nanofibers. J. Mater. Sci., 2013, 48, 3652-3658.
[http://dx.doi.org/10.1007/s10853-013-7159-2]
[354]
Selvin, S.S.P.; Lee, J.; Kumar, S.; Radhika, N.; Merlin, J.P.; Lydia, I.S. Photocatalytic degradation of rhodamine B using cysteine capped ZnO/P(3HB-co-3HHx) fiber under UV and visible light irradiation. React. Kinet. Mech. Catal., 2017, 122, 671-684.
[http://dx.doi.org/10.1007/s11144-017-1232-9]
[355]
Naphade, R.; Jog, J. Electrospinning of PHBV/ZnO membranes: Structure and properties. Fibers Polym., 2012, 13, 692-697.
[http://dx.doi.org/10.1007/s12221-012-0692-9]
[356]
Turky, A.O.; Barhoum, A. Mohamed Rashad, M.; Bechlany, M. Enhanced the structure and optical properties for ZnO/PVP nanofibers fabricated via electrospinning technique. J. Mater. Sci. Mater. Electron., 2017, 28, 17526-17532.
[http://dx.doi.org/10.1007/s10854-017-7688-6]
[357]
Shehata, N.; Samir, E.; Gaballah, S.; Hamed, A.; Elrasheedy, A. Embedded ceria nanoparticles in crosslinked PVA electrospun nanofibers as optical sensors for radicals. Sensors (Basel), 2016, 16(9), 1371.
[http://dx.doi.org/10.3390/s16091371] [PMID: 27571083]
[358]
Hingwe, V.S.; Koparkar, K.A.; Bajaj, N.S.; Omanwar, S.K. Optical properties of one dimensional hybrid PVA/YVO4:Eu3+ nanofibers synthesized by electrospining. Optik (Stuttg.), 2017, 140, 211-215.
[http://dx.doi.org/10.1016/j.ijleo.2017.04.047]
[359]
Chigome, S.; Abiona, A.A.; Ajao, J.A.; Kana, J.B.K.; Guerbous, L.; Torto, N.; Maaza, M. Synthesis and characterization of electrospun poly(ethylene oxide)/europium-doped yttrium orthovanadate (PEO/YVO4:Eu3+) hybrid nanofibers. Int. J. Polym. Mater. Polym. Biomater., 2010, 59, 863-872.
[http://dx.doi.org/10.1080/00914037.2010.504146]
[360]
Yao, Y.; Zhou, Z.; Ye, F. Properties of a novel Ba5Si8O21:Eu2+, Nd3+ phosphor: Bulk and 1D nanostructure with PVP synthesized by sol-gel and electrospinning. J. Alloys Compd., 2017, 712, 213-218.
[http://dx.doi.org/10.1016/j.jallcom.2017.04.102]
[361]
Qin, C.; Gu, M.; Huang, Y.; Dai, L.; Chen, G.; Shi, L.; Qiao, X.; Seo, H.J. Preparation and luminescence properties of La6MoO12:Eu3+/PVA nanofibers by Pechini/electrospinning process. J. Nanosci. Nanotechnol., 2011, 11(11), 9570-9575.
[http://dx.doi.org/10.1166/jnn.2011.5245] [PMID: 22413249]
[362]
Erdem, R.; İlhan, M.; Ekmekçi, M.K.; Erdem, Ö. Electrospinning, preparation and photoluminescence properties of CoNb2O6:Dy3+ incorporated polyamide 6 composite fibers. Appl. Surf. Sci., 2017, 421, 240-246.
[http://dx.doi.org/10.1016/j.apsusc.2016.11.134]
[363]
Ye, F.; Dong, S.; Tian, Z.; Yao, S.; Zhou, Z.; Wang, S. Fabrication and characterization of long-persistent luminescence/polymer (Ca2MgSi2O7:Eu2+, Dy3+/PLA) composite fibers by electrospinning. Opt. Mater., 2015, 45, 64-68.
[http://dx.doi.org/10.1016/j.optmat.2015.03.011]
[364]
Sepahvandi, A.; Eskandari, M.; Moztarzadeh, F. Fabrication and characterization of SrAl2O4: Eu(2+)Dy(3+)/CS-PCL electrospun nanocomposite scaffold for retinal tissue regeneration. Mater. Sci. Eng. C, 2016, 66, 306-314.
[http://dx.doi.org/10.1016/j.msec.2016.03.028] [PMID: 27207067]
[365]
Ma, Q.; Yu, W.; Dong, X.; Wang, J.; Liu, G.; Xu, J. Electrospinning preparation and properties of Fe3O4/Eu(BA)3phen/PVP magnetic-photoluminescent bifunctional composite nanofibers. J. Nanopart. Res., 2012, 14, 1203.
[http://dx.doi.org/10.1007/s11051-012-1203-z]
[366]
Wang, H.; Li, Y.; Sun, L.; Li, Y.; Wang, W.; Wang, S.; Xu, S.; Yang, Q. Electrospun novel bifunctional magnetic-photoluminescent nanofibers based on Fe2O3 nanoparticles and europium complex. J. Colloid Interface Sci., 2010, 350(2), 396-401.
[http://dx.doi.org/10.1016/j.jcis.2010.06.068] [PMID: 20650463]
[367]
Gai, G.; Wang, L.; Dong, X.; Xu, S. Electrospun Fe3O4/PVP//Tb(BA)3phen/PVP magnetic-photoluminescent bifunctional bistrand aligned composite nanofibers bundles. J. Mater. Sci., 2013, 48, 5140-5147.
[http://dx.doi.org/10.1007/s10853-013-7299-4]
[368]
Ma, Q.; Wang, J.; Dong, X.; Yu, W.; Liu, G. Electrospinning fabrication of high-performance magnetic@photoluminescent bifunctional coaxial nanocables. Chem. Eng. J., 2013, 222, 16-22.
[http://dx.doi.org/10.1016/j.cej.2013.02.063]
[369]
Gai, G.; Wang, L.; Dong, X.; Zheng, C.; Yu, W.; Wang, J.; Xiao, X. Electrospinning preparation and properties of magnetic-photoluminescent bifunctional bistrand-aligned composite nanofibers bundles. J. Nanopart. Res., 2013, 15, 1539.
[http://dx.doi.org/10.1007/s11051-013-1539-z]
[370]
Ma, Q.; Wang, J.; Dong, X.; Yu, W.; Liu, G.; Xu, J. Electrospinning preparation and properties of magnetic-photoluminescent bifunctional coaxial nanofibers. J. Mater. Chem., 2012, 22, 14438-14442.
[http://dx.doi.org/10.1039/c2jm32043f]
[371]
Ma, Q.; Wang, J.; Dong, X.; Yu, W.; Liu, G. Magnetic-upconversion luminescent bifunctional flexible coaxial nanoribbon and janus nanoribbon: One-pot electrospinning preparation, structure and enhanced upconversion luminescent characteristics. Chem. Eng. J., 2015, 260, 222-230.
[http://dx.doi.org/10.1016/j.cej.2014.09.033]
[372]
Xi, X.; Ma, Q.; Dong, X.; Li, D.; Yu, W.; Wang, J.; Liu, G. Flexible special-structured janus nanofiber synchronously endued with tunable trifunctionality of enhanced photoluminescence, electrical conductivity and superparamagnetism. J. Mater. Sci. Mater. Electron., 2018, 29, 7119-7129.
[http://dx.doi.org/10.1007/s10854-018-8700-5]
[373]
Xi, X.; Ma, Q.; Dong, X.; Li, D.; Yu, W.; Wang, J.; Liu, G. Peculiarly structured janus nanofibers display synchronous and tuned trifunctionality of enhanced luminescence, electrical conduction, and superparamagnetism. ChemPlusChem, 2018, 83(3), 108-116.
[http://dx.doi.org/10.1002/cplu.201800030] [PMID: 31957338]
[374]
Tian, J.; Ma, Q.; Yu, W.; Dong, X.; Yang, Y.; Zhao, B.; Wang, J.; Liu, G. An electrospun flexible janus nanoribbon array endowed with simultaneously tuned trifunctionality of electrically conductive anisotropy, photoluminescence and magnetism. New J. Chem., 2017, 41, 13983-13992.
[http://dx.doi.org/10.1039/C7NJ03090H]
[375]
Camposeo, A.; Jurga, R.; Moffa, M.; Portone, A.; Cardarelli, F.; Della Sala, F.; Ciracì, C.; Pisignano, D. Nanowire-intensified metal-enhanced fluorescence in hybrid polymer-plasmonic electrospun filaments. Small, 2018, 14(19) e1800187
[http://dx.doi.org/10.1002/smll.201800187] [PMID: 29655227]
[376]
Li, L.; Wang, F.; Lv, Y.; Liu, J.; Bian, H.; Wang, W.; Li, Y.; Shao, Z. CQDs-doped magnetic electrospun nanofibers: Fluorescence self-display and adsorption removal of mercury(II). ACS Omega, 2018, 3(4), 4220-4230.
[http://dx.doi.org/10.1021/acsomega.7b01969] [PMID: 31458655]
[377]
Yang, L.; Ma, Q.; Xi, X.; Li, D.; Liu, J.; Dong, X.; Yu, W.; Wang, J.; Liu, G. Novel sandwich-structured composite pellicle displays high and tuned electrically conductive anisotropy, magnetism and photoluminescence. Chem. Eng. J., 2019, 361, 713-724.
[http://dx.doi.org/10.1016/j.cej.2018.12.125]
[378]
Zhou, X.; Ma, Q.; Yu, W.; Wang, T.; Dong, X.; Wang, J.; Liu, G. Magnetism and white-light-emission bifunctionality simultaneously assembled into flexible janus nanofiber via electrospinning. J. Mater. Sci., 2015, 50, 7884-7895.
[http://dx.doi.org/10.1007/s10853-015-9313-5]
[379]
Guo, D.; Sun, Z.; Xu, L.; Gao, Y.; Dai, M.; Wang, S.; Chang, Q.; Wang, C.; Ma, D. Water-soluble luminescent-electrical‐magnetic trifunctional composite nanofibers prepared via electrospinning technique. Mater. Lett., 2015, 159, 159-162.
[http://dx.doi.org/10.1016/j.matlet.2015.06.005]
[380]
Lv, N.; Ma, Q.; Dong, X.; Wang, J.; Yu, W.; Liu, G. Parallel spinnerets electrospinning fabrication of novel flexible luminescent-electrical-magnetic trifunctional bistrand-aligned nanobundles. Chem. Eng. J., 2014, 243, 500-508.
[http://dx.doi.org/10.1016/j.cej.2014.01.022]
[381]
Xi, X.; Wang, J.; Dong, X.; Ma, Q.; Yu, W.; Liu, G. Flexible janus nanofiber: A new tactics to realize tunable and enhanced magnetic-luminescent bifunction. Chem. Eng. J., 2014, 254, 259-267.
[http://dx.doi.org/10.1016/j.cej.2014.05.142]
[382]
Ma, Q.; Wang, J.; Dong, X.; Yu, W.; Liu, G. Electrospinning fabrication and characterization of magnetic-upconversion fluorescent bifunctional core–shell nanofibers. J. Nanopart. Res., 2014, 16, 2239.
[http://dx.doi.org/10.1007/s11051-013-2239-4]
[383]
Schaer, M.; Crittin, M.; Kasmi, L.; Pierzchala, K.; Calderone, C.; Digigow, R.G.; Fink, A.; Forró, L.; Sienkiewicz, A. Multi-functional magnetic photoluminescent photocatalytic polystyrene-based micro- and nano-fibers obtained by electrospinning. Fibers (Basel), 2014, 2, 75-91.
[http://dx.doi.org/10.3390/fib2010075]
[384]
Yu, W.; Ma, Q.; Li, X.; Dong, X.; Wang, J.; Liu, G. One-pot coaxial electrospinning fabrication and properties of magnetic-luminescent bifunctional flexible hollow nanofibers. Mater. Lett., 2014, 120, 126-129.
[http://dx.doi.org/10.1016/j.matlet.2014.01.076]
[385]
Sheng, S.; Ma, Q.; Dong, X.; Lv, N.; Wang, J.; Yu, W.; Liu, G. Photoluminescence-electricity-magnetism trifunction simultaneously assembled into one flexible nanofiber. J. Mater. Sci. Mater. Electron., 2014, 25, 1309-1316.
[http://dx.doi.org/10.1007/s10854-014-1728-2]
[386]
Xi, X.; Ma, Q.; Yang, M.; Dong, X.; Wang, J.; Yu, W.; Liu, G. Janus nanofiber: A new strategy to achieve simultaneous enhanced magnetic-photoluminescent bifunction. J. Mater. Sci. Mater. Electron., 2014, 25, 4024-4032.
[http://dx.doi.org/10.1007/s10854-014-2124-7]
[387]
Guo, R.; Wang, J.; Dong, X.; Ma, Q.; Yu, W.; Song, C.; Liu, G. A new strategy to assemble enhanced magnetic-photoluminescent bifunction into a flexible nanofiber. J. Mater. Sci., 2014, 49, 5418-5426.
[http://dx.doi.org/10.1007/s10853-014-8253-9]
[388]
Bi, F.; Dong, X.; Wang, J.; Liu, G. Flexible janus nanofiber to acquire tuned and enhanced simultaneous magnetism-luminescence bifunctionality. J. Mater. Sci., 2014, 49, 7244-7252.
[http://dx.doi.org/10.1007/s10853-014-8431-9]
[389]
Xue, H.; Sun, X.; Bi, J.; Wang, T.; Han, J.; Ma, Q.; Han, L.; Dong, X. Facile electrospinning construction and characteristics of coaxial nanobelts with simultaneously tunable magnetism and color-tuned photoluminescence bifunctionality. J. Mater. Sci. Mater. Electron., 2015, 26, 8774-8783.
[http://dx.doi.org/10.1007/s10854-015-3557-3]
[390]
Wang, L.; Gai, G.; Xiao, X.; Gao, S. Fabrication of magnetic-luminescent bifunctional composite nanofibers via facile electrospinning. J. Mater. Sci. Mater. Electron., 2014, 25, 3147-3153.
[http://dx.doi.org/10.1007/s10854-014-1996-x]
[391]
Sheng, S.; Ma, Q.; Dong, X.; Lv, N.; Wang, J.; Yu, W.; Liu, G. A single nanobelt to achieve simultaneous photoluminescence-electricity-magnetism trifunction. J. Mater. Sci. Mater. Electron., 2014, 25, 2279-2286.
[http://dx.doi.org/10.1007/s10854-014-1872-8]
[392]
Lun, K.; Ma, Q.; Yang, M.; Dong, X.; Yang, Y.; Wang, J.; Yu, W.; Liu, G. Electricity-magnetism and color-tunable trifunction simultaneously assembled into one strip of flexible microbelt via electrospinning. Chem. Eng. J., 2015, 279, 231-240.
[http://dx.doi.org/10.1016/j.cej.2015.05.022]
[393]
Lv, N.; Ma, Q.; Dong, X.; Wang, J.; Yu, W.; Liu, G. Flexible Janus nanofibers: Facile electrospinning construction and enhanced luminescent-electrical-magnetic trifunctionality. ChemPlusChem, 2014, 79, 690-697.
[http://dx.doi.org/10.1002/cplu.201300404]
[394]
Song, G.; Li, Z.; Li, K.; Zhang, L.; Meng, A. SiO2/ZnO composite hollow sub-micron fibers: Fabrication from facile single capillary electrospinning and their photoluminescence properties. Nanomaterials (Basel), 2017, 7(3), 53.
[http://dx.doi.org/10.3390/nano7030053] [PMID: 28336887]
[395]
Zhou, J.; Sun, G.; Zhao, H.; Pan, X.; Zhang, Z.; Fu, Y.; Mao, Y.; Xie, E. Tunable white light emission by variation of composition and defects of electrospun Al2O3-SiO2 nanofibers. Beilstein J. Nanotechnol., 2015, 6, 313-320.
[http://dx.doi.org/10.3762/bjnano.6.29] [PMID: 25821669]
[396]
Yousef, A.; Barakat, N.A.M.; Amna, T.; Unnithan, A.R.; Al-Deyab, S.S.; Yong Kim, H. Influence of CdO-doping on the photoluminescence properties of ZnO nanofibers: Effective visible light photocatalyst for waste water treatment. J. Lumin., 2012, 132, 1668-1677.
[http://dx.doi.org/10.1016/j.jlumin.2012.02.031]
[397]
Han, W.; Ding, B.; Park, M.; Cui, F.; Ghouri, Z.K.; Saud, P.S.; Kim, H-Y. Facile synthesis of luminescent and amorphous La2O3-ZrO2:Eu3+ nanofibrous membranes with robust softness. Nanoscale, 2015, 7(34), 14248-14253.
[http://dx.doi.org/10.1039/C5NR02173A] [PMID: 26139103]
[398]
Xia, Z.; Fu, Y.; Gu, T.; Li, Y.; Liu, H.; Ren, Z.; Li, X.; Han, G. Fibrous CaF2:Yb,Er@SiO2-PAA ‘tumor patch’ with NIR-triggered and trackable DOX release. Mater. Des., 2017, 119, 85-92.
[http://dx.doi.org/10.1016/j.matdes.2017.01.022]
[399]
Bao, Y.N.; Xu, X.S.; Wu, J.L.; Liu, K.C.; Zhang, Z.Y.; Cao, B.S.; Dong, B. Thermal-induced local phase transfer on Ln3+-doped NaYF4 nanoparticles in electrospun ZnO nanofibers: Enhanced upconversion luminescence for temperature sensing. Ceram. Int., 2016, 42, 12525-12530.
[http://dx.doi.org/10.1016/j.ceramint.2016.04.156]
[400]
Liu, M.; Liu, H.; Sun, S.; Li, X.; Zhou, Y.; Hou, Z.; Lin, J. Multifunctional hydroxyapatite/Na(Y/Gd)F4:Yb3+,Er3+ composite fibers for drug delivery and dual modal imaging. Langmuir, 2014, 30(4), 1176-1182.
[http://dx.doi.org/10.1021/la500131d] [PMID: 24432899]
[401]
Hou, Z.; Li, C.; Ma, P.; Li, G.; Cheng, Z.; Peng, C.; Yang, D.; Yang, P.; Lin, J. Electrospinning preparation and drug-delivery properties of an up-conversion luminescent porous NaYF4:Yb3+, Er3+@silica fiber nanocomposite. Adv. Funct. Mater., 2011, 21, 2356-2365.
[http://dx.doi.org/10.1002/adfm.201100193]
[402]
Li, X.; Li, Y.; Chen, X.; Li, B.; Gao, B.; Ren, Z.; Han, G.; Mao, C. Optically monitoring mineralization and demineralization on photoluminescent bioactive nanofibers. Langmuir, 2016, 32(13), 3226-3233.
[http://dx.doi.org/10.1021/acs.langmuir.6b00290] [PMID: 27010624]
[403]
Liu, L.; Zhang, H.; Wang, Y.; Su, Y.; Ma, Z.; Xie, Y.; Zhao, H.; Chen, C.; Liu, Y.; Guo, X.; Su, Q.; Xie, E. Synthesis and white-light emission of ZnO/HfO2: Eu nanocables. Nanoscale Res. Lett., 2010, 5(9), 1418-1423.
[http://dx.doi.org/10.1007/s11671-010-9655-5] [PMID: 20730130]
[404]
Bi, F.; Dong, X.; Wang, J.; Liu, G. Coaxial electrospinning preparation and properties of magnetic-photoluminescent bifunctional CoFe2O4@Y2O3:Eu3+ coaxial nanofibers. J. Mater. Sci. Mater. Electron., 2014, 25, 4259-4267.
[http://dx.doi.org/10.1007/s10854-014-2158-x]
[405]
Zhou, J-Y.; Chen, Z-Y.; Zhou, M.; Gao, X-P.; Xie, E-Q. SiC nanorods grown on electrospun nanofibers using Tb as catalyst: fabrication, characterization, and photoluminescence properties. Nanoscale Res. Lett., 2009, 4(8), 814-819.
[http://dx.doi.org/10.1007/s11671-009-9320-z] [PMID: 20596383]
[406]
Li, D.; Pan, C. Fabrication and characterization of electrospun TiO2/CuS micro-nano-scaled composite fibers. Prog. Nat. Sci. Mater. Int., 2012, 22, 59-63.
[http://dx.doi.org/10.1016/j.pnsc.2011.12.010]
[407]
Li, X.H.; Shao, C.L.; Liu, Y.C.; Zhang, X.T.; Hark, S.K. Preparation, structure and photoluminescence properties of SiO2/ZnO nanocables via electrospinning and vapor transport deposition. Mater. Lett., 2008, 62, 2088-2091.
[http://dx.doi.org/10.1016/j.matlet.2007.11.021]

© 2024 Bentham Science Publishers | Privacy Policy