[1]
Endo, K.; O’uchi, S.I.; Ishikawa, Y.; Liu, Y.X.; Matsukawa, T.; Sakamoto, K.; Tsukada, J.; Yamauchi, H.; Masahara, M. Variability analysis of TiN metal-gate FinFETs. IEEE Electron Device Lett., 2010, 31(6), 546-548.
[2]
Sachid, A.B.; Lin, H.Y.; Hu, C. Nanowire FET with corner spacer for high-performance energy-efficient applications. IEEE Trans. Electron Dev., 2017, 64(12), 5181-5187.
[3]
Choi, S.J.; Moon, D.I.; Duarte, J.P.; Ahn, J.H.; Choi, Y.K. Physical observation of a thermo-morphic transition in a silicon nanowire. ACS Nano, 2012, 6(3), 2378-2384.
[4]
Chen, S.H.; Liao, W.S.; Yang, H.C.; Wang, S.J.; Liaw, Y.G.; Wang, H.; Gu, H.S.; Wang, M.C. High-performance III-V MOSFET with nano-stacked high-k gate dielectric and 3D fin-shaped structure. Nanoscale Res. Lett., 2012, 7(1), 431.
[5]
Su, C.J.; Tsai, T.I.; Liou, Y.L.; Lin, Z.M.; Lin, H.C. Gate-all-around junctionless transistors with heavily doped polysilicon nanowire channels. IEEE Electron Device Lett., 2011, 32(4), 521-523.
[6]
Kang, T.K.; Liao, T.C.; Lin, C.M.; Liu, H.W.; Cheng, H.C. High-performance single-crystal-like nanowire poly-Si TFTs with spacer pattering technique. IEEE Electron Device Lett., 2011, 32(3), 330-332.
[7]
Deshpande, V.; Barraud, S.; Jehl, X.; Wacquez, R.; Vinet, M.; Coquand, R.; Roche, B.; Voisin, B.; Triozon, F.; Vizioz, C.; Tosti, L.; Previtali, B.; Perreau, P.; Poiroux, T.; Sanquer, M.; Faynot, O. Scaling of trigate Nanowire (NW) MOSFETs to sub-7 nm width: 300 K transition to single electron transistor. Solid-State Electron., 2013, 84(84), 179-184.
[8]
Lee, C.C.; Yang, T.F.; Wu, C.S.; Kao, K.S.; Cheng, R.C.; Chen, T.H. Reliability estimation and failure mode prediction for 3D chip stacking package with the application of wafer-level underfill. Microelectron. Eng., 2013, 107, 107-113.
[9]
Fukushima, T.; Iwata, E.; Ohara, Y.; Murugesan, M.; Bea, J.; Lee, K.; Tanaka, T.; Koyanagi, M. Multichip-to-wafer three-dimensional integration technology using chip self-assembly with excimer lamp irradiation. IEEE T. Electr. Dev., 2012, 59(11), 2956-2963.
[10]
Lee, K.; Choi, H.; Kim, D.S.; Jang, M.S.; Choi, M. Vertical stacking of three-dimensional nanostructures via an aerosol lithography for advanced optical applications. Nanotechnology, 2017, 28(47), 475302.
[11]
Liang, Q.; Xuxia, Y.; Wang, W.; Liu, Y.; Wong, C.P. A three-dimensional vertically aligned functionalized nultilayer graphene architecture: An approach for graphene-based thermal interfacial materials. ACS Nano, 2011, 5(3), 2392-2401.
[12]
Haensch, W.; Nowak, E.J.; Dennard, R.H.; Dennard, P.M.; Solomon, P.M.; Bryant, A.; Dokumaci, O.H.; Kumar, A.; Wang, X.; Johnson, J.B.; Fischetti, M.V. Silicon CMOS devices beyond scaling. IBM J. Res. Develop., 2006, 50(4), 339-361.
[13]
Hamann, H.F.; Weger, A.; Lacey, J.A.; Hu, Z. Hotspot-limited microprocessors: Direct temperature and power distribution measurements. IEEE J. Solid-State Circuits, 2007, 42(1), 56-65.
[14]
Jayantha, S.M.S.; McVicker, G.; Bernstein, K.; Knickerbocker, J.U. Thermomechanical modeling of 3D electronic packages. IBM J. Res. Develop., 2008, 52(6), 623-634.
[15]
Azar, K. Power consumption and generation in the electronics industry. A perspective. In Proceedings of the 16th Annual IEEE Semiconductor Thermal Measurement and Management Symposium, San Jose, CA, USA2002, pp. 154-160.
[16]
Hansson, J.; Nilsson, T.M.J.; Ye, L.L.; Liu, J. Novel nanostructured thermal interface materials: A review. Int. Mater. Rev., 2018, 37, 1-24.
[17]
Zhu, L.B.; Hess, D.W.; Wong, C.P. Assembling carbon nanotube films as thermal interface materials. In Proceedings of the 57th Electronic Components and Technology Conference, Reno, NV, USA2007, pp. 2006-2010.
[18]
Li, G.; Liu, J.; Jiang, G.; Liu, H. Numerical simulation of temperature field and thermal stress field in the new type of ladle with the nanometer adiabatic material. Adv. Mech. Eng., 2017, 7(4), 1-13.
[19]
An, X.H.; Cheng, J.H.; Yin, H.Q.; Xie, L.D.; Zhang, P. Thermal conductivity of high temperature fluoride molten salt determined by laser flash technique. Int. J. Heat Mass Transfer, 2015, 90, 872-877.
[20]
Si, Y.; Wang, X.Q.; Dou, L.; Yu, J.Y.; Ding, D. Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity. Sci. Adv., 2018, 4(4), 8925.
[21]
Due, J.; Robinson, A.J. Reliability of thermal interface materials: A review. Appl. Therm. Eng., 2013, 50(1), 455-463.
[22]
Warzoha, R.J.; Zhang, D.; Feng, G.; Fleischer, A.S. Engineering interfaces in carbon nanostructured mats for the creation of energy efficient thermal interface materials. Carbon, 2013, 61(11), 441-457.
[23]
Park, W.; Guo, Y.F.; Li, X.Y.; Hu, J.N.; Liu, L.W.; Ruan, X.L.; Chen, Y.P. High-performance thermal interface material based on few-layer graphene composite. J. Phys. Chem. C, 2015, 119(47), 26753-26759.
[24]
Chen, J.; Huang, X.Y.; Sun, B.; Wang, Y.X.; Zhu, Y.K.; Jiang, P.K. Vertically aligned and interconnected boron nitride nanosheets for advanced flexible nanocomposite thermal interface materials. ACS Appl. Mater. Interfaces, 2017, 9(36), 30909-30917.
[25]
Wang, S.; Cheng, Y.; Wang, R.; Sun, J.; Gao, L. Highly thermal conductive copper nanowire composites with ultralow loading: Toward applications as thermal interface materials. ACS Appl. Mater. Interfaces, 2014, 6(9), 6481-6486.
[26]
Liu, Z.; Chung, D.D.L. Calorimetric evaluation of phase change materials for use as thermal interface materials. Thermochim. Acta, 2001, 366(2), 135-147.
[27]
Cui, T.; Li, Q.; Xuan, Y.; Zhang, P. Preparation and thermal properties of the graphene-polyolefin adhesive composites: Application in thermal interface materials. Microelectron. Reliab., 2015, 55(12), 2569-2574.
[28]
Raj, P.M.; Gangidi, P.R.; Nataraj, N.; Kumbhat, N.; Jha, G.; Tummala, R.; Brese, N. Coelectrodeposited solder composite films for advanced thermal interface materials. IEEE T. Compon. Pack. T., 2013, 3(6), 989-996.
[29]
Prasher, R.S. Thermal interface materials: Historical perspective, status and future directions. Proc. IEEE, 2006, 98(8), 1571-1586.
[30]
Yang, D.J.; Zhang, Q.; Chen, G.; Yoon, S.F.; Ahn, J.; Wang, S.G.; Zhou, Q.; Wang, Q.; Li, J.Q. Thermal conductivity of multiwalled carbon nanotubes. Phys. Rev. B, 2002, 66(16), 165440-165445.
[31]
Jiang, L.; Gao, L. Densified multiwalled carbon nanotubes-titanium nitride composites with enhanced thermal properties. Ceram. Int., 2008, 34(1), 231-235.
[32]
Berber, S.; Kwon, Y.K.; Tomanek, D. Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett., 2000, 84(20), 4613-4616.
[33]
Kim, P.; Shi, L.; Majumdar, A.; Mceuen, P.L. Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett., 2001, 87(21), 215502.
[34]
Pop, E.; Mann, D.; Wang, Q.; Goodson, K.; Dai, H. Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett., 2006, 6(1), 96-100.
[35]
Cross, R.; Cola, B.A.; Fisher, T.; Xu, X.; Gall, K.; Graham, S. A metallization and bonding approach for high performance carbon nanotube thermal interface materials. Nanotechnology, 2010, 21(44), 445705.
[36]
Xu, J.; Fisher, T.S. Enhanced thermal contact conductance using carbon nanotube array interfaces. IEEE T. Compon. Pack. T., 2006, 29(2), 261-267.
[37]
Marklin, J.; Halonen, N.; Toth, G.; Sapi, A.; Kukovecz, A.; Konya, Z.; Jantunen, H.; Mikkola, J.P.; Kordas, K. Thermal diffusivity of aligned multi-walled carbon nanotubes measured by the flash method. Phys. Status Solidi,., 2011, 248(11), 2508-2511.
[38]
Panzer, M.A.; Zhang, G.; Mann, D.; Hu, X.; Pop, E.; Dai, H.; Goodson, K.E. Thermal properties of metal-coated vertically aligned single-wall nanotube arrays. J. Heat Transfer, 2008, 130(5), 1306-1313.
[39]
Quinton, B.T.; Leedy, K.D.; Lawson, J.W.; Tsao, B.; Scofield, J.D.; Merrett, J.N.; Zhang, Q.H.; Yost, K.; Mukhopadhyay, S.M. Influence of oxide buffer layers on the growth of carbon nanotube arrays on carbon substrates. Carbon, 2015, 87, 175-185.
[40]
Ohashi, T.; Kato, R.; Tokune, T.; Kawarada, H. Understanding the stability of a sputtered Al buffer layer for single-walled carbon nanotube forest synthesis. Carbon, 2013, 57(3), 401-409.
[41]
Lin, W.; Zhang, R.W.; Moon, K.S.; Wong, C.P. Synthesis of high-quality vertically aligned carbon nanotubes on bulk copper substrate for thermal management. IEEE Trans. Adv. Packag., 2010, 33(2), 370-376.
[42]
Chen, M.X.; Song, X.H.; Gan, Z.Y.; Liu, S. Low temperature thermocompression bonding between aligned carbon nanotubes and metallized substrate. Nanotechnology, 2011, 22(34), 345704.
[43]
Amama, P.B.; Pint, C.L.; Mirri, F.; Pasquali, M.; Hauge, R.H.; Maruyama, B. Catalyst-support interactions and their influence in water-assisted carbon nanotube carpet growth. Carbon, 2012, 50(7), 2396-2406.
[44]
Park, S.; Song, W.; Kim, Y.; Song, I.; Kim, S.H.; Lee, S.I.; Jang, S.W.; Parkl, C.Y. Effect of growth pressure on the synthesis of vertically aligned carbon nanotubes and their growth termination. J. Nanosci. Nanotechnol., 2014, 14(7), 5216-5220.
[45]
Kumar, M.; Ando, Y. Chemical vapor deposition of carbon nanotubes: A review on growth mechanism and mass production. J. Nanosci. Nanotechnol., 2010, 41(22), 3739-3758.
[46]
Geohegan, D.B.; Puretzky, A.A.; Jackson, J.J.; Rouleau, C.M.; Eres, G.; More, K.L. Flux-dependent growth kinetics and diameter selectivity in single-wall carbon nanotube arrays. ACS Nano, 2011, 5(10), 8311-8321.
[47]
Cho, W.; Schulz, M.; Shanov, V. Growth termination mechanism of vertically aligned centimeter long carbon nanotube arrays. Carbon, 2014, 69(4), 609-620.
[48]
Li, W.Z.; Xie, S.S.; Qian, L.X.; Chang, B.H.; Zou, B.S.; Zhou, W.Y.; Zhao, R.A.; Wang, G. Large-scale synthesis of aligned carbon nanotubes. Science, 1996, 274(5293), 1701-1703.
[49]
Murakami, Y.; Chiashi, S.; Miyauchi, Y.; Hu, M.H.; Ogura, M.; Okubo, T.; Maruyama, S. Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy. Chem. Phys. Lett., 2004, 385(3), 298-303.
[50]
Hata, K.; Futaba, D.N.; Mizumo, K.; Namai, T.; Yumura, M.; Iijima, S. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science, 2004, 306(5700), 1362-1364.
[51]
Amama, P.B.; Pint, C.L.; Mcjitton, L.; Stach, E.A.; Murray, P.T.; Hauge, R.H.; Maruyama, B. Role of water in super growth of single-walled carbon nanotubes carpets. Nano Lett., 2008, 9(1), 44-49.
[52]
Yamada, T.; Maigne, A.; Yudasaka, M.; Mizuno, K.; Futaba, D.N.; Yumura, M.; Lijima, S.; Hata, K. Revealing the secret of water-assisted carbon nanotube synthesis by microscopic observation of the interaction of water on the catalysts. Nano Lett., 2009, 8(12), 4288-4292.
[53]
Kim, S.M.; Pint, C.L.; Amama, P.B.; Zakharov, D.; Hauge, R.; Maruyama, B.; Stach, E.A. Evolution in catalyst morphology leads to carbon nanotube growth termination. J. Phys. Chem. Lett., 2010, 1(6), 918-922.
[54]
Hofmann, S.; Ducati, C.; Robertson, J.; Kleinsorge, B. Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition. Appl. Phys. Lett., 2003, 83(1), 135-137.
[55]
Mata, D.; Silva, R.M.; Fernandes, A.J.S.; Oliveira, F.J.; Costa, P.M.F.J.; Silva, R.F. Upscaling potential of the CVD stacking growth method to produce dimensionally-controlled and catalyst-free multi-walled carbon nanotubes. Carbon, 2012, 50(10), 3585-3606.
[56]
Wang, Y.Y.; Gupta, S.; Nemanich, R.J. Role of thin Fe catalyst in the synthesis of double- and single-wall carbon nanotubes via microwave chemical vapor deposition. Appl. Phys. Lett., 2004, 85(13), 2601-2603.
[57]
Meyyappan, M.; Delzeit, L.; Cassell, A.; Hash, D. Carbon nanotube growth by PECVD: A review. Plasma Sources Sci. Technol., 2003, 12(2), 205-216.
[58]
Man, Y.H.; Chen, Z.Q.; Zhang, Y.P.; Guo, P.T. Patterned growth of vertically aligned carbon nanotube arrays using colloidal lithography and plasma enhanced chemical vapor deposition. J. Alloys Compd., 2015, 650, 86-91.
[59]
Cole, M.T.; Milne, W.I. Plasma enhanced chemical vapour deposition of horizontally aligned carbon nanotubes. Materials , 2013, 6(6), 2262-2273.
[60]
Lee, D.H.; Shin, D.O.; Lee, W.J.; Kim, S.O. Hierarchically organized carbon nanotube arrays from self-assembled block copolymer nanotemplates. Adv. Mater., 2010, 20(13), 2480-2485.
[61]
Soin, N.; Roy, S.S.; Karlsson, L.; Mclaughlin, J.A. Sputter deposition of highly dispersed platinum nanoparticles on carbon nanotube arrays for fuel cell electrode material. Diamond Related Materials, 2010, 19(5), 595-598.
[62]
Loffler, R.; Haffner, M.; Visanescu, G.; Weigand, H.; Wang, X.; Zhang, D.; Fleischer, M.; Meixner, A.J.; Fortagh, J.; Kern, D.P. Optimization of plasma-enhanced chemical vapor deposition parameters for the growth of individual vertical carbon nanotubes as field emitters. Carbon, 2011, 49(13), 4197-4203.
[63]
Wand, H.; Ren, Z.F. The evolution of carbon nanotubes during their growth by plasma enhanced chemical vapor deposition. Nanotechnology, 2011, 22(40), 405601.
[64]
Duraia, E.S.M.; Mansurov, Z.; Tokmoldin, S.Z. Preparation of carbon nanotubes with different morphology by microwave plasma enhanced vapour deposition. Phys. Status Solidi., C , 2011, 7(3-4), 1222-1226.
[65]
Iacobucci, S.; Fratini, M.; Rizzo, A.; Scarinci, F.; Zhang, Y.; Mann, M.; Li, C.; Milne, W.I.; Gomati, M.M.; Lagomarsino, S.; Stefani, G. Angular distribution of field emitted electrons from vertically aligned carbon nanotube arrays. Appl. Phys. Lett., 2012, 100(25), 053116.
[66]
Ren, Z.F.; Huang, Z.P.; Xu, J.W.; Wang, J.H.; Bush, P.; Siegal, M.P.; Provencio, P.P. Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science, 1998, 282(5391), 1105-1107.
[67]
Kim, C.D.; Lee, H.R.; Choi, S.K.; Park, H.; Sohn, Y.S. The growth of patterned carbon nanotube arrays on Si pillar arrays. Mol. Cryst. Liq. Cryst. , 2017, 645(1), 225-230.
[68]
Yen, J.H.; Leu, I.C.; Wu, M.T.; Lin, C.C.; Hon, M.H. Growth characteristics of carbon nanotube arrays synthesized by ICP-CVD using anodic aluminum oxide on silicon as a nanotemplate. Chem. Vap. Depos., 2005, 11(4), 219-225.
[69]
Penza, M.; Rossi, R.; Alvisi, M.; Serra, E. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications. Nanotechnology, 2010, 21(10), 105501.
[70]
Duraia, E.S.M.; Hannora, A.; Mansurov, Z.; Beall, G.W. Direct growth of carbon nanotubes on hydroxyapatite using MPECVD. Mater. Chem. Phys., 2012, 132(1), 119-124.
[71]
Zhang, K.; Chai, Y.; Yuen, M.M.; Xiao, D.G.; Chan, P.C. Carbon nanotube thermal interface material for high brightness light-emitting-diode cooling. Nanotechnology, 2008, 19(21), 215706-215710.
[72]
Xu, J.; Fisher, T.S. Enhancement of thermal interface materials with carbon nanotube arrays. Int. J. Heat Mass Transfer, 2006, 49(9-10), 1658-1666.
[73]
Huang, S.M.; Dai, L.L.; Mau, A.W.H. Patterned growth and contact transfer of well-aligned carbon nanotube films. J. Phys. Chem. B, 1999, 103(21), 4223-4227.
[74]
Chai, Y.; Gong, J.; Zhang, K.; Chan, P.C.H.; Yuen, M.M.F. Flexible transfer of aligned carbon nanotube films for integration at lower temperature. Nanotechnology, 2007, 18(35), 355709-355714.
[75]
Wang, T.; Carlberg, B.; Jonsson, M.; Jeong, G.H.; Campbell, E.E.B.; Liu, J. Low temperature transfer and formation of carbon nanotube arrays by imprinted conductive adhesive. Appl. Phys. Lett., 2007, 91(9), 0931231-0931233.
[76]
Zhu, Y.W.; Lim, X.D.; Sim, M.C.; Lim, C.T.; Sow, C.H. Versatile transfer of aligned carbon nanotubes with polydimethylsiloxane as the intermediate. Nanotechnology, 2008, 19(32), 325304-325311.
[77]
Kumar, A.; Pushparaj, V.L.; Kar, S.; Nalamasu, O.; Ajayan, P.M.; Baskaran, R. Contact transfer of aligned carbon nanotube arrays onto conducting substrates. Appl. Phys. Lett., 2006, 89(16), 163120-163123.
[78]
Fu, Y.F.; Qin, Y.H.; Wang, T.; Chen, S.; Liu, J. Ultrafast transfer of metal-enhanced carbon nanotubes at low temperature for large-scale electronics assembly. Adv. Mater., 2010, 22(44), 5039-5042.
[79]
Ye, Y.; Mao, Y.; Wang, F.; Lu, H.B.; Qu, L.T.; Dai, L.M. Solvent-free functionalization and transfer of aligned carbon nanotubes with vapor-deposited polymer nanocoatings. J. Mater. Chem., 2010, 21(3), 837-842.
[80]
Tong, T.; Zhao, Y.; Delzeit, L.; Kashani, A.; Meyyappan, M.; Majumdar, A. Dense vertically aligned multiwalled carbon nanotube arrays thermal interface materials. IEEE T. Compon. Pack. T., 2007, 30(1), 92-100.
[81]
Li, Q.; Liu, C.; Fan, S. Thermal boundary resistances of carbon nanotubes in contact with metals and polymers. Nano Lett., 2009, 9(11), 3805-3809.
[82]
Ni, Y.; Le Khanh, H.; Chalopin, Y.; Bai, J.B.; Lebarny, P.; Divay, L.; Volz, S. Highly efficient thermal glue for carbon nanotubes based on azide polymers. Appl. Phys. Lett., 2012, 100(19), 193118.
[83]
Kaur, S.; Raravikar, N.; Helms, B.A.; Prasher, R.; Ogletree, D.F. Enhanced thermal transport at covalently functionalized carbon nanotube array interfaces. Nat. Commun., 2014, 5(2), 1661-1667.
[84]
Hodson, S.L.; Bhuvana, T.; Cola, B.A.; Xu, X.F.; Kulkami, G.U.; Fisher, T.S. Palladium thiolate bonding of carbon nanotube thermal interfaces. J. Electron. Packag., 2011, 133(2), 020907.
[85]
Ngo, Q.; Cruden, B.A.; Cassell, A.M.; Walker, M.D.; Ye, Q.; Koehne, J.E.; Meyyappan, M.; Li, J.; Yang, C.Y. Thermal conductivity of carbon nanotube composite films; Mater. Res. Soc. Symp. Proc.,. , 2004. 812, F 3.18.
[86]
Lee, Y.T.; Shanmugan, S.; Mutharasu, D. Thermal resistance of CNTs-based thermal interface material for high power solid state device packages. Appl. Phys., A ., 2014, 114(4), 1145-1152.
[87]
Hinds, B.J.; Chopra, N.; Rantell, T.; Andrews, R.; Gavalas, V.; Bachas, L.G. Aligned multiwalled carbon nanotube membranes. Science, 2004, 303(5654), 62-65.
[88]
Li, L.; Yang, Z.; Gao, H.; Zhang, H.; Ren, J.; Sun, X.; Chen, T.; Kia, H.C.; Peng, H. Vertically aligned and penetrated carbon nanotube/polymer composite film and promising electronic applications. Adv. Mater., 2011, 23(32), 3730-3735.
[89]
Wang, M.; Chen, H.Y.; Lin, W.; Li, Z.; Li, Q.; Chen, M.H.; Meng, F.C.; Xing, Y.J.; Yao, Y.G.; Wong, C.P.; Li, Q.W. Crack-free and scalable transfer of carbon nanotube arrays into flexible and highly thermal conductive composite film. ACS Appl. Mater. Interfaces, 2014, 6(1), 539-544.
[90]
Huang, H.; Liu, C.; Wu, Y.; Fan, S. Aligned carbon nanotube composite films for thermal management. Adv. Mater., 2010, 17(13), 1652-1656.
[91]
Borca-Tasciuc, T.; Mazumder, M.; Son, Y.; Pal, S.K.; Schadler, L.S.; Ajayan, P. Anisotropic thermal diffusivity characterization of aligned carbon nanotube-polymer composites. J. Nanosci. Nanotechnol., 2007, 7(4-5), 1581-1588.
[92]
Cola, B.A.; Xu, J.; Fisher, T.S. Contact mechanics and thermal conductance of carbon nanotube array interfaces. Int. J. Heat Mass Transfer, 2009, 52(15), 3490-3503.
[93]
Lin, W.; Moon, K.S.; Wong, C.P. A combined process of in situ functionalisation and microwave treatment to achieve ultrasmall thermal expansion of aligned carbon nanotube-polymer nanocomposites: Toward applications as thermal interface materials. Adv. Mater., 2009, 21(23), 2421-2424.
[94]
Wang, C.Y.; Chen, T.H.; Chang, S.C.; Cheng, S.Y.; Chin, T.S. Strong carbon-nanotube-polymer bonding by microwave irradiation. Adv. Funct. Mater., 2010, 17(12), 1979-1983.