[1]
Niklas, L.B.; Tim, M.S.T.; Daniéla, Q.; Filip, S.L. Self-Lubricating Components, 1st ed; Uppsala Universitet: Uppsala, 2017.
[2]
Rapoport, L.; Bilik, Y.; Feldman, Y.; Homyonfer, M.; Cohen, S.R.; Tenne, R. Hollow nanoparticles of WS2 as potential solid-state lubricants. Nature, 1997, 387, 791-793.
[3]
Tevet, O. Mechanical and Tribological Properties of Inorganic Fullerene-Like (IF) Nanoparticles. PhD Thesis, Weizmann Institute of science: Rehovot, 2011.
[4]
Rapoport, L.; Bilik, Y.; Feldman, Y.; Homyonfer, M.; Cohen, H.; Sloan, J.; Hutchison, J.L.; Tenne, R. Inorganic fullerene-like material as additives to lubricants: Structure–function relationship. Wear, 1999, 225-229, 975-982.
[5]
Simić, D.; Dušica, B.; Stojanović, A.K.; Dimić, M.; Totovski, L.; Petar, S.; Uskoković, R.A. Inorganic fullerene-like IF-WS2/PVB nanocomposites of improved thermo-mechanical and tribological properties. Mater. Chem. Phys., 2016, 184, 335-344.
[6]
Lazić, D.S.; Simić, D.; Samolov, A.D.; Jovanović, D. Properties of standard polymeric and water-based coatings for military camouflage protection with addition of inorganic fulerene-like tungsten disulphide (IF-WS2) nanoparticles. Sci. Technol. Rev., 2017, 67, 38-44.
[7]
Chate, P.A.; Sathe, D.J.; Hankare, P.P. Electrical, optical and morphological properties of chemically deposited nanostructured tungsten disulfide thin films. Appl. Nanosci., 2013, 3, 19-23.
[8]
Ankush, R.; Ankush, A. Efect of nanodiamond on friction and wear behavior of metal dichalcogenides in synthetic oil. Appl. Nanosci., 2018, 8, 581-591.
[9]
Guo, R.; Jiao, T.; Li, R.; Chen, Y.; Guo, W.; Zhang, L.; Zhou, J.; Zhang, Q.; Peng, Q. Sandwiched Fe3O4/carboxylate graphene oxide nanostructures constructed by layer-by-layer assembly for highly efficient and magnetically recyclable dye removal. ACS Sustain. Chem. Eng., 2018, 6, 1279-1288.
[10]
Liu, Y.; Hou, C.; Jiao, T.; Song, J.; Zhang, X.; Xing, R.; Zhou, J.; Zhang, L.; Peng, Q. Self-assembled AgNP-containing nanocomposites constructed by electrospinning as efficient dye photocatalyst materials for wastewater treatment. Nanomaterials, 2018, 8, pii: 35.
[11]
Chen, K.; Li, J.; Zhang, L.; Xing, R.; Jiao, T.; Gao, R.; Peng, Q. Facile synthesis of self-assembled carbon nanotubes/dye composite films for sensitive electrochemical determination of Cd(II) ions. Nanotechnology, 2018, 29 445603
[12]
Luo, X.; Ma, K.; Jiao, T.; Xing, R.; Zhang, L.; Zhou, J.; Li, B. Graphene oxide-polymer composite langmuir films constructed by interfacial thiol-ene photopolymerization. Nanoscale Res. Lett., 2017, 12, 99.
[13]
Sliney, H.E. Solid lubricant materials for high temperatures - A review. Tribol. Int., 1982, 15, 303-315.
[14]
Roberts, E.W. Thin solid lubricant films in space. Tribol. Int., 1990, 93, 95-104.
[15]
Vivek, T.R.; Jayanth, S.K.; Anjana, J. Polymer and ceramic nanocomposites for aerospace applications. Appl. Nanosci., 2017, 7, 519-548.
[17]
Erčević, M.; Petrović, V.; Luković, B. Applying of nanotechnology in production of rifle ammunition. Proceedings of the 7th International Conference on Defensive Technologies OTEH, Belgrade Serbia, October 6-7,2016, pp. 260-265.
[18]
Boban, G. Tribological Comparison of Traditional and Advanced Firearm Coatings.. Master thesis, Faculty of California Polytechnic State University: San Luis Obispo, June, 2010.
[19]
Rapoport, L.; Nepomnyashchy, O.; Lapsker, I.; Verdyan, A.; Moshkovich, A.; Feldman, Y.; Tenne, R. Behavior of fullerene-like WS2 nanoparticles under severe contact conditions. Wear, 2005, 259, 703-707.
[20]
Lawton, B. Thermo-chemical erosion in gun barrels. Wear, 2001, 251, 827-838.
[21]
Chung, D.; Shin, N.; Oh, M.; Yoo, S.; Nam, S. Prediction of erosion from heat transfer measurements of 40mm gun tubes. Wear, 2007, 263, 246-250.
[22]
Johnston, I. Understanding and Prediction Gun barrel Erosion. Technical rept. ADA 440938, Weapons Systems Division, Defence
Science and Technology Organisation Edinburgh, Australia, 2005.
[23]
Lawton, B. Thermal and chemical effects on gun barrel wear Proceedings of the 8th International Symposium of Ballistics, Orlando, USA 23-25 October1984.
[24]
Ebihara, W.T.; Rorabaugh, D.T. Mechanisms of gun-tube erosion and wear. In Gun Propulsion Technology. Vol. 109 of Progress in Astronautics and Aeronautics; Stiefel, L., Ed.; AIAA: Washington, D.C., 1988, Chapter 11,, pp. 357-376.
[25]
Sopok, S.; Rickard, C.; Dunn, S. Thermal-chemical-mechanical gun bore erosion of an advanced system, part one: Theories and mechanisms. Wear, 2005, 258, 659-670.
[26]
Finnie, I.; McFadden, D.H. On the velocity dependence of the erosion of ductile materials by solid particles of low angles of incidence. Wear, 1978, 48, 36-58.
[27]
Adžić, M.; Heitor, M.V.; Santos, D. Design of dedicated instruments for temperature distribution measurements in solid oxide fuel cells. J. Appl. Chem, 1997, 27, 1355-1361.
[28]
Adžić, M. Determination of inner surface gun bore temperature. (in Serbian) Sci. Technol. Rev., 1997, 45, 70-73.
[29]
Jaramaz, S.; Micković, D.; Elek, P. Determination of gun propellants erosivity: Experimental and theoretical studies. Exp. Therm. Fluid Sci., 2010, 34, 760-765.
[30]
Carasso, A. Determining surface temperatures from interior observations. SIAM J. Appl. Math., 1982, 42, 558-574.
[31]
Carasso, A. Nonlinear Inverse Heat Transfer Calculations in Gun Barrels. Report ARO 19643.1-MA, Center for Applied Mathematics, National Bureau of Standards, Washington, 1983.