[1]
Zhang, J.Z. Interfacial charge carrier dynamics of colloidal semiconductor nanoparticles. J. Phys. Chem. B, 2000, 104, 7239-7247.
[2]
Erwin, S.C.; Zu, L.; Haftel, M.I.; Efros, A.L.; Kennedy, T.A.; Norris, D.J. Doping semiconductor nano crystals. Nature, 2005, 436, 91-99.
[3]
Chen, W.; Zhand, J.Z.; Joly, A.G. Optical properties and potential applications of doped semiconductor nano particles. J. Nanosci. Nanotechnol., 2004, 4, 919-927.
[4]
Peng, X. Mechanisms for the shape-control and shape evolution of colloidal semiconductor nano crystals. Adv. Mater., 2003, 15, 459-466.
[5]
Klimov, V.I.; Ivanov, S.A.; Nanda, J.; Achermann, M.; Bezel, I.; Guire, J.A.M.; Piryatinski, A. Single-exciton optical gain in semiconductor nano crystals. Nature, 2007, 447, 441-450.
[6]
Zhao, W.; Ali, M.M.; Aguirre, S.D.; Brook, M.A.; Li, Y. Paper-based bioassays using gold nanoparticle colorimetric probes. Anal. Chem., 2008, 11, 8431-8437.
[7]
Ratnarathorn, N.; Chailapakul, O.; Henry, C.S.; Dungchai, W. Simple silver nanoparticle colorimetric sensing for copper by paper-based devices. Talanta, 2012, 99, 552-557.
[8]
Yang, H.; Holloway, P.H.; Ratna, B.B. Photoluminescent and electroluminescent properties of Mn-doped ZnS nanocrystals. J. Appl. Phys., 2003, 93, 586-592.
[9]
Bharava, R.N.; Gallagher, D.; Hong, X.; Nurmikko, A. Optical properties of manganese-doped nano crystals of ZnS. Phys. Rev. Lett., 1994, 72, 416-420.
[10]
Soo, Y.L.; Ming, Z.H.; Huang, S.W.; Rao, Y.H.; Bhargava, R.N.; Gallagher, D. Local structures around luminescent centres in Mn- doped nano crystals of ZnS. Phys. Rev. B Condens. Matter, 1994, 50, 7602-7610.
[11]
Liu, J.Z.; Yan, P.X.; Yue, G.H.; Chang, J.B.; Qu, D.M.; Zhuo, R.F. Red light photoluminescence emission from Mn and Cd co-doped ZnS one-dimensional nanostructures. J. Phys. D Appl. Phys., 2006, 39, 2352-2360.
[12]
Baruah, S.; Ortinero, C.; Shipin, O.V.; Dutta, J. Manganese doped zinc sulfide quantum dots for detection of Escherichia coli. J. Fluoresc., 2012, 22(1), 403-408.
[13]
He, Y.; Yan, X.P. Mn-doped ZnS quantum dots/methyl violet nanohybrids for room temperature phosphorescence sensing of DNA. Sci. China Chem., 2011, 54, 1254-1259.
[14]
Zhu, D.; Li, W.; Ma, L.; Lei, Y. Glutathione-functionalized Mn:ZnS/ZnO core/shell quantum dots as potential time-resolved FRET bioprobes. RSC Adv, 2014, 4, 9372-9378.
[15]
Chen, C.C.; Herhold, A.B.; Johnson, C.S.; Alivisatos, A.P. Size dependence of structural metastability in semiconductor nanocrystals. Science, 1997, 276, 398-406.
[16]
Vacassy, R.; Scholz, S.M.; Dutta, J.; Hofmann, H.; Plummer, C.J.G.; Houriet, R. Synthesis of controlled spherical zinc sulfide particles by precipitation from homogeneous solutions. J. Am. Ceram. Soc., 1998, 81, 2699-2705.
[17]
Torres- Martinez. C.L.; Kho, R.; Mehra, R.K. A Simple colloidal synthesis for Gram-Quantity production of water soluable ZnS nanocrystal powders. J. Colloid Interface Sci., 2000, 227, 561-566.
[18]
Calandra, P.; Goffredi, M.; Turco Liveri, V. Study of the growth of ZnS nanoparticles in water /AOT/n-heptane microemulsions by UV-absorption spectroscopy. Colloids Surf. A Physicochem. Eng. Asp., 1999, 160, 9-13.
[19]
Chan, W.C.W.; Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 1998, 5, 281-290.
[20]
Medintz, I.L.; Uyeda, H.T.; Goldman, E.R.; Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater., 2005, 4, 435-446.
[21]
Oh, J.K. Surface modification of colloidal CdX-based quantum dots for biomedical applications. J. Mater. Chem., 2010, 20, 8433-8445.
[22]
Irvine, S.; Staudt, T.; Rittweger, E.; Engelhardt, J.; Hell, W. Direct light‐driven modulation of luminescence from Mn‐doped ZnSe quantum dots. Angew. Chem. Int. Ed. Engl., 2008, 120(14), 2725-2728.
[23]
Sharma, M.; Jain, T.; Singh, S.; Pandey, O.P. Tunable emission in surface passivated Mn-ZnS nanophosphors and its application for Glucose sensing. AIP Adv., 2012, 2, 12-18.
[24]
Corrado, C.; Jiang, Y.; Oba, F.; Kozina, M.; Bridges, F.; Zhang, J.Z. Synthesis, structural and optical properties of ZnS:Cu,Cl nano crystals. J. Phys. Chem. A, 2009, 113, 3830-3837.
[25]
Quan, Z.; Wang, W.; Yang, P.; Lin, J.; Fang, J. Synthesis and charecterization of high quality ZnS, ZnS:Mn2+ and ZnS:Mn2+/ZnS (core shell) luminescent nano crystals. Inorg. Chem., 2007, 46, 1354-1360.
[26]
Turco Liveri, V.; Rossi, M.; Arrigo, G.D.; Manno, D.; Micooci, G. Synthesis and charecterization of ZnS nano particles in water. Appl. Phys., A., 1999, 69, 369-377.
[27]
Xu, J.; Ji, W. Charecterization of ZnS nanoparticles prepared by a new route. J. Mater. Sci. Lett., 1999, 18, 115-121.
[28]
Cao, L.; Shang, J.; Sen, R.; Huang, R. Luminescent enhancement of core-shell ZnS:Mn/ZnS nanoparticles. Appl. Phys. Lett., 2002, 80, 4300-4310.
[29]
Yu, J.H.; Joo, J.; Park, H.M.; Baik, S.; Kim, Y.W.; Kim, S.C.; Hyeon, T. Synthesis of quantum-sized cubic ZnS nanorods by the oriented attachment mechanism. J. Am. Chem. Soc., 2005, 127, 5662-5670.
[30]
Medintz, I.L.; Mattoussi, H. Quantum dot-based resonance energy transfer and its growing application in biology. Phys. Chem. Chem. Phys., 2009, 11(1), 17-45.
[31]
Li, H.; Shih, W.Y.; Shih, W-H. Non-heavy-metal ZnS quantum dots with bright blue photoluminescence by a one-step aqueous synthesis. Nanotechnology, 2007, 18, 2056-2064.
[32]
Kalivas, P.W. Neurotransmitter regulation of dopamine neurons in the ventral tegmental area. Brain Res. Rev., 1993, 18, 75-113.
[33]
Asanuma, M.; Miyazaki, I.; Ogawa, N. Dopamine-or L-DOPA-induced neurotoxicity: the role of dopamine quinone formation and tyrosinase in a model of Parkinson’s disease. Neurotox. Res., 2003, 5, 165-176.
[34]
He, L.; So, V.L.L.; Xin, J.H. Dopamine polymerization-induced surface colouration of various materials. RSC Adv, 2014, 4, 20317-20322.
[35]
Wei, Q.; Zhang, F.; Li, J.; Zhao, C. Oxidant-induced dopamine polymerization for multifunctional coatings. Polym. Chem., 2010, 1, 1430-1433.
[36]
Zhan, N.; Palui, G.; Safi, M.; Ji, X.; Mattoussi, H. Multidentate zwitterionic ligands provide compact and highly biocompatible quantum dots. J. Am. Chem. Soc., 2013, 135, 13786-13795.
[37]
Zhang, Y.; Clapp, A. Overview of stabilizing ligands for biocom-patible quantum dot nanocrystals. Sensors, 2011, 11, 11036-11055.
[38]
Zhu, C.Q.; Zhao, D.H.; Chen, J.L.; Li, Y.X.; Wang, l.Y.; Wang, L.; Zhou, Y.Y.; Zhuo, S.J.; Wu, Y.Q. Application of L-cysteine-capped nano-ZnS as a fluorescence probe for the determination of proteins. Anal. Bioanal. Chem., 2004, 378, 811-815.
[39]
Sapsford, K.E.; Pons, T.; Medintz, I.L.; Higashiya, S.; Brunal, F.M.; Dawson, P.E.; Mattoussi, H. Kinetics of metal-affinity driven self-assembly between proteins or peptides and CdSe-ZnS quantum dots. J. Phys. Chem. C, 2007, 111, 11528-11538.
[40]
Patiño, R.; Campos, M.; Torres, L.A. Strength of the Zn-N coordination bond in zinc porphyrins on the basis of experimental thermo chemistry. Inorg. Chem., 2007, 46, 9332-9336.
[41]
Dennis, A.M.; Sotto, D.C.; Mei, B.C.; Medintz, I.L.; Mattoussi, H.; Bao, G. Surface ligand effects on metal-affinity coordination to quantum dots: Implications for nanoprobe self-assembly. Bioconjugate. Chem., 2010, 21, 1160-1170.
[42]
Wightman, R.M.; May, L.J.; Michael, A.C. Detection of dopamine dynamics in the brain. Anal. Chem., 1988, 60, 769A-793A.
[43]
Whitehead, R.E.; Ferrer, J.V.; Javitch, J.A.; Justice, J.B. Reaction of oxidized dopamine with endogenous cysteine residues in the human dopamine transporter. J. Neurochem., 2001, 76, 1242-1251.
[44]
Kiruba Daniel, S.C.G.; Julius, L.A.N.; Gorthi, S.S. Instantaneous detection of melamine interference biosynthesis of silver nanoparticles. Sens. Actuators B Chem., 2017, 238, 641-650.
[45]
Nivedhini Iswarya, C.; Kiruba Daniel, S.C.G.; Sivakumar, M. Studies on L-Histidine capped Ag and Au nanoparticles for dopamine detection. Mater. Sci. Eng. C Mater. Biol. Appl., 2017, 75, 393-401.
[46]
Alivisatos, A.P.; Andrews, A.M.; Boyden, E.S.; Chun, M.; Church, G.M.; Deisseroth, K.; Donoghue, J.P.; Fraser, S.E.; Lippincott-Schwartz, J.; Looger, L.L.; Masmanidis, S.; McEuen, P.L.; Nurmikko, A.V.; Park, H.; Peterka, D.S.; Reid, C.; Roukes, M.L.; Scherer, A.; Schnitzer, M.; Sejnowski, T.J.; Shepard, K.L.; Tsao, D.; Turrigiano, G.; Weiss, P.S.; Xu, C.; Yuste, R.; Zhuang, X. Nanotools for neuroscience and brain activity mapping. ACS Nano, 2013, 7, 1850-1866.