Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

One Pot Aqueous Synthesis of L-Histidine Amino Acid Capped Mn: ZnS Quantum Dots for Dopamine Sensing

Author(s): Ravi Arunan*, Printo Joseph, Muthusamy Sivakumar* and Suthanthira Cross Guevara Kiruba Daniel

Volume 16, Issue 1, 2020

Page: [71 - 78] Pages: 8

DOI: 10.2174/1573413715666190520093625

Price: $65

Abstract

Background: Mn doped ZnS is selected as the right element which is prominent among quantum dot for its high luminescent and quantum yield property and also non toxicity while comparing with other organometallic quantum dot synthesized by using different capping agents.

Methods: An interesting observation based on colorimetric sensing of dopamine using manganese doped zinc sulfide quantum dot is discussed in this study. Mn doped ZnS quantum dot surface passivated with capping agents such as L-histidine and also in polymers like chitosan, PVA and PVP were studied and compared. The tunable fluorescence effect was also observed in different polymers and amino acid as capping agents. Optical characterization studies like UV-Visible spectroscopy and PL spectroscopy have been carried out. The functional group modification of Quantum dot has been analyzed using FTIR and size and shape analysis was conducted by using HRTEM image.

Results: The strong and broad peak of FTIR in the range of 3500-3300 cm-1 confirms the presence of O-H bond. It is also observed that quenching phenomena in the luminescent peak are due to weaker confinement effect. The average size of the particle is shown to be around 4-5 nm. Changes in color of the quantum dot solution from transparent to dark brown has been due to the interaction with dopamine.

Conclusion: Finally, L-Histidine amino acid capped Mn:ZnS shows better results in luminescence and size confinement properties. Hence, it was chosen for dopamine sensing due to its colloidal nature and inborn affinity towards dopamine, a neurotransmitter which is essential for early diagnosis of neural diseases.

Keywords: Quantum dots, fluorescence, capping agent, amino acid, dopamine, confinement, quenching.

Graphical Abstract

[1]
Zhang, J.Z. Interfacial charge carrier dynamics of colloidal semiconductor nanoparticles. J. Phys. Chem. B, 2000, 104, 7239-7247.
[2]
Erwin, S.C.; Zu, L.; Haftel, M.I.; Efros, A.L.; Kennedy, T.A.; Norris, D.J. Doping semiconductor nano crystals. Nature, 2005, 436, 91-99.
[3]
Chen, W.; Zhand, J.Z.; Joly, A.G. Optical properties and potential applications of doped semiconductor nano particles. J. Nanosci. Nanotechnol., 2004, 4, 919-927.
[4]
Peng, X. Mechanisms for the shape-control and shape evolution of colloidal semiconductor nano crystals. Adv. Mater., 2003, 15, 459-466.
[5]
Klimov, V.I.; Ivanov, S.A.; Nanda, J.; Achermann, M.; Bezel, I.; Guire, J.A.M.; Piryatinski, A. Single-exciton optical gain in semiconductor nano crystals. Nature, 2007, 447, 441-450.
[6]
Zhao, W.; Ali, M.M.; Aguirre, S.D.; Brook, M.A.; Li, Y. Paper-based bioassays using gold nanoparticle colorimetric probes. Anal. Chem., 2008, 11, 8431-8437.
[7]
Ratnarathorn, N.; Chailapakul, O.; Henry, C.S.; Dungchai, W. Simple silver nanoparticle colorimetric sensing for copper by paper-based devices. Talanta, 2012, 99, 552-557.
[8]
Yang, H.; Holloway, P.H.; Ratna, B.B. Photoluminescent and electroluminescent properties of Mn-doped ZnS nanocrystals. J. Appl. Phys., 2003, 93, 586-592.
[9]
Bharava, R.N.; Gallagher, D.; Hong, X.; Nurmikko, A. Optical properties of manganese-doped nano crystals of ZnS. Phys. Rev. Lett., 1994, 72, 416-420.
[10]
Soo, Y.L.; Ming, Z.H.; Huang, S.W.; Rao, Y.H.; Bhargava, R.N.; Gallagher, D. Local structures around luminescent centres in Mn- doped nano crystals of ZnS. Phys. Rev. B Condens. Matter, 1994, 50, 7602-7610.
[11]
Liu, J.Z.; Yan, P.X.; Yue, G.H.; Chang, J.B.; Qu, D.M.; Zhuo, R.F. Red light photoluminescence emission from Mn and Cd co-doped ZnS one-dimensional nanostructures. J. Phys. D Appl. Phys., 2006, 39, 2352-2360.
[12]
Baruah, S.; Ortinero, C.; Shipin, O.V.; Dutta, J. Manganese doped zinc sulfide quantum dots for detection of Escherichia coli. J. Fluoresc., 2012, 22(1), 403-408.
[13]
He, Y.; Yan, X.P. Mn-doped ZnS quantum dots/methyl violet nanohybrids for room temperature phosphorescence sensing of DNA. Sci. China Chem., 2011, 54, 1254-1259.
[14]
Zhu, D.; Li, W.; Ma, L.; Lei, Y. Glutathione-functionalized Mn:ZnS/ZnO core/shell quantum dots as potential time-resolved FRET bioprobes. RSC Adv, 2014, 4, 9372-9378.
[15]
Chen, C.C.; Herhold, A.B.; Johnson, C.S.; Alivisatos, A.P. Size dependence of structural metastability in semiconductor nanocrystals. Science, 1997, 276, 398-406.
[16]
Vacassy, R.; Scholz, S.M.; Dutta, J.; Hofmann, H.; Plummer, C.J.G.; Houriet, R. Synthesis of controlled spherical zinc sulfide particles by precipitation from homogeneous solutions. J. Am. Ceram. Soc., 1998, 81, 2699-2705.
[17]
Torres- Martinez. C.L.; Kho, R.; Mehra, R.K. A Simple colloidal synthesis for Gram-Quantity production of water soluable ZnS nanocrystal powders. J. Colloid Interface Sci., 2000, 227, 561-566.
[18]
Calandra, P.; Goffredi, M.; Turco Liveri, V. Study of the growth of ZnS nanoparticles in water /AOT/n-heptane microemulsions by UV-absorption spectroscopy. Colloids Surf. A Physicochem. Eng. Asp., 1999, 160, 9-13.
[19]
Chan, W.C.W.; Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 1998, 5, 281-290.
[20]
Medintz, I.L.; Uyeda, H.T.; Goldman, E.R.; Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater., 2005, 4, 435-446.
[21]
Oh, J.K. Surface modification of colloidal CdX-based quantum dots for biomedical applications. J. Mater. Chem., 2010, 20, 8433-8445.
[22]
Irvine, S.; Staudt, T.; Rittweger, E.; Engelhardt, J.; Hell, W. Direct light‐driven modulation of luminescence from Mn‐doped ZnSe quantum dots. Angew. Chem. Int. Ed. Engl., 2008, 120(14), 2725-2728.
[23]
Sharma, M.; Jain, T.; Singh, S.; Pandey, O.P. Tunable emission in surface passivated Mn-ZnS nanophosphors and its application for Glucose sensing. AIP Adv., 2012, 2, 12-18.
[24]
Corrado, C.; Jiang, Y.; Oba, F.; Kozina, M.; Bridges, F.; Zhang, J.Z. Synthesis, structural and optical properties of ZnS:Cu,Cl nano crystals. J. Phys. Chem. A, 2009, 113, 3830-3837.
[25]
Quan, Z.; Wang, W.; Yang, P.; Lin, J.; Fang, J. Synthesis and charecterization of high quality ZnS, ZnS:Mn2+ and ZnS:Mn2+/ZnS (core shell) luminescent nano crystals. Inorg. Chem., 2007, 46, 1354-1360.
[26]
Turco Liveri, V.; Rossi, M.; Arrigo, G.D.; Manno, D.; Micooci, G. Synthesis and charecterization of ZnS nano particles in water. Appl. Phys., A., 1999, 69, 369-377.
[27]
Xu, J.; Ji, W. Charecterization of ZnS nanoparticles prepared by a new route. J. Mater. Sci. Lett., 1999, 18, 115-121.
[28]
Cao, L.; Shang, J.; Sen, R.; Huang, R. Luminescent enhancement of core-shell ZnS:Mn/ZnS nanoparticles. Appl. Phys. Lett., 2002, 80, 4300-4310.
[29]
Yu, J.H.; Joo, J.; Park, H.M.; Baik, S.; Kim, Y.W.; Kim, S.C.; Hyeon, T. Synthesis of quantum-sized cubic ZnS nanorods by the oriented attachment mechanism. J. Am. Chem. Soc., 2005, 127, 5662-5670.
[30]
Medintz, I.L.; Mattoussi, H. Quantum dot-based resonance energy transfer and its growing application in biology. Phys. Chem. Chem. Phys., 2009, 11(1), 17-45.
[31]
Li, H.; Shih, W.Y.; Shih, W-H. Non-heavy-metal ZnS quantum dots with bright blue photoluminescence by a one-step aqueous synthesis. Nanotechnology, 2007, 18, 2056-2064.
[32]
Kalivas, P.W. Neurotransmitter regulation of dopamine neurons in the ventral tegmental area. Brain Res. Rev., 1993, 18, 75-113.
[33]
Asanuma, M.; Miyazaki, I.; Ogawa, N. Dopamine-or L-DOPA-induced neurotoxicity: the role of dopamine quinone formation and tyrosinase in a model of Parkinson’s disease. Neurotox. Res., 2003, 5, 165-176.
[34]
He, L.; So, V.L.L.; Xin, J.H. Dopamine polymerization-induced surface colouration of various materials. RSC Adv, 2014, 4, 20317-20322.
[35]
Wei, Q.; Zhang, F.; Li, J.; Zhao, C. Oxidant-induced dopamine polymerization for multifunctional coatings. Polym. Chem., 2010, 1, 1430-1433.
[36]
Zhan, N.; Palui, G.; Safi, M.; Ji, X.; Mattoussi, H. Multidentate zwitterionic ligands provide compact and highly biocompatible quantum dots. J. Am. Chem. Soc., 2013, 135, 13786-13795.
[37]
Zhang, Y.; Clapp, A. Overview of stabilizing ligands for biocom-patible quantum dot nanocrystals. Sensors, 2011, 11, 11036-11055.
[38]
Zhu, C.Q.; Zhao, D.H.; Chen, J.L.; Li, Y.X.; Wang, l.Y.; Wang, L.; Zhou, Y.Y.; Zhuo, S.J.; Wu, Y.Q. Application of L-cysteine-capped nano-ZnS as a fluorescence probe for the determination of proteins. Anal. Bioanal. Chem., 2004, 378, 811-815.
[39]
Sapsford, K.E.; Pons, T.; Medintz, I.L.; Higashiya, S.; Brunal, F.M.; Dawson, P.E.; Mattoussi, H. Kinetics of metal-affinity driven self-assembly between proteins or peptides and CdSe-ZnS quantum dots. J. Phys. Chem. C, 2007, 111, 11528-11538.
[40]
Patiño, R.; Campos, M.; Torres, L.A. Strength of the Zn-N coordination bond in zinc porphyrins on the basis of experimental thermo chemistry. Inorg. Chem., 2007, 46, 9332-9336.
[41]
Dennis, A.M.; Sotto, D.C.; Mei, B.C.; Medintz, I.L.; Mattoussi, H.; Bao, G. Surface ligand effects on metal-affinity coordination to quantum dots: Implications for nanoprobe self-assembly. Bioconjugate. Chem., 2010, 21, 1160-1170.
[42]
Wightman, R.M.; May, L.J.; Michael, A.C. Detection of dopamine dynamics in the brain. Anal. Chem., 1988, 60, 769A-793A.
[43]
Whitehead, R.E.; Ferrer, J.V.; Javitch, J.A.; Justice, J.B. Reaction of oxidized dopamine with endogenous cysteine residues in the human dopamine transporter. J. Neurochem., 2001, 76, 1242-1251.
[44]
Kiruba Daniel, S.C.G.; Julius, L.A.N.; Gorthi, S.S. Instantaneous detection of melamine interference biosynthesis of silver nanoparticles. Sens. Actuators B Chem., 2017, 238, 641-650.
[45]
Nivedhini Iswarya, C.; Kiruba Daniel, S.C.G.; Sivakumar, M. Studies on L-Histidine capped Ag and Au nanoparticles for dopamine detection. Mater. Sci. Eng. C Mater. Biol. Appl., 2017, 75, 393-401.
[46]
Alivisatos, A.P.; Andrews, A.M.; Boyden, E.S.; Chun, M.; Church, G.M.; Deisseroth, K.; Donoghue, J.P.; Fraser, S.E.; Lippincott-Schwartz, J.; Looger, L.L.; Masmanidis, S.; McEuen, P.L.; Nurmikko, A.V.; Park, H.; Peterka, D.S.; Reid, C.; Roukes, M.L.; Scherer, A.; Schnitzer, M.; Sejnowski, T.J.; Shepard, K.L.; Tsao, D.; Turrigiano, G.; Weiss, P.S.; Xu, C.; Yuste, R.; Zhuang, X. Nanotools for neuroscience and brain activity mapping. ACS Nano, 2013, 7, 1850-1866.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy