Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Synthesis, Characterization, and Biological Evaluation of Novel Naringenin Derivatives as Anticancer Agents

Author(s): Yogesh Murti* and Pradeep Mishra

Volume 16, Issue 4, 2020

Page: [442 - 448] Pages: 7

DOI: 10.2174/1573407215666181214114927

Price: $65

Abstract

Background: In the present study, a series of substituted naringenin derivatives was synthesized by Claisen–Schmidt reaction using grinding technique.

Methods: Synthesized compounds were characterized on the basis of Fourier-Transform Infrared Spectroscopy (FTIR), proton Nuclear Magnetic Resonance (1H NMR), Mass Spectroscopy (MS) and elemental analysis. These derivatives were screened for anticancer activity on breast (MCF-7) and colon (HT-29) cell lines using Sulforhodamine B (SRB) colorimetric assay.

Results: Results displayed improved inhibitory concentration (IC50) values of naringenin derivatives. IC50 values of 3(4-chlorobenzylidene)-5,7-dihydroxy-2(4-hydroxyphenyl)chroman-4-one are 10.35 μM (MCF-7) & 12.03 μM (HT-29), which is most potent compound in the series. These finding confirms the suitability of 3-substituted naringenin in improving the anticancer effect.

Conclusion: Due to the intense interest in the development of drugs capable of inhibiting cancerous cells, naringenin derivatives may represent important precursor molecules for the therapeutic armamentarium of colon and breast cancer. Further structural modification in these structures will be of interest and may result in compounds having a better anticancer activity.

Keywords: Claisen-schmidt reaction, grinding technique, naringenin, colon cancer, breast cancer, immunomodulator.

Graphical Abstract

[1]
Ren, W.; Qiao, Z.; Wang, H.; Zhu, L.; Zhang, L. Flavonoids: Promising anticancer agents. Med. Res. Rev., 2003, 23(4), 519-534.
[http://dx.doi.org/10.1002/med.10033] [PMID: 12710022]
[2]
Scotti, L.; Bezerra Mendonça Junior, F.J.; Magalhaes Moreira, D.R.; da Silva, M.S.; Pitta, I.R.; Scotti, M.T. SAR, QSAR and docking of anticancer flavonoids and variants: A review. Curr. Top. Med. Chem., 2012, 12(24), 2785-2809.
[http://dx.doi.org/10.2174/1568026611212240007] [PMID: 23368103]
[3]
López-Lázaro, M. Flavonoids as anticancer agents: Structure-activity relationship study. Curr. Med. Chem. Anticancer Agents, 2002, 2(6), 691-714.
[http://dx.doi.org/10.2174/1568011023353714] [PMID: 12678721]
[4]
Uysal, S.; Ugurlu, A.; Zengin, G.; Baloglu, M.C.; Altunoglu, Y.C.; Mollica, A.; Custodio, L.; Neng, N.R.; Nogueira, J.M.F.; Mahomoodally, M.F. Novel in vitro and in silico insights of the multi-biological activities and chemical composition of Bidens tripartita L. Food Chem. Toxicol., 2018, 111, 525-536.
[http://dx.doi.org/10.1016/j.fct.2017.11.058] [PMID: 29217268]
[5]
Uysal, S.; Zengin, G.; Locatelli, M.; Bahadori, M.B.; Mocan, A.; Bellagamba, G.; De Luca, E.; Mollica, A.; Aktumsek, A. Cytotoxic and enzyme inhibitory potential of two Potentilla species (P. speciosa L. and P. reptans Willd.) and their chemical composition. Front. Pharmacol., 2017, 8, 290.
[http://dx.doi.org/10.3389/fphar.2017.00290] [PMID: 28588492]
[6]
Zengin, G.; Menghini, L.; Malatesta, L.; De Luca, E.; Bellagamba, G.; Uysal, S.; Aktumsek, A.; Locatelli, M. Comparative study of biological activities and multicomponent pattern of two wild Turkish species: Asphodeline anatolica and Potentilla speciosa. J. Enzyme Inhib. Med. Chem., 2016, 31(sup1), 203-208.
[http://dx.doi.org/10.1080/14756366.2016.1178247] [PMID: 27143199]
[7]
Brodowska, K.; Sykuła, A.; Garribba, E.; Łodyga-Chruscinska, E.; Sojka, M. Naringenin Schiff base: Antioxidant activity, acid–base profile, and interactions with DNA. Transit. Metal Chem., 2016, 41, 179-189.
[http://dx.doi.org/10.1007/s11243-015-0010-7]
[8]
Wang, J.; Yang, Z.; Lin, L.; Zhao, Z.; Liu, Z.; Liu, X. Protective effect of naringenin against lead-induced oxidative stress in rats. Biol. Trace Elem. Res., 2012, 146(3), 354-359.
[http://dx.doi.org/10.1007/s12011-011-9268-6] [PMID: 22109809]
[9]
Fang, F.; Tang, Y.; Gao, Z.; Xu, Q. A novel regulatory mechanism of naringenin through inhibition of T lymphocyte function in contact hypersensitivity suppression. Biochem. Biophys. Res. Commun., 2010, 397(2), 163-169.
[http://dx.doi.org/10.1016/j.bbrc.2010.05.065] [PMID: 20471963]
[10]
Mandalari, G.; Bennett, R.N.; Bisignano, G.; Trombetta, D.; Saija, A.; Faulds, C.B.; Gasson, M.J.; Narbad, A. Antimicrobial activity of flavonoids extracted from bergamot (Citrus bergamia Risso) peel, a byproduct of the essential oil industry. J. Appl. Microbiol., 2007, 103(6), 2056-2064.
[http://dx.doi.org/10.1111/j.1365-2672.2007.03456.x] [PMID: 18045389]
[11]
Zandi, K.; Teoh, B.T.; Sam, S.S.; Wong, P.F.; Mustafa, M.R.; Abubakar, S. In vitro antiviral activity of fisetin, rutin and naringenin against dengue virus type-2. J. Med. Plants Res., 2011, 5, 5534-5539.
[12]
Liu, L.; Xu, D.M.; Cheng, Y.Y. Distinct effects of naringenin and hesperetin on nitric oxide production from endothelial cells. J. Agric. Food Chem., 2008, 56(3), 824-829.
[http://dx.doi.org/10.1021/jf0723007] [PMID: 18197618]
[13]
Zierau, O.; Morrissey, C.; Watson, R.W.; Schwab, P.; Kolba, S.; Metz, P.; Vollmer, G. Antiandrogenic activity of the phytoestrogens naringenin, 6-(1,1-dimethylallyl)naringenin and 8-prenylnaringenin. Planta Med., 2003, 69(9), 856-858.
[http://dx.doi.org/10.1055/s-2003-43222] [PMID: 14598215]
[14]
Lee, S.; Lee, C.H.; Moon, S.S.; Kim, E.; Kim, C.T.; Kim, B.H.; Bok, S.H.; Jeong, T.S. Naringenin derivatives as anti-atherogenic agents. Bioorg. Med. Chem. Lett., 2003, 13(22), 3901-3903.
[http://dx.doi.org/10.1016/j.bmcl.2003.09.009] [PMID: 14592471]
[15]
Ortiz-Andrade, R.R.; Sánchez-Salgado, J.C.; Navarrete-Vázquez, G.; Webster, S.P.; Binnie, M.; García-Jiménez, S.; León-Rivera, I.; Cigarroa-Vázquez, P.; Villalobos-Molina, R.; Estrada-Soto, S. Antidiabetic and toxicological evaluations of naringenin in normoglycaemic and NIDDM rat models and its implications on extra-pancreatic glucose regulation. Diabetes Obes. Metab., 2008, 10(11), 1097-1104.
[http://dx.doi.org/10.1111/j.1463-1326.2008.00869.x] [PMID: 18355329]
[16]
Lee, M.H.; Yoon, S.; Moon, J.O. The flavonoid naringenin inhibits dimethylnitrosamine-induced liver damage in rats. Biol. Pharm. Bull., 2004, 27(1), 72-76.
[http://dx.doi.org/10.1248/bpb.27.72] [PMID: 14709902]
[17]
Renugadevi, J.; Prabu, S.M. Cadmium-induced hepatotoxicity in rats and the protective effect of naringenin. Exp. Toxicol. Pathol., 2010, 62(2), 171-181.
[http://dx.doi.org/10.1016/j.etp.2009.03.010] [PMID: 19409769]
[18]
Badary, O.A.; Abdel-Maksoud, S.; Ahmed, W.A.; Owieda, G.H. Naringenin attenuates cisplatin nephrotoxicity in rats. Life Sci., 2005, 76(18), 2125-2135.
[http://dx.doi.org/10.1016/j.lfs.2004.11.005] [PMID: 15826879]
[19]
Du, G.; Jin, L.; Han, X.; Song, Z.; Zhang, H.; Liang, W. Naringenin: A potential immunomodulator for inhibiting lung fibrosis and metastasis. Cancer Res., 2009, 69(7), 3205-3212.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-3393] [PMID: 19318568]
[20]
Abaza, M.S.; Orabi, K.Y.; Al-Quattan, E.; Al-Attiyah, R.J. Growth inhibitory and chemo-sensitization effects of naringenin, a natural flavanone purified from Thymus vulgaris, on human breast and colorectal cancer. Cancer Cell Int., 2015, 15, 46-65.
[http://dx.doi.org/10.1186/s12935-015-0194-0] [PMID: 26074733]
[21]
Arul, D.; Subramanian, P. Inhibitory effect of naringenin (citrus flavonone) on N-nitrosodiethylamine induced hepatocarcinogenesis in rats. Biochem. Biophys. Res. Commun., 2013, 434(2), 203-209.
[http://dx.doi.org/10.1016/j.bbrc.2013.03.039] [PMID: 23523793]
[22]
Arul, D.; Subramanian, P. Naringenin (citrus flavonone) induces growth inhibition, cell cycle arrest and apoptosis in human hepatocellular carcinoma cells. Pathol. Oncol. Res., 2013, 19(4), 763-770.
[http://dx.doi.org/10.1007/s12253-013-9641-1] [PMID: 23661153]
[23]
Kanno, S.; Tomizawa, A.; Hiura, T.; Osanai, Y.; Shouji, A.; Ujibe, M.; Ohtake, T.; Kimura, K.; Ishikawa, M. Inhibitory effects of naringenin on tumor growth in human cancer cell lines and sarcoma S-180-implanted mice. Biol. Pharm. Bull., 2005, 28(3), 527-530.
[http://dx.doi.org/10.1248/bpb.28.527] [PMID: 15744083]
[24]
Frydoonfar, H.R.; McGrath, D.R.; Spigelman, A.D. The variable effect on proliferation of a colon cancer cell line by the citrus fruit flavonoid Naringenin. Colorectal Dis., 2003, 5(2), 149-152.
[http://dx.doi.org/10.1046/j.1463-1318.2003.00444.x] [PMID: 12780904]
[25]
Guthrie, N.; Carroll, K.K. Inhibition of mammary cancer by citrus flavonoids. Adv. Exp. Med. Biol., 1998, 439, 227-236.
[http://dx.doi.org/10.1007/978-1-4615-5335-9_16] [PMID: 9781306]
[26]
Putra, N.E.D.L.; Haro, G.; Harahap, U.; Hutagaol, R. Karsono. In silico screening of hesperetin and naringenin ester derivatives as anticancer against p-glycoprotein. Int. J. Pharm. Pharm. Sci., 2015, 2(7), 485-488.
[27]
Yoon, H.; Kim, T.W.; Shin, S.Y.; Park, M.J.; Yong, Y.; Kim, D.W.; Islam, T.; Lee, Y.H.; Jung, K.Y.; Lim, Y. Design, synthesis and inhibitory activities of naringenin derivatives on human colon cancer cells. Bioorg. Med. Chem. Lett., 2013, 23(1), 232-238.
[http://dx.doi.org/10.1016/j.bmcl.2012.10.130] [PMID: 23177257]
[28]
Zhiping, L.; Wanxing, W.; Chunfang, G.; Yanmin, H.; Sheng, L.; Min, Z.; Jianguo, C. Semisynthesis and cytotoxicity of E-naringenin oximes from naringenin. Youji Huaxue, 2013, 12(33), 2551-2558.
[29]
Kim, J.H.; Kim, H.; Bak, Y.; Kang, J.W.; Lee, D.H.; Kim, M.S.; Park, Y.S.; Kim, E.J.; Jung, K.Y.; Lim, Y.; Hong, J.; Yoon, D.Y. Naringenin derivative diethyl (5,4′-dihydroxy flavanone-7-yl) phosphate inhibits cell growth and induces apoptosis in A549 human lung cancer cells. J. Korean Soc. Appl. Biol. Chem., 2012, 1(55), 75-82.
[http://dx.doi.org/10.1007/s13765-012-0013-4]
[30]
Bak, Y.; Kim, H.; Kang, J.W.; Lee, D.H.; Kim, M.S.; Park, Y.S.; Kim, J.H.; Jung, K.Y.; Lim, Y.; Hong, J.; Yoon, D.Y. A synthetic naringenin derivative, 5-hydroxy-7,4′-diacetyloxyflavanone-N-phenyl hydrazone (N101-43), induces apoptosis through up-regulation of Fas/FasL expression and inhibition of PI3K/Akt signaling pathways in non-small-cell lung cancer cells. J. Agric. Food Chem., 2011, 59(18), 10286-10297.
[http://dx.doi.org/10.1021/jf2017594] [PMID: 21877710]
[31]
Tan, M.; Zhu, J.; Pan, Y.; Chen, Z.; Liang, H.; Liu, H.; Wang, H. Synthesis, cytotoxic activity, and DNA binding properties of copper (II) complexes with hesperetin, naringenin, and apigenin. Bioinorg. Chem. Appl., 2009.. 347872
[http://dx.doi.org/10.1155/2009/347872] [PMID: 19830248]
[32]
Lee, E.R.; Kang, Y.J.; Kim, H.J.; Choi, H.Y.; Kang, G.H.; Kim, J.H.; Kim, B.W.; Jeong, H.S.; Park, Y.S.; Cho, S.G. Regulation of apoptosis by modified naringenin derivatives in human colorectal carcinoma RKO cells. J. Cell. Biochem., 2008, 104(1), 259-273.
[http://dx.doi.org/10.1002/jcb.21622] [PMID: 18004724]
[33]
Lee, E.R.; Kang, Y.J.; Choi, H.Y.; Kang, G.H.; Kim, J.H.; Kim, B.W.; Han, Y.S.; Nah, S.Y.; Paik, H.D.; Park, Y.S.; Cho, S.G. Induction of apoptotic cell death by synthetic naringenin derivatives in human lung epithelial carcinoma A549 cells. Biol. Pharm. Bull., 2007, 30(12), 2394-2398.
[http://dx.doi.org/10.1248/bpb.30.2394] [PMID: 18057732]
[34]
Wang, B.D.; Yang, Z.Y.; Wang, Q.; Cai, T.K.; Crewdson, P. Synthesis, characterization, cytotoxic activities, and DNA-binding properties of the La(III) complex with Naringenin Schiff-base. Bioorg. Med. Chem., 2006, 14(6), 1880-1888.
[http://dx.doi.org/10.1016/j.bmc.2005.10.031] [PMID: 16310358]
[35]
Tokalov, S.V.; Henker, Y.; Schwab, P.; Metz, P.; Gutzeit, H.O. Toxicity and cell cycle effects of synthetic 8-prenylnaringenin and derivatives in human cells. Pharmacology, 2004, 71(1), 46-56.
[http://dx.doi.org/10.1159/000076261] [PMID: 15051922]
[36]
Murti, Y.; Mishra, P. Expeditious synthesis and evaluation of heterocyclic chalcones and flavanones as anticancer agents. Indian J. Heterocycl. Chem., 2016, 26(3&4), 113-120.
[37]
Murti, Y.; Mishra, P. Synthesis and evaluation of flavanones as anticancer agents. Indian J. Pharm. Sci., 2014, 76(2), 163-166.
[PMID: 24843190]
[38]
Rahman, A.F.; Ali, R.; Jahng, Y.; Kadi, A.A. A facile solvent free Claisen-Schmidt reaction: Synthesis of α,α′-bis-(substituted-benzylidene)cycloalkanones and α,α′-bis-(substituted-alkylidene)cycloalkanones. Molecules, 2012, 17(1), 571-583.
[http://dx.doi.org/10.3390/molecules17010571] [PMID: 22231494]
[39]
Mogilaiah, K.; Swamy, T.K.; Chandra, A.V.; Srivani, N.; Vidya, K. Claisen-Schmidt condensation under solvent-free conditions. Indian J. Chem., 2010, 49B, 382-385.
[40]
Zhang, R.; Sheng, S.; Yang, L.; Tang, Z.; Xu, Z. Effective and green synthesis of flavanones in tap water. Curr. Green Chem., 2017, 2(4), 98-102.
[http://dx.doi.org/10.2174/2213346104666170929163710]
[41]
Zangade, S.; Mokle, S.; Vibhute, A.; Vibhute, Y. An efficient and operationally simple synthesis of some new chalcones by using grinding technique. Chem. Sci. J., 2011, 13, 1-6.
[http://dx.doi.org/10.4172/2150-3494.1000011]
[42]
Bhale, P.S.; Chavan, H.V.; Dongare, S.B.; Shringare, S.N.; Mule, Y.B.; Choudhari, P.B.; Bandgar, B.P. Synthesis, characterization and evaluation of 1,3-bisindolyl-2-propen-1-one derivatives as potent anti-breast cancer agents. Curr. Bioact. Compd., 2018, 3(14), 299-308.
[http://dx.doi.org/10.2174/1573407213666170428112855]
[43]
Vichai, V.; Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc., 2006, 1(3), 1112-1116.
[http://dx.doi.org/10.1038/nprot.2006.179] [PMID: 17406391]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy