Review Article

释放HK2在癌症代谢和治疗中的潜力

卷 26, 期 41, 2019

页: [7285 - 7322] 页: 38

弟呕挨: 10.2174/0929867326666181213092652

价格: $65

摘要

糖酵解是一个严格调节的过程,在此过程中,多种酶(例如己糖激酶(HK))发挥着关键作用。癌细胞的特征是几种同工酶在不同代谢途径中的特异性表达水平,这些特征为治疗性干预提供了可能性。在多种类型的癌症中,一直都报道过HKs(大多数是HK2亚型)的过表达。此外,在动物模型中,HK2的缺失已显示出可减少癌细胞的增殖而没有明显的副作用,这表明靶向HK2是癌症治疗的可行策略。 HK2抑制作用会导致糖酵解作用的实质性降低,从而影响中央代谢的多种途径,并且还会破坏线粒体外膜的稳定性,最终增强细胞死亡。尽管糖酵解抑制取得了有限的成功,部分是由于对特定同工型的选择性低以及已报道的HK抑制剂的过度副作用,但仍有足够的进展基础。 目前的审查集中在HK2抑制,设想开发有效的和选择性的抗癌药。介绍了有关HKs的功能,表达和活性的信息,以及它们的结构,已知的抑制剂以及报告的HK2消融/抑制作用。讨论了不同同工酶的结构特征,旨在激发一种更合理的方法来设计具有适当药物样性质的选择性HK2抑制剂。特别注意结构相似的HK1和HK2同工型的结构和序列比较,旨在揭示可以在治疗上探索的差异。最后,对最近归因于HK2的几种不同途径和疾病的其他催化作用和非催化作用进行了综述,并简要讨论了它们的含义。

关键词: 己糖激酶(HK),癌症代谢,癌症治疗,糖酵解,药物开发,催化和非催化作用。

[1]
Petrelli, A.; Giordano, S. From single- to multi-target drugs in cancer therapy: when aspecificity becomes an advantage. Curr. Med. Chem., 2008, 15(5), 422-432.
[http://dx.doi.org/10.2174/092986708783503212] [PMID: 18288997]
[2]
Raghavendra, N.M.; Pingili, D.; Kadasi, S.; Mettu, A.; Prasad, S.V.U.M. Dual or multi-targeting inhibitors: The next generation anticancer agents. Eur. J. Med. Chem., 2018, 143(1), 1277-1300.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.021] [PMID: 29126724]
[3]
Ma, X.; Lv, X.; Zhang, J. Exploiting polypharmacology for improving therapeutic outcome of kinase inhibitors (KIs): An update of recent medicinal chemistry efforts. Eur. J. Med. Chem., 2018, 143, 449-463.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.049] [PMID: 29202407]
[4]
Zhong, J-T.; Zhou, S-H. Warburg effect, hexokinase-II, and radioresistance of laryngeal carcinoma. Oncotarget, 2017, 8(8), 14133-14146.
[http://dx.doi.org/10.18632/oncotarget.13044] [PMID: 27823965]
[5]
Zhang, X.Y.; Zhang, M.; Cong, Q.; Zhang, M.X.; Zhang, M.Y.; Lu, Y.Y.; Xu, C.J. Hexokinase 2 confers resistance to cisplatin in ovarian cancer cells by enhancing cisplatin-induced autophagy. Int. J. Biochem. Cell Biol., 2018, 95, 9-16.
[http://dx.doi.org/10.1016/j.biocel.2017.12.010] [PMID: 29247711]
[6]
Hay, N. Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nat. Rev. Cancer, 2016, 16(10), 635-649.
[http://dx.doi.org/10.1038/nrc.2016.77] [PMID: 27634447]
[7]
Martinez-Outschoorn, U.E.; Peiris-Pagés, M.; Pestell, R.G.; Sotgia, F.; Lisanti, M.P. Cancer metabolism: a therapeutic perspective. Nat. Rev. Clin. Oncol., 2017, 14(1), 11-31.
[http://dx.doi.org/10.1038/nrclinonc.2016.60] [PMID: 27141887]
[8]
Han, J.; Zhang, L.; Guo, H.; Wysham, W.Z.; Roque, D.R.; Willson, A.K.; Sheng, X.; Zhou, C.; Bae-Jump, V.L. Glucose promotes cell proliferation, glucose uptake and invasion in endometrial cancer cells via AMPK/mTOR/S6 and MAPK signaling. Gynecol. Oncol., 2015, 138(3), 668-675.
[http://dx.doi.org/10.1016/j.ygyno.2015.06.036] [PMID: 26135947]
[9]
Sun, L.; Yin, Y.; Clark, L.H.; Sun, W.; Sullivan, S.A.; Tran, A-Q.; Han, J.; Zhang, L.; Guo, H.; Madugu, E.; Pan, T.; Jackson, A.L.; Kilgore, J.; Jones, H.M.; Gilliam, T.P.; Zhou, C.; Bae-Jump, V.L. Dual inhibition of glycolysis and glutaminolysis as a therapeutic strategy in the treatment of ovarian cancer. Oncotarget, 2017, 8(38), 63551-63561.
[http://dx.doi.org/10.18632/oncotarget.18854] [PMID: 28969010]
[10]
Nelson, D.L.; Cox, M.M. Lehninger, Principles of Biochemistry, 4th ed; Freeman & Co.: New York, 2005.
[11]
Hu, J.; Locasale, J.W.; Bielas, J.H.; O’Sullivan, J.; Sheahan, K.; Cantley, L.C.; Vander Heiden, M.G.; Vitkup, D. Heterogeneity of tumor-induced gene expression changes in the human metabolic network. Nat. Biotechnol., 2013, 31(6), 522-529.
[http://dx.doi.org/10.1038/nbt.2530] [PMID: 23604282]
[12]
Wilson, J.E. Reviews of physiology, biochemistry and pharmacology;; Springer: Berlin, 1995, p. 126, pp. 65-198.
[13]
Irwin, D.M.; Tan, H. Molecular evolution of the vertebrate hexokinase gene family: Identification of a conserved fifth vertebrate hexokinase gene. Comp. Biochem. Physiol. Part D Genomics Proteomics, 2008, 3(1), 96-107.
[http://dx.doi.org/10.1016/j.cbd.2007.11.002] [PMID: 20483211]
[14]
Patra, K.C.; Wang, Q.; Bhaskar, P.T.; Miller, L.; Wang, Z.; Wheaton, W.; Chandel, N.; Laakso, M.; Muller, W.J.; Allen, E.L.; Jha, A.K.; Smolen, G.A.; Clasquin, M.F.; Robey, B.; Hay, N. Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell, 2013, 24(2), 213-228.
[http://dx.doi.org/10.1016/j.ccr.2013.06.014] [PMID: 23911236]
[15]
DeWaal, D.; Nogueira, V.; Terry, A.R.; Patra, K.C.; Jeon, S-M.; Guzman, G.; Au, J.; Long, C.P.; Antoniewicz, M.R.; Hay, N. Hexokinase-2 depletion inhibits glycolysis and induces oxidative phosphorylation in hepatocellular carcinoma and sensitizes to metformin. Nat. Commun., 2018, 9(1), 446.
[http://dx.doi.org/10.1038/s41467-017-02733-4] [PMID: 29386513]
[16]
Camara, A.K.S.; Zhou, Y.; Wen, P.C.; Tajkhorshid, E.; Kwok, W.M. Mitochondrial VDAC1: A Key gatekeeper as potential therapeutic target. Front. Physiol., 2017, 8, 460.
[http://dx.doi.org/10.3389/fphys.2017.00460] [PMID: 28713289]
[17]
Vander Heiden, M.G.; DeBerardinis, R.J. Understanding the intersections between metabolism and cancer biology. Cell, 2017, 168(4), 657-669.
[http://dx.doi.org/10.1016/j.cell.2016.12.039] [PMID: 28187287]
[18]
Dwarakanath, B.; Jain, V. Targeting glucose metabolism with 2-deoxy-D-glucose for improving cancer therapy. Future Oncol., 2009, 5(5), 581-585.
[http://dx.doi.org/10.2217/fon.09.44] [PMID: 19519197]
[19]
Raez, L.E.; Papadopoulos, K.; Ricart, A.D.; Chiorean, E.G.; Dipaola, R.S.; Stein, M.N.; Rocha Lima, C.M.; Schlesselman, J.J.; Tolba, K.; Langmuir, V.K.; Kroll, S.; Jung, D.T.; Kurtoglu, M.; Rosenblatt, J.; Lampidis, T.J. A phase I dose-escalation trial of 2-deoxy-D-glucose alone or combined with docetaxel in patients with advanced solid tumors. Cancer Chemother. Pharmacol., 2013, 71(2), 523-530.
[http://dx.doi.org/10.1007/s00280-012-2045-1] [PMID: 23228990]
[20]
Threshold Pharmaceuticals Inc. Press Release: Phase 2 and Phase 3 Clinical Trials of TH-070 in Benign Prostatic Hyperplasia (BPH) Do Not Meet Primary Endpoint., 2006. May;12
[21]
Business Wire. PreScience Closes on Institutional Round of Financing, Available at: https://www.businesswire.com/news/home/20170426005840/en/PreScience-Closes-Institu-tional-Financing
[22]
Chen, Z.; Zhang, H.; Lu, W.; Huang, P. Role of mitochondria-associated hexokinase II in cancer cell death induced by 3-bromopyruvate. Biochim. Biophys. Acta, 2009, 1787(5), 553-560.
[http://dx.doi.org/10.1016/j.bbabio.2009.03.003] [PMID: 19285479]
[23]
Ning, X.; Qi, H.; Li, R.; Jin, Y.; McNutt, M.A.; Yin, Y. Synthesis and antitumor activity of novel 2, 3-didithiocarbamate substituted naphthoquinones as inhibitors of pyruvate kinase M2 isoform. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 126-129.
[http://dx.doi.org/10.1080/14756366.2017.1404591] [PMID: 29185365]
[24]
Lin, H.; Zeng, J.; Xie, R.; Schulz, M.J.; Tedesco, R.; Qu, J.; Erhard, K.F.; Mack, J.F.; Raha, K.; Rendina, A.R.; Szewczuk, L.M.; Kratz, P.M.; Jurewicz, A.J.; Cecconie, T.; Martens, S.; McDevitt, P.J.; Martin, J.D.; Chen, S.B.; Jiang, Y.; Nickels, L.; Schwartz, B.J.; Smallwood, A.; Zhao, B.; Campobasso, N.; Qian, Y.; Briand, J.; Rominger, C.M.; Oleykowski, C.; Hardwicke, M.A.; Luengo, J.I. Discovery of a novel 2,6-disubstituted glucosamine series of potent and selective hexokinase 2 inhibitors. ACS Med. Chem. Lett., 2015, 7(3), 217-222.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00214] [PMID: 26985301]
[25]
Amoedo, N.D.; Obre, E.; Rossignol, R. Drug discovery strategies in the field of tumor energy metabolism: Limitations by metabolic flexibility and metabolic resistance to chemotherapy. Biochim. Biophys. Acta Bioenerg., 2017, 1858(8), 674-685.
[http://dx.doi.org/10.1016/j.bbabio.2017.02.005] [PMID: 28213330]
[26]
Tran, Q.; Lee, H.; Park, J.; Kim, S.H.; Park, J. Targeting cancer metabolism - revisiting the Warburg effects. Toxicol. Res., 2016, 32(3), 177-193.
[http://dx.doi.org/10.5487/TR.2016.32.3.177] [PMID: 27437085]
[27]
Wolpaw, A.J.; Dang, C.V. Exploiting metabolic vulnerabilities of cancer with precision and accuracy. Trends Cell Biol., 2018, 28(3), 201-212.
[http://dx.doi.org/10.1016/j.tcb.2017.11.006] [PMID: 29229182]
[28]
Kroemer, G.; Pouyssegur, J. Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell, 2008, 13(6), 472-482.
[http://dx.doi.org/10.1016/j.ccr.2008.05.005] [PMID: 18538731]
[29]
Warburg, O. On the origin of cancer cells. Science, 1956, 123(3191), 309-314.
[http://dx.doi.org/10.1126/science.123.3191.309] [PMID: 13298683]
[30]
Zaidi, H.; Karakatsanis, N. Towards enhanced PET quantification in clinical oncology. Br. J. Radiol., 2018, 91(1081)20170508
[http://dx.doi.org/10.1259/bjr.20170508] [PMID: 29164924]
[31]
Liberti, M.V.; Locasale, J.W. The warburg effect: how does it benefit cancer cells? Trends Biochem. Sci., 2016, 41(3), 211-218.
[http://dx.doi.org/10.1016/j.tibs.2015.12.001] [PMID: 26778478]
[32]
Pathania, D.; Millard, M.; Neamati, N. Opportunities in discovery and delivery of anticancer drugs targeting mitochondria and cancer cell metabolism. Adv. Drug Deliv. Rev., 2009, 61(14), 1250-1275.
[http://dx.doi.org/10.1016/j.addr.2009.05.010] [PMID: 19716393]
[33]
Singh, D.; Arora, R.; Kaur, P.; Singh, B.; Mannan, R.; Arora, S. Overexpression of hypoxia-inducible factor and metabolic pathways: possible targets of cancer. Cell Biosci., 2017, 7, 62.
[http://dx.doi.org/10.1186/s13578-017-0190-2] [PMID: 29158891]
[34]
Cervantes-Madrid, D.; Dueñas-González, A. Antitumor effects of a drug combination targeting glycolysis, glutaminolysis and de novo synthesis of fatty acids. Oncol. Rep., 2015, 34(3), 1533-1542.
[http://dx.doi.org/10.3892/or.2015.4077] [PMID: 26134042]
[35]
Pastorino, J.G.; Shulga, N.; Hoek, J.B. Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis. J. Biol. Chem., 2002, 277(9), 7610-7618.
[http://dx.doi.org/10.1074/jbc.M109950200] [PMID: 11751859]
[36]
Arora, K.K.; Pedersen, P.L. Functional significance of mitochondrial bound hexokinase in tumor cell metabolism. Evidence for preferential phosphorylation of glucose by intramitochondrially generated ATP. J. Biol. Chem., 1988, 263(33), 17422-17428.
[PMID: 3182854]
[37]
Mazure, N.M. VDAC in cancer. Biochim. Biophys. Acta Bioenerg., 2017, 1858(8), 665-673.
[http://dx.doi.org/10.1016/j.bbabio.2017.03.002] [PMID: 28283400]
[38]
Gall, J.M.; Wong, V.; Pimental, D.R.; Havasi, A.; Wang, Z.; Pastorino, J.G.; Bonegio, R.G.B.; Schwartz, J.H.; Borkan, S.C. Hexokinase regulates Bax-mediated mitochondrial membrane injury following ischemic stress. Kidney Int., 2011, 79(11), 1207-1216.
[http://dx.doi.org/10.1038/ki.2010.532] [PMID: 21430642]
[39]
Shulga, N.; Wilson-Smith, R.; Pastorino, J.G. Hexokinase II detachment from the mitochondria potentiates cisplatin induced cytotoxicity through a caspase-2 dependent mechanism. Cell Cycle, 2009, 8(20), 3355-3364.
[http://dx.doi.org/10.4161/cc.8.20.9853] [PMID: 19770592]
[40]
Pastorino, J.G.; Hoek, J.B. Hexokinase II: the integration of energy metabolism and control of apoptosis. Curr. Med. Chem., 2003, 10(16), 1535-1551.
[http://dx.doi.org/10.2174/0929867033457269] [PMID: 12871125]
[41]
Krasnov, G.S.; Dmitriev, A.A.; Lakunina, V.A.; Kirpiy, A.A.; Kudryavtseva, A.V. Targeting VDAC-bound hexokinase II: a promising approach for concomitant anti-cancer therapy. Expert Opin. Ther. Targets, 2013, 17(10), 1221-1233.
[http://dx.doi.org/10.1517/14728222.2013.833607] [PMID: 23984984]
[42]
Tidmarsh, G. Combination therapies for the treatment of cancer. WO2004064734A2, 2004.
[43]
Conway, L.P.; Voglmeir, J. Functional analysis of anomeric sugar kinases. Carbohydr. Res., 2016, 432, 23-30.
[http://dx.doi.org/10.1016/j.carres.2016.06.001] [PMID: 27351442]
[44]
Cárdenas, M.L.; Cornish-Bowden, A.; Ureta, T. Evolution and regulatory role of the hexokinases. Biochim. Biophys. Acta, 1998, 1401(3), 242-264.
[http://dx.doi.org/10.1016/S0167-4889(97)00150-X] [PMID: 9540816]
[45]
The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res., 2017, 45(D1), D158-D169.
[http://dx.doi.org/10.1093/nar/gkw1099] [PMID: 27899622]
[46]
González-Alvarez, R.; Ortega-Cuellar, D.; Hernández-Mendoza, A.; Moreno-Arriola, E.; Villaseñor-Mendoza, K.; Gálvez-Mariscal, A.; Pérez-Cruz, M.E.; Morales-Salas, I.; Velázquez-Arellano, A. The hexokinase gene family in the zebrafish: structure, expression, functional and phylogenetic analysis. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2009, 152(2), 189-195.
[http://dx.doi.org/10.1016/j.cbpb.2008.11.004] [PMID: 19087890]
[47]
Li, M.; Gao, Z.; Wang, Y.; Wang, H.; Zhang, S. Identification, expression and bioactivity of hexokinase in amphioxus: insights into evolution of vertebrate hexokinase genes. Gene, 2014, 535(2), 318-326.
[http://dx.doi.org/10.1016/j.gene.2013.10.068] [PMID: 24262936]
[48]
Griffin, L.D.; Gelb, B.D.; Wheeler, D.A.; Davison, D.; Adams, V.; McCabe, E.R.B. Mammalian hexokinase 1: evolutionary conservation and structure to function analysis. Genomics, 1991, 11(4), 1014-1024.
[http://dx.doi.org/10.1016/0888-7543(91)90027-C] [PMID: 1783373]
[49]
Tsai, H.J.; Wilson, J.E. Functional organization of mammalian hexokinases: both N- and C-terminal halves of the rat type II isozyme possess catalytic sites. Arch. Biochem. Biophys., 1996, 329(1), 17-23.
[http://dx.doi.org/10.1006/abbi.1996.0186] [PMID: 8619630]
[50]
Ahn, K.J.; Kim, J.; Yun, M.; Park, J.H.; Lee, J.D. Enzymatic properties of the N- and C-terminal halves of human hexokinase II. BMB Rep., 2009, 42(6), 350-355.
[http://dx.doi.org/10.5483/BMBRep.2009.42.6.350] [PMID: 19558793]
[51]
Ureta, T. The comparative isozymology of vertebrate hexokinases. Comp. Biochem. Physiol. B, 1982, 71(4), 549-555.
[http://dx.doi.org/10.1016/0305-0491(82)90461-8] [PMID: 7044667]
[52]
Wilson, J.E. Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J. Exp. Biol., 2003, 206(Pt 12), 2049-2057.
[http://dx.doi.org/10.1242/jeb.00241] [PMID: 12756287]
[53]
Neary, C.L.; Pastorino, J.G. Nucleocytoplasmic shuttling of hexokinase II in a cancer cell. Biochem. Biophys. Res. Commun., 2010, 394(4), 1075-1081.
[http://dx.doi.org/10.1016/j.bbrc.2010.03.129] [PMID: 20346347]
[54]
Neary, C.L.; Pastorino, J.G. Akt inhibition promotes hexokinase 2 redistribution and glucose uptake in cancer cells. J. Cell. Physiol., 2013, 228(9), 1943-1948.
[http://dx.doi.org/10.1002/jcp.24361] [PMID: 23629924]
[55]
Robey, R.B.; Hay, N. Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt. Oncogene, 2006, 25(34), 4683-4696.
[http://dx.doi.org/10.1038/sj.onc.1209595] [PMID: 16892082]
[56]
Tsai, H.J.; Wilson, J.E. Functional organization of mammalian hexokinases: characterization of the rat type III isozyme and its chimeric forms, constructed with the N- and C-terminal halves of the type I and type II isozymes. Arch. Biochem. Biophys., 1997, 338(2), 183-192.
[http://dx.doi.org/10.1006/abbi.1996.9850] [PMID: 9028870]
[57]
Postic, C.; Shiota, M.; Magnuson, M.A. Cell-specific roles of glucokinase in glucose homeostasis. Recent Prog. Horm. Res., 2001, 56, 195-217.
[http://dx.doi.org/10.1210/rp.56.1.195] [PMID: 11237213]
[58]
Sternisha, S.M.; Liu, P.; Marshall, A.G.; Miller, B.G. Mechanistic origins of enzyme activation in human glucokinase variants associated with congenital hyperinsulinism. Biochemistry, 2018, 57(10), 1632-1639.
[http://dx.doi.org/10.1021/acs.biochem.8b00022] [PMID: 29425029]
[59]
Chakera, A.J.; Steele, A.M.; Gloyn, A.L.; Shepherd, M.H.; Shields, B.; Ellard, S.; Hattersley, A.T. Recognition and management of individuals with hyperglycemia because of a heterozygous glucokinase mutation. Diabetes Care, 2015, 38(7), 1383-1392.
[http://dx.doi.org/10.2337/dc14-2769] [PMID: 26106223]
[60]
Haeusler, R.A.; Camastra, S.; Astiarraga, B.; Nannipieri, M.; Anselmino, M.; Ferrannini, E. Decreased expression of hepatic glucokinase in type 2 diabetes. Mol. Metab., 2014, 4(3), 222-226.
[http://dx.doi.org/10.1016/j.molmet.2014.12.007] [PMID: 25737948]
[61]
Lei, L.; Liu, S.; Li, Y.; Song, H.; He, L.; Liu, Q.; Sun, S.; Li, Y.; Feng, Z.; Shen, Z. The potential role of glucokinase activator SHP289-04 in anti-diabetes and hepatic protection. Eur. J. Pharmacol., 2018, 826, 17-23.
[http://dx.doi.org/10.1016/j.ejphar.2018.02.036] [PMID: 29477658]
[62]
Matschinsky, F.M. Assessing the potential of glucokinase activators in diabetes therapy. Nat. Rev. Drug Discov., 2009, 8(5), 399-416.
[http://dx.doi.org/10.1038/nrd2850] [PMID: 19373249]
[63]
Cheruvallath, Z.S.; Gwaltney, S.L., II; Sabat, M.; Tang, M.; Wang, H.; Jennings, A.; Hosfield, D.; Lee, B.; Wu, Y.; Halkowycz, P.; Grimshaw, C.E. Discovery of potent and orally active 1,4-disubstituted indazoles as novel allosteric glucokinase activators. Bioorg. Med. Chem. Lett., 2017, 27(12), 2678-2682.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.041] [PMID: 28512030]
[64]
Toyoda, Y.; Tsuchida, A.; Iwami, E.; Shironoguchi, H.; Miwa, I. Regulation of hepatic glucose metabolism by translocation of glucokinase between the nucleus and the cytoplasm in hepatocytes. Horm. Metab. Res., 2001, 33(6), 329-336.
[http://dx.doi.org/10.1055/s-2001-15418] [PMID: 11456280]
[65]
Ali, A.; Wathes, D.C.; Swali, A.; Burns, H.; Burns, S. A novel mammalian glucokinase exhibiting exclusive inorganic polyphosphate dependence in the cell nucleus. Biochem. Biophys. Rep., 2017, 12, 151-157.
[http://dx.doi.org/10.1016/j.bbrep.2017.09.004] [PMID: 29090276]
[66]
Ronimus, R.S.; Morgan, H.W. Cloning and biochemical characterization of a novel mouse ADP-dependent glucokinase. Biochem. Biophys. Res. Commun., 2004, 315(3), 652-658.
[http://dx.doi.org/10.1016/j.bbrc.2004.01.103] [PMID: 14975750]
[67]
Guo, C.; Ludvik, A.E.; Arlotto, M.E.; Hayes, M.G.; Armstrong, L.L.; Scholtens, D.M.; Brown, C.D.; Newgard, C.B.; Becker, T.C.; Layden, B.T.; Lowe, W.L.; Reddy, T.E. Coordinated regulatory variation associated with gestational hyperglycaemia regulates expression of the novel hexokinase HKDC1. Nat. Commun., 2015, 6, 6069.
[http://dx.doi.org/10.1038/ncomms7069] [PMID: 25648650]
[68]
Ludvik, A.E.; Pusec, C.M.; Priyadarshini, M.; Angueira, A.R.; Guo, C.; Lo, A.; Hershenhouse, K.S.; Yang, G.Y.; Ding, X.; Reddy, T.E.; Lowe, W.L., Jr; Layden, B.T. HKDC1 is a novel hexokinase involved in whole-body glucose use. Endocrinology, 2016, 157(9), 3452-3461.
[http://dx.doi.org/10.1210/en.2016-1288] [PMID: 27459389]
[69]
Hayes, M.G.; Urbanek, M.; Hivert, M.F.; Armstrong, L.L.; Morrison, J.; Guo, C.; Lowe, L.P.; Scheftner, D.A.; Pluzhnikov, A.; Levine, D.M.; McHugh, C.P.; Ackerman, C.M.; Bouchard, L.; Brisson, D.; Layden, B.T.; Mirel, D.; Doheny, K.F.; Leya, M.V.; Lown-Hecht, R.N.; Dyer, A.R.; Metzger, B.E.; Reddy, T.E.; Cox, N.J.; Lowe, W.L. Jr. HAPO study cooperative research group. Identification of HKDC1 and BACE2 as genes influencing glycemic traits during pregnancy through genome-wide association studies. Diabetes, 2013, 62(9), 3282-3291.
[http://dx.doi.org/10.2337/db12-1692] [PMID: 23903356]
[70]
Kanthimathi, S.; Liju, S.; Laasya, D.; Anjana, R.M.; Mohan, V.; Radha, V. Hexokinase domain containing 1 (HKDC1) gene variants and their association with gestational diabetes mellitus in a south indian population. Ann. Hum. Genet., 2016, 80(4), 241-245.
[http://dx.doi.org/10.1111/ahg.12155] [PMID: 27346736]
[71]
Zhang, Z.; Huang, S.; Wang, H.; Wu, J.; Chen, D.; Peng, B.; Zhou, Q. High expression of hexokinase domain containing 1 is associated with poor prognosis and aggressive phenotype in hepatocarcinoma. Biochem. Biophys. Res. Commun., 2016, 474(4), 673-679.
[http://dx.doi.org/10.1016/j.bbrc.2016.05.007] [PMID: 27155152]
[72]
Li, G.H.; Huang, J.F. Inferring therapeutic targets from heterogeneous data: HKDC1 is a novel potential therapeutic target for cancer. Bioinformatics, 2014, 30(6), 748-752.
[http://dx.doi.org/10.1093/bioinformatics/btt606] [PMID: 24162464]
[73]
Anderson, C.M.; Stenkamp, R.E.; Steitz, T.A. Sequencing a protein by x-ray crystallography. II. Refinement of yeast hexokinase B co-ordinates and sequence at 2.1 A resolution. J. Mol. Biol., 1978, 123(1), 15-33.
[http://dx.doi.org/10.1016/0022-2836(78)90374-1] [PMID: 355643]
[74]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[75]
Nedyalkova, L.; Tong, Y.; Rabeh, W.; Tempel, W.; Landry, R.; Arrowsmith, C.H.; Edwards, A.M.; Bountra, C.; Weigelt, J.; Bochkarev, A.; Park, H. Structural Genomics Consortium (SGC). Crystal structure of the C-terminal hexokinase domain of human HK3. RSCB PDB - 3HM8; Released, 2009, pp. 8-11.
[76]
Ardehali, H.; Yano, Y.; Printz, R.L.; Koch, S.; Whitesell, R.R.; May, J.M.; Granner, D.K. Functional organization of mammalian hexokinase II. Retention of catalytic and regulatory functions in both the NH2- and COOH-terminal halves. J. Biol. Chem., 1996, 271(4), 1849-1852.
[http://dx.doi.org/10.1074/jbc.271.4.1849] [PMID: 8567628]
[77]
Rabeh, W. M.; Zhu, H.; Nedyalkova, L.; Tempel, W.; Wasney, G.; Landry, R.; Vedadi, M.; Arrowsmith, C. H.; Edwards, A. M.; Sundstrom, M.; Weigelt, J.; Bochkarev, A.; Park, H. Crystal structure of human hexokinase II. RSCB PDB - 2NZT; Released, 2006, 5 December.
[78]
Mulichak, A.M.; Wilson, J.E.; Padmanabhan, K.; Garavito, R.M. The structure of mammalian hexokinase-1. Nat. Struct. Biol., 1998, 5(7), 555-560.
[http://dx.doi.org/10.1038/811] [PMID: 9665168]
[79]
Kuser, P.; Cupri, F.; Bleicher, L.; Polikarpov, I. Crystal structure of yeast hexokinase PI in complex with glucose: A classical “induced fit” example revised. Proteins, 2008, 72(2), 731-740.
[http://dx.doi.org/10.1002/prot.21956] [PMID: 18260108]
[80]
Feng, J.; Zhao, S.; Chen, X.; Wang, W.; Dong, W.; Chen, J.; Shen, J.R.; Liu, L.; Kuang, T. Biochemical and structural study of Arabidopsis hexokinase 1. Acta Crystallogr. D Biol. Crystallogr., 2015, 71(Pt 2), 367-375.
[http://dx.doi.org/10.1107/S1399004714026091] [PMID: 25664748]
[81]
Steitz, T.A.; Shoham, M.; Bennett, W.S. Jr. Structural dynamics of yeast hexokinase during catalysis. Philos. Trans. R. Soc. Lond. B Biol. Sci., 1981, 293(1063), 43-52.
[http://dx.doi.org/10.1098/rstb.1981.0058] [PMID: 6115422]
[82]
Aleshin, A.E.; Zeng, C.; Bartunik, H.D.; Fromm, H.J.; Honzatko, R.B. Regulation of hexokinase I: crystal structure of recombinant human brain hexokinase complexed with glucose and phosphate. J. Mol. Biol., 1998, 282(2), 345-357.
[http://dx.doi.org/10.1006/jmbi.1998.2017] [PMID: 9735292]
[83]
Petit, P.; Antoine, M.; Ferry, G.; Boutin, J.A.; Lagarde, A.; Gluais, L.; Vincentelli, R.; Vuillard, L. The active conformation of human glucokinase is not altered by allosteric activators. Acta Crystallogr. D Biol. Crystallogr., 2011, 67(Pt 11), 929-935.
[http://dx.doi.org/10.1107/S0907444911036729] [PMID: 22101819]
[84]
Liu, S.; Ammirati, M.J.; Song, X.; Knafels, J.D.; Zhang, J.; Greasley, S.E.; Pfefferkorn, J.A.; Qiu, X. Insights into mechanism of glucokinase activation: observation of multiple distinct protein conformations. J. Biol. Chem., 2012, 287(17), 13598-13610.
[http://dx.doi.org/10.1074/jbc.M111.274126] [PMID: 22298776]
[85]
Rosano, C.; Sabini, E.; Rizzi, M.; Deriu, D.; Murshudov, G.; Bianchi, M.; Serafini, G.; Magnani, M.; Bolognesi, M. Binding of non-catalytic ATP to human hexokinase I highlights the structural components for enzyme-membrane association control. Structure, 1999, 7(11), 1427-1437.
[http://dx.doi.org/10.1016/S0969-2126(00)80032-5] [PMID: 10574795]
[86]
Smith, T.A.D. Mammalian hexokinases and their abnormal expression in cancer. Br. J. Biomed. Sci., 2000, 57(2), 170-178.
[PMID: 10912295]
[87]
Osawa, H.; Sutherland, C.; Robey, R.B.; Printz, R.L.; Granner, D.K. Analysis of the signaling pathway involved in the regulation of hexokinase II gene transcription by insulin. J. Biol. Chem., 1996, 271(28), 16690-16694.
[http://dx.doi.org/10.1074/jbc.271.28.16690] [PMID: 8663315]
[88]
Osawa, H.; Robey, R.B.; Printz, R.L.; Granner, D.K. Identification and characterization of basal and cyclic AMP response elements in the promoter of the rat hexokinase II gene. J. Biol. Chem., 1996, 271(29), 17296-17303.
[http://dx.doi.org/10.1074/jbc.271.29.17296] [PMID: 8663388]
[89]
Katagiri, M.; Karasawa, H.; Takagi, K.; Nakayama, S.; Yabuuchi, S.; Fujishima, F.; Naitoh, T.; Watanabe, M.; Suzuki, T.; Unno, M.; Sasano, H. Hexokinase 2 in colorectal cancer: a potent prognostic factor associated with glycolysis, proliferation and migration. Histol. Histopathol., 2017, 32(4), 351-360.
[http://dx.doi.org/10.14670/HH-11-799] [PMID: 27363977]
[90]
Wu, J.; Hu, L.; Wu, F.; Zou, L.; He, T. Poor prognosis of hexokinase 2 overexpression in solid tumors of digestive system: a meta-analysis. Oncotarget, 2017, 8(19), 32332-32344.
[http://dx.doi.org/10.18632/oncotarget.15974] [PMID: 28415659]
[91]
Zhang, Z.F.; Feng, X.S.; Chen, H.; Duan, Z.J.; Wang, L.X.; Yang, D.; Liu, P.X.; Zhang, Q.P.; Jin, Y.L.; Sun, Z.G.; Liu, H. Prognostic significance of synergistic hexokinase-2 and beta2-adrenergic receptor expression in human hepatocelluar carcinoma after curative resection. BMC Gastroenterol., 2016, 16(1), 57.
[http://dx.doi.org/10.1186/s12876-016-0474-8] [PMID: 27255554]
[92]
Thamrongwaranggoon, U.; Seubwai, W.; Phoomak, C.; Sangkhamanon, S.; Cha’on, U.; Boonmars, T.; Wongkham, S. Targeting hexokinase II as a possible therapy for cholangiocarcinoma. Biochem. Biophys. Res. Commun., 2017, 484(2), 409-415.
[http://dx.doi.org/10.1016/j.bbrc.2017.01.139] [PMID: 28131825]
[93]
Kharitonov, S.; Zikiriahodzhaev, A.; Ermoshchenkova, M.; Sukhot’ko, A.; Fedorova, M.; Pudova, E.; Alekseev, B.; Kaprin, A.; Kudryavtseva, A. Hexokinases in breast cancer. Int. J. Biosci. Biotechnol., 2017, 4(2), 110-116.
[http://dx.doi.org/10.24843/IJBB.2017.v04.i02.p05]
[94]
Wang, H.; Wang, L.; Zhang, Y.; Wang, J.; Deng, Y.; Lin, D. Inhibition of glycolytic enzyme hexokinase II (HK2) suppresses lung tumor growth. Cancer Cell Int., 2016, 16, 9.
[http://dx.doi.org/10.1186/s12935-016-0280-y] [PMID: 26884725]
[95]
Kim, J.W.; Gao, P.; Liu, Y.C.; Semenza, G.L.; Dang, C.V. Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol. Cell. Biol., 2007, 27(21), 7381-7393.
[http://dx.doi.org/10.1128/MCB.00440-07] [PMID: 17785433]
[96]
Gwak, G.Y.; Yoon, J.H.; Kim, K.M.; Lee, H.S.; Chung, J.W.; Gores, G.J. Hypoxia stimulates proliferation of human hepatoma cells through the induction of hexokinase II expression. J. Hepatol., 2005, 42(3), 358-364.
[http://dx.doi.org/10.1016/j.jhep.2004.11.020] [PMID: 15710218]
[97]
Ha, J.H.; Radhakrishnan, R.; Jayaraman, M.; Yan, M.; Ward, J.D.; Fung, K.M.; Moxley, K.; Sood, A.K.; Isidoro, C.; Mukherjee, P.; Song, Y.S.; Dhanasekaran, D.N. LPA induces metabolic reprogramming in ovarian cancer via a pseudohypoxic response. Cancer Res., 2018, 78(8), 1923-1934.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-1624] [PMID: 29386184]
[98]
Sun, Z.; Zhang, W.; Li, Q. miR-125a suppresses viability and glycolysis and induces apoptosis by targeting Hexokinase 2 in laryngeal squamous cell carcinoma. Cell Biosci., 2017, 7, 51.
[http://dx.doi.org/10.1186/s13578-017-0178-y] [PMID: 29043013]
[99]
Gregersen, L.H.; Jacobsen, A.; Frankel, L.B.; Wen, J.; Krogh, A.; Lund, A.H. MicroRNA-143 down-regulates Hexokinase 2 in colon cancer cells. BMC Cancer, 2012, 12, 232.
[http://dx.doi.org/10.1186/1471-2407-12-232] [PMID: 22691140]
[100]
Lu, C.L.; Qin, L.; Liu, H.C.; Candas, D.; Fan, M.; Li, J.J. Tumor cells switch to mitochondrial oxidative phosphorylation under radiation via mTOR-mediated hexokinase II inhibition--a Warburg-reversing effect. PLoS One, 2015, 10(3)e0121046
[http://dx.doi.org/10.1371/journal.pone.0121046] [PMID: 25807077]
[101]
Roberts, D.J.; Tan-Sah, V.P.; Ding, E.Y.; Smith, J.M.; Miyamoto, S. Hexokinase-II positively regulates glucose starvation-induced autophagy through TORC1 inhibition. Mol. Cell, 2014, 53(4), 521-533.
[http://dx.doi.org/10.1016/j.molcel.2013.12.019] [PMID: 24462113]
[102]
Roberts, D.J.; Tan-Sah, V.P.; Smith, J.M.; Miyamoto, S. Akt phosphorylates HK-II at Thr-473 and increases mitochondrial HK-II association to protect cardiomyocytes. J. Biol. Chem., 2013, 288(33), 23798-23806.
[http://dx.doi.org/10.1074/jbc.M113.482026] [PMID: 23836898]
[103]
Kolar, D.; Gresikova, M.; Waskova-Arnostova, P.; Elsnicova, B.; Kohutova, J.; Hornikova, D.; Vebr, P.; Neckar, J.; Blahova, T.; Kasparova, D.; Novotny, J.; Kolar, F.; Novakova, O.; Zurmanova, J.M. Adaptation to chronic continuous hypoxia potentiates Akt/HK2 anti-apoptotic pathway during brief myocardial ischemia/reperfusion insult. Mol. Cell. Biochem., 2017, 432(1-2), 99-108.
[http://dx.doi.org/10.1007/s11010-017-3001-5] [PMID: 28290047]
[104]
Hu, J.W.; Sun, P.; Zhang, D.X.; Xiong, W.J.; Mi, J. Hexokinase 2 regulates G1/S checkpoint through CDK2 in cancer-associated fibroblasts. Cell. Signal., 2014, 26(10), 2210-2216.
[http://dx.doi.org/10.1016/j.cellsig.2014.04.015] [PMID: 24780297]
[105]
Mamede, M.; Higashi, T.; Kitaichi, M.; Ishizu, K.; Ishimori, T.; Nakamoto, Y.; Yanagihara, K.; Li, M.; Tanaka, F.; Wada, H.; Manabe, T.; Saga, T. [18F]FDG uptake and PCNA, Glut-1, and Hexokinase-II expressions in cancers and inflammatory lesions of the lung. Neoplasia, 2005, 7(4), 369-379.
[http://dx.doi.org/10.1593/neo.04577] [PMID: 15967114]
[106]
Wang, L.; Xiong, H.; Wu, F.; Zhang, Y.; Wang, J.; Zhao, L.; Guo, X.; Chang, L.J.; Zhang, Y.; You, M.J.; Koochekpour, S.; Saleem, M.; Huang, H.; Lu, J.; Deng, Y. Hexokinase 2-mediated Warburg effect is required for PTEN- and p53-deficiency-driven prostate cancer growth. Cell Rep., 2014, 8(5), 1461-1474.
[http://dx.doi.org/10.1016/j.celrep.2014.07.053] [PMID: 25176644]
[107]
Lin, Y.H.; Wu, M.H.; Huang, Y.H.; Yeh, C.T.; Cheng, M.L.; Chi, H.C.; Tsai, C.Y.; Chung, I.H.; Chen, C.Y.; Lin, K.H. Taurine up-regulated gene 1 functions as a master regulator to coordinate glycolysis and metastasis in hepatocellular carcinoma. Hepatology, 2018, 67(1), 188-203.
[http://dx.doi.org/10.1002/hep.29462] [PMID: 28802060]
[108]
Singh, A.; Sen, E. Reciprocal role of SIRT6 and Hexokinase 2 in the regulation of autophagy driven monocyte differentiation. Exp. Cell Res., 2017, 360(2), 365-374.
[http://dx.doi.org/10.1016/j.yexcr.2017.09.028] [PMID: 28935467]
[109]
Xia, H.G.; Najafov, A.; Geng, J.; Galan-Acosta, L.; Han, X.; Guo, Y.; Shan, B.; Zhang, Y.; Norberg, E.; Zhang, T.; Pan, L.; Liu, J.; Coloff, J.L.; Ofengeim, D.; Zhu, H.; Wu, K.; Cai, Y.; Yates, J.R.; Zhu, Z.; Yuan, J.; Vakifahmetoglu-Norberg, H. Degradation of HK2 by chaperone-mediated autophagy promotes metabolic catastrophe and cell death. J. Cell Biol., 2015, 210(5), 705-716.
[http://dx.doi.org/10.1083/jcb.201503044] [PMID: 26323688]
[110]
Xiao, M.; Lou, C.; Xiao, H.; Yang, Y.; Cai, X.; Li, C.; Jia, S.; Huang, Y. MiR-128 regulation of glucose metabolism and cell proliferation in triple-negative breast cancer. Br. J. Surg., 2018, 105(1), 75-85.
[http://dx.doi.org/10.1002/bjs.10646] [PMID: 29116653]
[111]
Liu, G.; Li, Y.I.; Gao, X. Overexpression of microRNA-133b sensitizes non-small cell lung cancer cells to irradiation through the inhibition of glycolysis. Oncol. Lett., 2016, 11(4), 2903-2908.
[http://dx.doi.org/10.3892/ol.2016.4316] [PMID: 27073574]
[112]
Zhao, X.; Lu, C.; Chu, W.; Zhang, B.; Zhen, Q.; Wang, R.; Zhang, Y.; Li, Z.; Lv, B.; Li, H.; Liu, J. MicroRNA-124 suppresses proliferation and glycolysis in non-small cell lung cancer cells by targeting AKT-GLUT1/HKII. Tumour Biol., 2017, 39(5)1010428317706215
[http://dx.doi.org/10.1177/1010428317706215] [PMID: 28488541]
[113]
Tao, T.; Chen, M.; Jiang, R.; Guan, H.; Huang, Y.; Su, H.; Hu, Q.; Han, X.; Xiao, J. Involvement of EZH2 in aerobic glycolysis of prostate cancer through miR-181b/HK2 axis. Oncol. Rep., 2017, 37(3), 1430-1436.
[http://dx.doi.org/10.3892/or.2017.5430] [PMID: 28184935]
[114]
Li, L.Q.; Yang, Y.; Chen, H.; Zhang, L.; Pan, D.; Xie, W.J. MicroRNA-181b inhibits glycolysis in gastric cancer cells via targeting hexokinase 2 gene. Cancer Biomark., 2016, 17(1), 75-81.
[http://dx.doi.org/10.3233/CBM-160619] [PMID: 27314295]
[115]
Qin, Y.; Cheng, C.; Lu, H.; Wang, Y. miR-4458 suppresses glycolysis and lactate production by directly targeting hexokinase2 in colon cancer cells. Biochem. Biophys. Res. Commun., 2016, 469(1), 37-43.
[http://dx.doi.org/10.1016/j.bbrc.2015.11.066] [PMID: 26607110]
[116]
Jiang, S.; Yan, W.; Wang, S.E.; Baltimore, D. Let-7 Suppresses B cell activation through restricting the availability of necessary nutrients. Cell Metab, 2018, 27(2), 393-403, e4.
[http://dx.doi.org/10.1016/j.cmet.2017.12.007] [PMID: 29337138]
[117]
Zhang, J.; Wang, S.; Jiang, B.; Huang, L.; Ji, Z.; Li, X.; Zhou, H.; Han, A.; Chen, A.; Wu, Y.; Ma, H.; Zhao, W.; Zhao, Q.; Xie, C.; Sun, X.; Zhou, Y.; Huang, H.; Suleman, M.; Lin, F.; Zhou, L.; Tian, F.; Jin, M.; Cai, Y.; Zhang, N.; Li, Q. c-Src phosphorylation and activation of hexokinase promotes tumorigenesis and metastasis. Nat. Commun., 2017, 8, 13732.
[http://dx.doi.org/10.1038/ncomms13732] [PMID: 28054552]
[118]
Huang, Y.P.; Chang, N.W. Proteomic analysis of oral cancer reveals new potential therapeutic targets involved in the Warburg effect. Clin. Exp. Pharmacol. Physiol., 2017, 44(8), 880-887.
[http://dx.doi.org/10.1111/1440-1681.12774] [PMID: 28453233]
[119]
Huang, X.; Liu, M.; Sun, H.; Wang, F.; Xie, X.; Chen, X.; Su, J.; He, Y.; Dai, Y.; Wu, H.; Shen, L. HK2 is a radiation resistant and independent negative prognostic factor for patients with locally advanced cervical squamous cell carcinoma. Int. J. Clin. Exp. Pathol., 2015, 8(4), 4054-4063.
[PMID: 26097593]
[120]
Hamabe, A.; Yamamoto, H.; Konno, M.; Uemura, M.; Nishimura, J.; Hata, T.; Takemasa, I.; Mizushima, T.; Nishida, N.; Kawamoto, K.; Koseki, J.; Doki, Y.; Mori, M.; Ishii, H. Combined evaluation of hexokinase 2 and phosphorylated pyruvate dehydrogenase-E1α in invasive front lesions of colorectal tumors predicts cancer metabolism and patient prognosis. Cancer Sci., 2014, 105(9), 1100-1108.
[http://dx.doi.org/10.1111/cas.12487] [PMID: 25060325]
[121]
Qiu, M.Z.; Han, B.; Luo, H.Y.; Zhou, Z.W.; Wang, Z.Q.; Wang, F.H.; Li, Y.H.; Xu, R.H. Expressions of hypoxia-inducible factor-1α and hexokinase-II in gastric adenocarcinoma: the impact on prognosis and correlation to clinicopathologic features. Tumour Biol., 2011, 32(1), 159-166.
[http://dx.doi.org/10.1007/s13277-010-0109-6] [PMID: 20845004]
[122]
Gong, L.; Cui, Z.; Chen, P.; Han, H.; Peng, J.; Leng, X. Reduced survival of patients with hepatocellular carcinoma expressing hexokinase II. Med. Oncol., 2012, 29(2), 909-914.
[http://dx.doi.org/10.1007/s12032-011-9841-z] [PMID: 21279699]
[123]
Palmieri, D.; Fitzgerald, D.; Shreeve, S.M.; Hua, E.; Bronder, J.L.; Weil, R.J.; Davis, S.; Stark, A.M.; Merino, M.J.; Kurek, R.; Mehdorn, H.M.; Davis, G.; Steinberg, S.M.; Meltzer, P.S.; Aldape, K.; Steeg, P.S. Analyses of resected human brain metastases of breast cancer reveal the association between up-regulation of hexokinase 2 and poor prognosis. Mol. Cancer Res., 2009, 7(9), 1438-1445.
[http://dx.doi.org/10.1158/1541-7786.MCR-09-0234] [PMID: 19723875]
[124]
Deng, Y.; Lu, J. Targeting hexokinase 2 in castration-resistant prostate cancer. Mol. Cell. Oncol., 2015, 2(3)e974465
[http://dx.doi.org/10.4161/23723556.2014.974465] [PMID: 27308450]
[125]
Sato-Tadano, A.; Suzuki, T.; Amari, M.; Takagi, K.; Miki, Y.; Tamaki, K.; Watanabe, M.; Ishida, T.; Sasano, H.; Ohuchi, N. Hexokinase II in breast carcinoma: a potent prognostic factor associated with hypoxia-inducible factor-1α and Ki-67. Cancer Sci., 2013, 104(10), 1380-1388.
[http://dx.doi.org/10.1111/cas.12238] [PMID: 23869589]
[126]
Xi, F.; Ye, J. Inhibition of lung carcinoma A549 cell growth by knockdown of hexokinase 2 in situ and in vivo. Oncol. Res., 2016, 23(1-2), 53-59.
[http://dx.doi.org/10.3727/096504015X14459480491740] [PMID: 26802651]
[127]
Peng, Q.P.; Zhou, J.M.; Zhou, Q.; Pan, F.; Zhong, D.P.; Liang, H.J. Downregulation of the hexokinase II gene sensitizes human colon cancer cells to 5-fluorouracil. Chemotherapy, 2008, 54(5), 357-363.
[http://dx.doi.org/10.1159/000153655] [PMID: 18772588]
[128]
Liu, Y.; Murray-Stewart, T.; Casero, R.A. Jr.; Kagiampakis, I.; Jin, L.; Zhang, J.; Wang, H.; Che, Q.; Tong, H.; Ke, J.; Jiang, F.; Wang, F.; Wan, X. Targeting hexokinase 2 inhibition promotes radiosensitization in HPV16 E7-induced cervical cancer and suppresses tumor growth. Int. J. Oncol., 2017, 50(6), 2011-2023.
[http://dx.doi.org/10.3892/ijo.2017.3979] [PMID: 28498475]
[129]
Wu, J.; Zhang, X.; Wang, Y.; Sun, Q.; Chen, M.; Liu, S.; Zou, X. Licochalcone A suppresses hexokinase 2-mediated tumor glycolysis in gastric cancer via downregulation of the Akt signaling pathway. Oncol. Rep., 2018, 39(3), 1181-1190.
[http://dx.doi.org/10.3892/or.2017.6155] [PMID: 29286170]
[130]
Xu, D.; Jin, J.; Yu, H.; Zhao, Z.; Ma, D.; Zhang, C.; Jiang, H. Chrysin inhibited tumor glycolysis and induced apoptosis in hepatocellular carcinoma by targeting hexokinase-2. J. Exp. Clin. Cancer Res., 2017, 36(1), 44.
[http://dx.doi.org/10.1186/s13046-017-0514-4] [PMID: 28320429]
[131]
Dai, W.; Wang, F.; Lu, J.; Xia, Y.; He, L.; Chen, K.; Li, J.; Li, S.; Liu, T.; Zheng, Y.; Wang, J.; Lu, W.; Zhou, Y.; Yin, Q.; Abudumijiti, H.; Chen, R.; Zhang, R.; Zhou, L.; Zhou, Z.; Zhu, R.; Yang, J.; Wang, C.; Zhang, H.; Zhou, Y.; Xu, L.; Guo, C. By reducing hexokinase 2, resveratrol induces apoptosis in HCC cells addicted to aerobic glycolysis and inhibits tumor growth in mice. Oncotarget, 2015, 6(15), 13703-13717.
[http://dx.doi.org/10.18632/oncotarget.3800] [PMID: 25938543]
[132]
Gao, X.; Han, H. Jolkinolide B inhibits glycolysis by downregulating hexokinase 2 expression through inactivating the Akt/mTOR pathway in non-small cell lung cancer cells. J. Cell. Biochem., 2018, 119(6), 4967-4974.
[http://dx.doi.org/10.1002/jcb.26742] [PMID: 29384225]
[133]
Chen, G.Q.; Tang, C.F.; Shi, X.K.; Lin, C.Y.; Fatima, S.; Pan, X.H.; Yang, D.J.; Zhang, G.; Lu, A.P.; Lin, S.H.; Bian, Z.X. Halofuginone inhibits colorectal cancer growth through suppression of Akt/mTORC1 signaling and glucose metabolism. Oncotarget, 2015, 6(27), 24148-24162.
[http://dx.doi.org/10.18632/oncotarget.4376] [PMID: 26160839]
[134]
Wei, L.; Dai, Q.; Zhou, Y.; Zou, M.; Li, Z.; Lu, N.; Guo, Q. Oroxylin A sensitizes non-small cell lung cancer cells to anoikis via glucose-deprivation-like mechanisms: c-Src and hexokinase II. Biochim. Biophys. Acta, 2013, 1830(6), 3835-3845.
[http://dx.doi.org/10.1016/j.bbagen.2013.03.009] [PMID: 23500080]
[135]
Suh, D.H.; Kim, M.A.; Kim, H.; Kim, M.K.; Kim, H.S.; Chung, H.H.; Kim, Y.B.; Song, Y.S. Association of overexpression of hexokinase II with chemoresistance in epithelial ovarian cancer. Clin. Exp. Med., 2014, 14, 345-353.
[http://dx.doi.org/10.1007/s10238-013-0250-9] [PMID: 23949336]
[136]
Calmettes, G.; Ribalet, B.; John, S.; Korge, P.; Ping, P.; Weiss, J.N. Hexokinases and cardioprotection. J. Mol. Cell. Cardiol., 2015, 78, 107-115.
[http://dx.doi.org/10.1016/j.yjmcc.2014.09.020] [PMID: 25264175]
[137]
Nederlof, R.; Eerbeek, O.; Hollmann, M.W.; Southworth, R.; Zuurbier, C.J. Targeting hexokinase II to mitochondria to modulate energy metabolism and reduce ischaemia-reperfusion injury in heart. Br. J. Pharmacol., 2014, 171(8), 2067-2079.
[http://dx.doi.org/10.1111/bph.12363] [PMID: 24032601]
[138]
Peng, Q.; Zhou, Q.; Zhou, J.; Zhong, D.; Pan, F.; Liang, H. Stable RNA interference of hexokinase II gene inhibits human colon cancer LoVo cell growth in vitro and in vivo. Cancer Biol. Ther., 2008, 7(7), 1128-1135.
[http://dx.doi.org/10.4161/cbt.7.7.6199] [PMID: 18535403]
[139]
McWilliam, H.; Li, W.; Uludag, M.; Squizzato, S.; Park, Y.M.; Buso, N.; Cowley, A.P.; Lopez, R. Analysis tool web services from the EMBL-EBI. Nucleic Acids Res, 2013, 41(Web Server issue), W597-600.
[http://dx.doi.org/10.1093/nar/gkt376] [PMID: 23671338]
[140]
Tsai, H.J. Functional organization and evolution of mammalian hexokinases: mutations that caused the loss of catalytic activity in N-terminal halves of type I and type III isozymes. Arch. Biochem. Biophys., 1999, 369(1), 149-156.
[http://dx.doi.org/10.1006/abbi.1999.1326] [PMID: 10462451]
[141]
Nawaz, M.H.; Ferreira, J.C.; Nedyalkova, L.; Zhu, H.; Carrasco-López, C.; Kirmizialtin, S.; Rabeh, W.M. The catalytic inactivation of the N-half of human hexokinase 2 and structural and biochemical characterization of its mitochondrial conformation. Biosci. Rep., 2018, 38(1)BSR20171666
[http://dx.doi.org/10.1042/BSR20171666] [PMID: 29298880]
[142]
Aleshin, A.E.; Kirby, C.; Liu, X.; Bourenkov, G.P.; Bartunik, H.D.; Fromm, H.J.; Honzatko, R.B. Crystal structures of mutant monomeric hexokinase I reveal multiple ADP binding sites and conformational changes relevant to allosteric regulation. J. Mol. Biol., 2000, 296(4), 1001-1015.
[http://dx.doi.org/10.1006/jmbi.1999.3494] [PMID: 10686099]
[143]
Aleshin, A.E.; Zeng, C.; Bourenkov, G.P.; Bartunik, H.D.; Fromm, H.J.; Honzatko, R.B. The mechanism of regulation of hexokinase: new insights from the crystal structure of recombinant human brain hexokinase complexed with glucose and glucose-6-phosphate. Structure, 1998, 6(1), 39-50.
[http://dx.doi.org/10.1016/S0969-2126(98)00006-9] [PMID: 9493266]
[144]
Shen, L.; Gao, Y.; Honzatko, R. B. Inhibitor sites of unequal affinity linked by binding synergism in mutant forms of recombinant human hexokinase type-I. RSCB PDB - 4F9O, Released, 2013, 12 June.
[145]
Scatena, R.; Bottoni, P.; Pontoglio, A.; Mastrototaro, L.; Giardina, B. Glycolytic enzyme inhibitors in cancer treatment. Expert Opin. Investig. Drugs, 2008, 17(10), 1533-1545.
[http://dx.doi.org/10.1517/13543784.17.10.1533] [PMID: 18808312]
[146]
Lis, P.; Dyląg, M.; Niedźwiecka, K.; Ko, Y.H.; Pedersen, P.L.; Goffeau, A.; Ułaszewski, S. The HK2 dependent “warburg effect” and mitochondrial oxidative phosphorylation in cancer: Targets for effective therapy with 3-bromopyruvate. Molecules, 2016, 21(12)e1730
[http://dx.doi.org/10.3390/molecules21121730] [PMID: 27983708]
[147]
Nath, K.; Guo, L.; Nancolas, B.; Nelson, D.S.; Shestov, A.A.; Lee, S.C.; Roman, J.; Zhou, R.; Leeper, D.B.; Halestrap, A.P.; Blair, I.A.; Glickson, J.D. Mechanism of antineoplastic activity of lonidamine. Biochim. Biophys. Acta, 2016, 1866(2), 151-162.
[http://dx.doi.org/10.1016/j.bbcan.2016.08.001] [PMID: 27497601]
[148]
Sheng, H.; Tang, W. Glycolysis inhibitors for anticancer therapy: a review of recent patents. Recent Patents Anticancer Drug Discov., 2016, 11(3), 297-308.
[http://dx.doi.org/10.2174/1574892811666160415160104] [PMID: 27087655]
[149]
Pelicano, H.; Martin, D.S.; Xu, R.H.; Huang, P. Glycolysis inhibition for anticancer treatment. Oncogene, 2006, 25(34), 4633-4646.
[http://dx.doi.org/10.1038/sj.onc.1209597] [PMID: 16892078]
[150]
Ko, Y. H. Compositions and methods for the treatment of cancer. US8324175B2, 2012.
[151]
Ricci, J.-E. Glycolytic inhibitor with cytotoxic agent for use in the treatment of a cancer. WO2012123774A1, 2012.
[152]
Priebe, W.; Conrad, C.; Madden, T.; Fokt, I.; Szymanski, S.; Antonovic, L. Inhibitors of glycolysis useful in the treatment of brain tumors. WO2009108926, 2009.
[153]
Mjalli, A.M.M.; Gaddam, B.; Gohimukkula, D.R.; Polisetti, D.R.; Rao, M.; Guzel, M.; Singh, N. HAJJO, R.; Andrews, R.C.; Xie, R.; Kalpathy, S.; SAHOO, S.P.; Davis, S.T. WO2016196890A1, 2016.
[154]
Palazzo, G.; Silvestrini, B. Substituted 1-benzyl-1Hindazole- 3-carboxylic acids and derivatives tereof. US3895026A, 1975.
[155]
Tidmarsh, G.; Selick, H. Treatment of Benign Prostatic Hyperplasia Using Energolytic Agents. US20060172953A1, 2006.
[156]
Tidmarsh, G. Prevention of Cancer. WO2006010073A1, 2006.
[157]
Matteucci, M.; Rao, P.; Duan, J.-X. Lonidamine Analogs. US20070043057A1, 2007.
[158]
Geschwind, J.-F.; Vali, M. Methods and compositions of 3- halopyruvate and related compounds for the treatment of cancer. US20100137434A1, 2010.
[159]
Ko, Y. H. Composition and method for the efficacious and safe administration of halopyruvate for the treatment of cancer. US7754693B2, 2010.
[160]
Ko, Y. H. Compositions and methods for the treatment of cancer. US20110008418A1, 2011.
[161]
Dhar, S.; Marrache, S. Mitochondrial delivery of 3- bromopyruvate. WO2015138992A1, 2015.
[162]
Ko, Y. H. Compositions and methods for the treatment of cancer. US20130157925A1, 2013.
[163]
Ko, Y. H. Compositions and methods for the treatment of cancer. US9149449B2, 2015.
[164]
Ko, Y. H. Compositions and methods for the treatment of cancer. US9849103B2, 2017.
[165]
Ko, Y. H.; Geschwind, J.-F.; Pedersen, P. Therapeutics for cancer using 3-bromopyruvate and other selective inhibitors of ATP production. US20030087961A1, 2003.
[166]
Ko, Y. H.; Geschwind, J.-F. H.; Pedersen, P. L. Therapeutics for cancer using 3-bromopyruvate and other selective inhibitors of ATP production US20090326068A1, 2009.
[167]
Geschwind, J.-F.; Vali, M. Therapeutics for cancer using 3- bromopyruvate and other selective inhibitors of ATP production. US20100203110A1, 2010.
[168]
Geschwind, J.-F.; Vali, M. Methods of treatment using 3- bromopyruvate and other selective inhibitors of ATP production. US20130046019A1, 2013.
[169]
Tidmarsh, G. Treatment of cancer with 2-Deoxyglucose. WO2004062604A2, 2004.
[170]
Lampidis, T. J.; Priebe, W. Cancer chemotherapy with 2- Deoxy-D-Glucose. US6670330B1, 2003.
[171]
Yao, J.; Brinton, R. D. Cancer chemotherapy with 2-Deoxy- D-Glucose. US6670330B1, 2012.
[172]
Tidmarsh, G.; Ammons, S. Treating metabolic syndrome with 2-Deoxy-D-Glucose. WO2007044679A2, 2007.
[173]
Priebe, W.; Cybulski, M.; Fokt, I.; Skora, S.; Conrad, C.; Madden, T. Esters of 2-Deoxy-Monosacharides with antiproliferative activity. US20160184336A1, 2016.
[174]
Lampidis, T. J.; Kurtoglu, M.; Liu, H. Combination therapy with fenofibrate and 2-deoxyglucose or 2-deoxymannose. WO201665353A1, 2016.
[175]
Laudau, B. R. Treatment of cancer with 2-Deoxygalactose. CA2655614, 2007.
[176]
Laszlo, J.; Humphreys, S.R.; Goldin, A. Effects of glucose analogues (2-deoxy-D-glucose, 2-deoxy-D-galactose) on experimental tumors. J. Natl. Cancer Inst., 1960, 24(2), 267-281.
[PMID: 14414406]
[177]
Barban, S.; Schulze, H.O. The effects of 2-deoxyglucose on the growth and metabolism of cultured human cells. J. Biol. Chem., 1961, 236(7), 1887-1890.
[PMID: 13686731]
[178]
Arbe, M.F.; Fondello, C.; Agnetti, L.; Álvarez, G.M.; Tellado, M.N.; Glikin, G.C.; Finocchiaro, L.M.E.; Villaverde, M.S. Inhibition of bioenergetic metabolism by the combination of metformin and 2-deoxyglucose highly decreases viability of feline mammary carcinoma cells. Res. Vet. Sci., 2017, 114, 461-468.
[http://dx.doi.org/10.1016/j.rvsc.2017.07.035] [PMID: 28802138]
[179]
Kurtoglu, M.; Maher, J.C.; Lampidis, T.J. Differential toxic mechanisms of 2-deoxy-D-glucose versus 2-fluorodeoxy-D-glucose in hypoxic and normoxic tumor cells. Antioxid. Redox Signal., 2007, 9(9), 1383-1390.
[http://dx.doi.org/10.1089/ars.2007.1714] [PMID: 17627467]
[180]
Tidmarsh, G. Treatment of Cancer with 2-Deoxyglucose. US6979675B2, 2005.
[181]
Baron, J.C.; Lebrun-Grandie, P.; Collard, P.; Crouzel, C.; Mestelan, G.; Bousser, M.G. Noninvasive measurement of blood flow, oxygen consumption, and glucose utilization in the same brain regions in man by positron emission tomography: concise communication. J. Nucl. Med., 1982, 23(5), 391-399.
[PMID: 6978932]
[182]
Wilson, J.E.; Chung, V. Rat brain hexokinase: further studies on the specificity of the hexose and hexose 6-phosphate binding sites. Arch. Biochem. Biophys., 1989, 269(2), 517-525.
[http://dx.doi.org/10.1016/0003-9861(89)90135-5] [PMID: 2919881]
[183]
Grün, B.R.; Berger, U.; Oberdorfer, F.; Hull, W.E.; Ostertag, H.; Friedrich, E.; Lehmann, J.; Keppler, D. Metabolism and actions of 2-deoxy-2-fluoro-D-galactose in vivo. Eur. J. Biochem., 1990, 190(1), 11-19.
[http://dx.doi.org/10.1111/j.1432-1033.1990.tb15539.x] [PMID: 2114284]
[184]
Courtois, P.; Sener, A.; Malaisse, W.J. D-mannoheptulose phosphorylation by hexokinase isoenzymes. Int. J. Mol. Med., 2001, 7(4), 359-363.
[PMID: 11254873]
[185]
Coore, H.G.; Randle, P.J. Inhibition of glucose phosphorylation by mannoheptulose. Biochem. J., 1964, 91(1), 56-59.
[PMID: 5319361]
[186]
Scruel, O.; Vanhoutte, C.; Sener, A.; Malaisse, W.J. Interference of D-mannoheptulose with D-glucose phosphorylation, metabolism and functional effects: comparison between liver, parotid cells and pancreatic islets. Mol. Cell. Biochem., 1998, 187(1-2), 113-120.
[http://dx.doi.org/10.1023/A:1006812300200] [PMID: 9788748]
[187]
Picton, S.; Malaisse, W.J. Environmental modulation of the inhibitory action of D-mannoheptulose upon D-glucose metabolism in isolated rat pancreatic islets. Cell Biochem. Funct., 1999, 17(1), 65-71.
[http://dx.doi.org/10.1002/(SICI)1099-0844(199903)17:1<65:AID-CBF812>3.0.CO;2-T] [PMID: 10191510]
[188]
Malaisse, W.J.; Kadiata, M.M.; Scruel, O.; Sener, A. Esterification of D-mannoheptulose confers to the heptose inhibitory action on D-glucose metabolism in parotid cells. Biochem. Mol. Biol. Int., 1998, 44(3), 625-633.
[http://dx.doi.org/10.1080/15216549800201662] [PMID: 9556224]
[189]
Papaldo, P.; Lopez, M.; Cortesi, E.; Cammilluzzi, E.; Antimi, M.; Terzoli, E.; Lepidini, G.; Vici, P.; Barone, C.; Ferretti, G.; Di Cosimo, S.; Nisticò, C.; Carlini, P.; Conti, F.; Di Lauro, L.; Botti, C.; Vitucci, C.; Fabi, A.; Giannarelli, D.; Marolla, P. Addition of either lonidamine or granulocyte colony-stimulating factor does not improve survival in early breast cancer patients treated with high-dose epirubicin and cyclophosphamide. J. Clin. Oncol., 2003, 21(18), 3462-3468.
[http://dx.doi.org/10.1200/JCO.2003.03.034] [PMID: 12972521]
[190]
Guo, L.; Shestov, A.A.; Worth, A.J.; Nath, K.; Nelson, D.S.; Leeper, D.B.; Glickson, J.D.; Blair, I.A. Inhibition of mitochondrial complex II by the anticancer agent lonidamine. J. Biol. Chem., 2016, 291(1), 42-57.
[http://dx.doi.org/10.1074/jbc.M115.697516] [PMID: 26521302]
[191]
Nath, K.; Nelson, D.S.; Roman, J.; Putt, M.E.; Lee, S.C.; Leeper, D.B.; Glickson, J.D. Effect of lonidamine on systemic therapy of DB-1 human melanoma xenografts with Temozolomide. Anticancer Res., 2017, 37(7), 3413-3421.
[http://dx.doi.org/10.21873/anticanres.11708] [PMID: 28668829]
[192]
Ko, Y.H.; Pedersen, P.L.; Geschwind, J.F. Glucose catabolism in the rabbit VX2 tumor model for liver cancer: characterization and targeting hexokinase. Cancer Lett., 2001, 173(1), 83-91.
[http://dx.doi.org/10.1016/S0304-3835(01)00667-X] [PMID: 11578813]
[193]
Huang, P.; Keating, M. J.; Xu, R. Propyl 3-bromo-2-oxopropionate and derivatives as novel anticancer agents. US20060058383A1, 2006.
[194]
Ihrlund, L.S.; Hernlund, E.; Khan, O.; Shoshan, M.C. 3-Bromopyruvate as inhibitor of tumour cell energy metabolism and chemopotentiator of platinum drugs. Mol. Oncol., 2008, 2(1), 94-101.
[http://dx.doi.org/10.1016/j.molonc.2008.01.003] [PMID: 19383331]
[195]
Ko, Y.H.; Smith, B.L.; Wang, Y.; Pomper, M.G.; Rini, D.A.; Torbenson, M.S.; Hullihen, J.; Pedersen, P.L. Advanced cancers: eradication in all cases using 3-bromopyruvate therapy to deplete ATP. Biochem. Biophys. Res. Commun., 2004, 324(1), 269-275.
[http://dx.doi.org/10.1016/j.bbrc.2004.09.047] [PMID: 15465013]
[196]
Calviño, E.; Estañ, M.C.; Sánchez-Martín, C.; Brea, R.; de Blas, E. Boyano-Adánez, Mdel.C.; Rial, E.; Aller, P. Regulation of death induction and chemosensitizing action of 3-bromopyruvate in myeloid leukemia cells: energy depletion, oxidative stress, and protein kinase activity modulation. J. Pharmacol. Exp. Ther., 2014, 348(2), 324-335.
[http://dx.doi.org/10.1124/jpet.113.206714] [PMID: 24307199]
[197]
Wicks, R.T.; Azadi, J.; Mangraviti, A.; Zhang, I.; Hwang, L.; Joshi, A.; Bow, H.; Hutt-Cabezas, M.; Martin, K.L.; Rudek, M.A.; Zhao, M.; Brem, H.; Tyler, B.M. Local delivery of cancer-cell glycolytic inhibitors in high-grade glioma. Neuro-oncol., 2015, 17(1), 70-80.
[http://dx.doi.org/10.1093/neuonc/nou143] [PMID: 25053853]
[198]
Hanafy, N.A.; Dini, L.; Citti, C.; Cannazza, G.; Leporatti, S. Inihibition of glycolysis by using a micro/nano-lipid bromopyruvic chitosan carrier as a promising tool to improve treatment of hepatocellular carcinoma. Nanomaterials (Basel), 2018, 8(1)e34
[http://dx.doi.org/10.3390/nano8010034] [PMID: 29320411]
[199]
Gandham, S.K.; Talekar, M.; Singh, A.; Amiji, M.M. Inhibition of hexokinase-2 with targeted liposomal 3-bromopyruvate in an ovarian tumor spheroid model of aerobic glycolysis. Int. J. Nanomedicine, 2015, 10, 4405-4423.
[200]
Feldwisch-Drentrup, H. Candidate cancer drug suspected after death of three patients at an alternative medicine clinic. Science, 2016.
[http://dx.doi.org/10.1126/science.aah7192]
[201]
Business Wire. PreScience Labs Announced that the FDA Accepts IND Application for Novel Oncology Drug., 2013. Available at: https://www.businesswire.com/news/home/20130724006023/en/PreScience-Labs-Announced-FDA-Accepts-IND-Application
[202]
Salani, B.; Marini, C.; Rio, A.D.; Ravera, S.; Massollo, M.; Orengo, A.M.; Amaro, A.; Passalacqua, M.; Maffioli, S.; Pfeffer, U.; Cordera, R.; Maggi, D.; Sambuceti, G. Metformin impairs glucose consumption and survival in Calu-1 cells by direct inhibition of hexokinase-II. Sci. Rep., 2013, 3, 2070.
[http://dx.doi.org/10.1038/srep02070] [PMID: 23797762]
[203]
Marini, C.; Salani, B.; Massollo, M.; Amaro, A.; Esposito, A.I.; Orengo, A.M.; Capitanio, S.; Emionite, L.; Riondato, M.; Bottoni, G.; Massara, C.; Boccardo, S.; Fabbi, M.; Campi, C.; Ravera, S.; Angelini, G.; Morbelli, S.; Cilli, M.; Cordera, R.; Truini, M.; Maggi, D.; Pfeffer, U.; Sambuceti, G. Direct inhibition of hexokinase activity by metformin at least partially impairs glucose metabolism and tumor growth in experimental breast cancer. Cell Cycle, 2013, 12(22), 3490-3499.
[http://dx.doi.org/10.4161/cc.26461] [PMID: 24240433]
[204]
Kang, Y.T.; Hsu, W.C.; Wu, C.H.; Hsin, I.L.; Wu, P.R.; Yeh, K.T.; Ko, J.L. Metformin alleviates nickel-induced autophagy and apoptosis via inhibition of hexokinase-2, activating lipocalin-2, in human bronchial epithelial cells. Oncotarget, 2017, 8(62), 105536-105552.
[http://dx.doi.org/10.18632/oncotarget.22317] [PMID: 29285270]
[205]
Pernicova, I.; Korbonits, M. Metformin--mode of action and clinical implications for diabetes and cancer. Nat. Rev. Endocrinol., 2014, 10(3), 143-156.
[http://dx.doi.org/10.1038/nrendo.2013.256] [PMID: 24393785]
[206]
US National Library of Medicine- clinicaltrials.gov Available at: ClinicalTrials.gov (Accessed Date: 28 Feb, 2018)
[207]
Maley, F.; Lardy, H.A. Synthesis of N-substituted glucosamines and their effect on hexokinase. J. Biol. Chem., 1955, 214(2), 765-773.
[PMID: 14381414]
[208]
Coats, E.A.; Skau, K.A.; Caperelli, C.A.; Solomacha, D. Exploring the hexokinase glucose binding site through correlation analysis and molecular modeling of glucosamine inhibitors. J. Enzyme Inhib., 1992, 6(4), 271-282.
[http://dx.doi.org/10.3109/14756369309020177] [PMID: 1284964]
[209]
Li, W.; Zheng, M.; Wu, S.; Gao, S.; Yang, M.; Li, Z.; Min, Q.; Sun, W.; Chen, L.; Xiang, G.; Li, H. Benserazide, a dopadecarboxylase inhibitor, suppresses tumor growth by targeting hexokinase 2. J. Exp. Clin. Cancer Res., 2017, 36(1), 58.
[http://dx.doi.org/10.1186/s13046-017-0530-4] [PMID: 28427443]
[210]
Bao, F.; Yang, K.; Wu, C.; Gao, S.; Wang, P.; Chen, L.; Li, H. New natural inhibitors of hexokinase 2 (HK2): Steroids from Ganoderma sinense. Fitoterapia, 2018, 125, 123-129.
[http://dx.doi.org/10.1016/j.fitote.2018.01.001] [PMID: 29305912]
[211]
Flaherty, D.P.; Harris, M.T.; Schroeder, C.E.; Khan, H.; Kahney, E.W.; Hackler, A.L.; Patrick, S.L.; Weiner, W.S.; Aubé, J.; Sharlow, E.R.; Morris, J.C.; Golden, J.E. Optimization and evaluation of antiparasitic benzamidobenzoic acids as inhibitors of kinetoplastid hexokinase 1. ChemMedChem, 2017, 12(23), 1994-2005.
[http://dx.doi.org/10.1002/cmdc.201700592] [PMID: 29105342]
[212]
Sharlow, E.R.; Lyda, T.A.; Dodson, H.C.; Mustata, G.; Morris, M.T.; Leimgruber, S.S.; Lee, K.H.; Kashiwada, Y.; Close, D.; Lazo, J.S.; Morris, J.C. A target-based high throughput screen yields Trypanosoma brucei hexokinase small molecule inhibitors with antiparasitic activity. PLoS Negl. Trop. Dis., 2010, 4(4)e659
[http://dx.doi.org/10.1371/journal.pntd.0000659] [PMID: 20405000]
[213]
Gordhan, H.M.; Patrick, S.L.; Swasy, M.I.; Hackler, A.L.; Anayee, M.; Golden, J.E.; Morris, J.C.; Whitehead, D.C. Evaluation of substituted ebselen derivatives as potential trypanocidal agents. Bioorg. Med. Chem. Lett., 2017, 27(3), 537-541.
[http://dx.doi.org/10.1016/j.bmcl.2016.12.021] [PMID: 28043795]
[214]
Sharlow, E.; Golden, J.E.; Dodson, H.; Morris, M.; Hesser, M.; Lyda, T.; Leimgruber, S.; Shroeder, C.E.; Flaherty, D.P.; Weiner, W.S.; Simpson, D.; Lazo, J.S.; Aubé, J.; al Morris, J.C. Identification of inhibitors of Trypanosoma brucei hexokinases. Probe Reports from the NIH Molecular Libraries Program [Internet],, 2011. Available at: https://www.ncbi.nlm.nih.gov/books/NBK63599/ (Accessed Date: 28 Feb, 2018)
[PMID: 21961120]
[215]
Gordhan, H.M.; Milanes, J.E.; Qiu, Y.; Golden, J.E.; Christensen, K.A.; Morris, J.C.; Whitehead, D.C. A targeted delivery strategy for the development of potent trypanocides. Chem. Commun. (Camb.), 2017, 53(62), 8735-8738.
[http://dx.doi.org/10.1039/C7CC03378H] [PMID: 28726862]
[216]
Saucedo-Mendiola, M.L.; Salas-Pacheco, J.M.; Nájera, H.; Rojo-Domínguez, A.; Yépez-Mulia, L.; Avitia-Domínguez, C.; Téllez-Valencia, A. Discovery of Entamoeba histolytica hexokinase 1 inhibitors through homology modeling and virtual screening. J. Enzyme Inhib. Med. Chem., 2014, 29(3), 325-332.
[http://dx.doi.org/10.3109/14756366.2013.779265] [PMID: 23534932]
[217]
Tielens, A.G.M.; Houweling, M.; Van den Bergh, S.G. The effect of 5-thioglucose on the energy metabolism of Schistosoma mansoni in vitro. Biochem. Pharmacol., 1985, 34(18), 3369-3373.
[http://dx.doi.org/10.1016/0006-2952(85)90359-4] [PMID: 4038343]
[218]
Willson, M.; Alric, I.; Perie, J.; Sanejouand, Y.H. Yeast hexokinase inhibitors designed from the 3-D enzyme structure rebuilding. J. Enzyme Inhib., 1997, 12(2), 101-121.
[http://dx.doi.org/10.3109/14756369709035812] [PMID: 9247853]
[219]
Chambers, J.W.; Fowler, M.L.; Morris, M.T.; Morris, J.C. The anti-trypanosomal agent lonidamine inhibits Trypanosoma brucei hexokinase 1. Mol. Biochem. Parasitol., 2008, 158(2), 202-207.
[http://dx.doi.org/10.1016/j.molbiopara.2007.12.013] [PMID: 18262292]
[220]
Goldin, N.; Arzoine, L.; Heyfets, A.; Israelson, A.; Zaslavsky, Z.; Bravman, T.; Bronner, V.; Notcovich, A.; Shoshan-Barmatz, V.; Flescher, E. Methyl jasmonate binds to and detaches mitochondria-bound hexokinase. Oncogene, 2008, 27(34), 4636-4643.
[http://dx.doi.org/10.1038/onc.2008.108] [PMID: 18408762]
[221]
Raviv, Z.; Cohen, S.; Reischer-Pelech, D. The anti-cancer activities of jasmonates. Cancer Chemother. Pharmacol., 2013, 71(2), 275-285.
[http://dx.doi.org/10.1007/s00280-012-2039-z] [PMID: 23196641]
[222]
Arzoine, L.; Zilberberg, N.; Ben-Romano, R.; Shoshan-Barmatz, V. Voltage-dependent anion channel 1-based peptides interact with hexokinase to prevent its anti-apoptotic activity. J. Biol. Chem., 2009, 284(6), 3946-3955.
[http://dx.doi.org/10.1074/jbc.M803614200] [PMID: 19049977]
[223]
Prezma, T.; Shteinfer, A.; Admoni, L.; Raviv, Z.; Sela, I.; Levi, I.; Shoshan-Barmatz, V. VDAC1-based peptides: novel pro-apoptotic agents and potential therapeutics for Bcell chronic lymphocytic leukemia. Cell Death Dis, 2013, 4e809
[224]
Woldetsadik, A.D.; Vogel, M.C.; Rabeh, W.M.; Magzoub, M. Hexokinase II-derived cell-penetrating peptide targets mitochondria and triggers apoptosis in cancer cells. FASEB J., 2017, 31(5), 2168-2184.
[http://dx.doi.org/10.1096/fj.201601173R] [PMID: 28183803]
[225]
Hauser, D.N.; Mamais, A.; Conti, M.M.; Primiani, C.T.; Kumaran, R.; Dillman, A.A.; Langston, R.G.; Beilina, A.; Garcia, J.H.; Diaz-Ruiz, A.; Bernier, M.; Fiesel, F.C.; Hou, X.; Springer, W.; Li, Y.; de Cabo, R.; Cookson, M.R. Hexokinases link DJ-1 to the PINK1/parkin pathway. Mol. Neurodegener., 2017, 12(1), 70.
[http://dx.doi.org/10.1186/s13024-017-0212-x] [PMID: 28962651]
[226]
Varanasi, S.K.; Jaggi, U.; Hay, N.; Rouse, B.T. Hexokinase II may be dispensable for CD4 T cell responses against a virus infection. PLoS One, 2018, 13(1)e0191533
[http://dx.doi.org/10.1371/journal.pone.0191533] [PMID: 29352298]
[227]
Wang, C.; Silverman, R.M.; Shen, J.; O’Keefe, R.J. Distinct metabolic programs induced by TGF-β1 and BMP2 in human articular chondrocytes with osteoarthritis. J. Orthop. Translat., 2018, 12, 66-73.
[http://dx.doi.org/10.1016/j.jot.2017.12.004] [PMID: 29662780]
[228]
Li, Y.; Lu, B.; Sheng, L.; Zhu, Z.; Sun, H.; Zhou, Y.; Yang, Y.; Xue, D.; Chen, W.; Tian, X.; Du, Y.; Yan, M.; Zhu, W.; Xing, F.; Li, K.; Lin, S.; Qiu, P.; Su, X.; Huang, Y.; Yan, G.; Yin, W. Hexokinase 2-dependent hyperglycolysis driving microglial activation contributes to ischemic brain injury. J. Neurochem., 2018, 144(2), 186-200.
[http://dx.doi.org/10.1111/jnc.14267] [PMID: 29205357]
[229]
Bensaad, K.; Tsuruta, A.; Selak, M.A.; Vidal, M.N.C.; Nakano, K.; Bartrons, R.; Gottlieb, E.; Vousden, K.H. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell, 2006, 126(1), 107-120.
[http://dx.doi.org/10.1016/j.cell.2006.05.036] [PMID: 16839880]
[230]
Cheung, E.C.; Ludwig, R.L.; Vousden, K.H. Mitochondrial localization of TIGAR under hypoxia stimulates HK2 and lowers ROS and cell death. Proc. Natl. Acad. Sci. USA, 2012, 109(50), 20491-20496.
[http://dx.doi.org/10.1073/pnas.1206530109] [PMID: 23185017]
[231]
Robles López, K.L. The role of TIGAR in Parkinson’s disease, 2017. Available at: http://etheses.whiterose.ac.uk/id/eprint/18939(Accessed Date: 13 March,2018)
[232]
Okatsu, K.; Iemura, S.; Koyano, F.; Go, E.; Kimura, M.; Natsume, T.; Tanaka, K.; Matsuda, N. Mitochondrial hexokinase HKI is a novel substrate of the Parkin ubiquitin ligase. Biochem. Biophys. Res. Commun., 2012, 428(1), 197-202.
[http://dx.doi.org/10.1016/j.bbrc.2012.10.041] [PMID: 23068103]
[233]
McCoy, M.K.; Kaganovich, A.; Rudenko, I.N.; Ding, J.; Cookson, M.R. Hexokinase activity is required for recruitment of parkin to depolarized mitochondria. Hum. Mol. Genet., 2014, 23(1), 145-156.
[http://dx.doi.org/10.1093/hmg/ddt407] [PMID: 23962723]
[234]
Ghosh, S.; Gupta, P.; Sen, E. TNFα driven HIF-1α-hexokinase II axis regulates MHC-I cluster stability through actin cytoskeleton. Exp. Cell Res., 2016, 340(1), 116-124.
[http://dx.doi.org/10.1016/j.yexcr.2015.11.016] [PMID: 26597758]
[235]
Wolf, A.J.; Reyes, C.N.; Liang, W.; Becker, C.; Shimada, K.; Wheeler, M.L.; Cho, H.C.; Popescu, N.I.; Coggeshall, K.M.; Arditi, M.; Underhill, D.M. Hexokinase is an innate immune receptor for the detection of bacterial peptidoglycan. Cell, 2016, 166(3), 624-636.
[http://dx.doi.org/10.1016/j.cell.2016.05.076] [PMID: 27374331]
[236]
Okuyama, N.; Matsuda, S.; Yamashita, A.; Moriguchi-Goto, S.; Sameshima, N.; Iwakiri, T.; Matsuura, Y.; Sato, Y.; Asada, Y. Human coronary thrombus formation is associated with degree of plaque disruption and expression of tissue factor and hexokinase II. Circ. J., 2015, 79(11), 2430-2438.
[http://dx.doi.org/10.1253/circj.CJ-15-0394] [PMID: 26346032]
[237]
Barrero, C.A.; Datta, P.K.; Sen, S.; Deshmane, S.; Amini, S.; Khalili, K.; Merali, S. HIV-1 Vpr modulates macrophage metabolic pathways: a SILAC-based quantitative analysis. PLoS One, 2013, 8(7)e68376
[http://dx.doi.org/10.1371/journal.pone.0068376] [PMID: 23874603]
[238]
Xu, J.; Lin, S.; Myers, R.W.; Addona, G.; Berger, J.P.; Campbell, B.; Chen, H.S.; Chen, Z.; Eiermann, G.J.; Elowe, N.H.; Farrer, B.T.; Feng, W.; Fu, Q.; Kats-Kagan, R.; Kavana, M.; Malkani, S.; McMasters, D.R.; Mitra, K.; Pachanski, M.J.; Tong, X.; Trujillo, M.E.; Xu, L.; Zhang, B.; Zhang, F.; Zhang, R.; Parmee, E.R. Novel, highly potent systemic glucokinase activators for the treatment of Type 2 Diabetes Mellitus. Bioorg. Med. Chem. Lett., 2017, 27(9), 2069-2073.
[http://dx.doi.org/10.1016/j.bmcl.2016.10.085] [PMID: 28284804]
[239]
Malkki, M.; Laakso, M.; Deeb, S.S. The human hexokinase II gene promoter: functional characterization and detection of variants among patients with NIDDM. Diabetologia, 1997, 40(12), 1461-1469.
[http://dx.doi.org/10.1007/s001250050850] [PMID: 9447955]
[240]
Courteau, L.; Crasto, J.; Hassanzadeh, G.; Baird, S.D.; Hodgins, J.; Liwak-Muir, U.; Fung, G.; Luo, H.; Stojdl, D.F.; Screaton, R.A.; Holcik, M. Hexokinase 2 controls cellular stress response through localization of an RNA-binding protein. Cell Death Dis., 2015, 6e1837
[http://dx.doi.org/10.1038/cddis.2015.209] [PMID: 26247723]
[241]
Sheikh, T.; Gupta, P.; Gowda, P.; Patrick, S.; Sen, E. Hexokinase 2 and nuclear factor erythroid 2-related factor 2 transcriptionally coactivate xanthine oxidoreductase expression in stressed glioma cells. J. Biol. Chem., 2018, 293(13), 4767-4777.
[http://dx.doi.org/10.1074/jbc.M117.816785] [PMID: 29414774]
[242]
van Montfort, R.L.M.; Workman, P. Structure-based drug design: aiming for a perfect fit. Essays Biochem., 2017, 61(5), 431-437.
[http://dx.doi.org/10.1042/EBC20170052] [PMID: 29118091]
[243]
Stewart, B.W.; Wild, C.P. World Cancer Report; International agency for research on cancer: Lyon, France, 2014.
[244]
Mendoza, R.L. The 21st Century Cures Act: pharmacoeconomic boon or bane? J. Med. Econ., 2017, 20(4), 315-317.
[http://dx.doi.org/10.1080/13696998.2017.1282865] [PMID: 28092219]
[245]
Kleczkowska, P.; Kowalczyk, A.; Lesniak, A.; Bujalska-Zadrozny, M. The discovery and development of drug combinations for the treatment of various diseases from patent literature (1980-Present). Curr. Top. Med. Chem., 2017, 17(8), 875-894.
[http://dx.doi.org/10.2174/1568026616666160818152257] [PMID: 27538458]
[246]
Tannock, I.F.; Hickman, J.A. Limits to personalized cancer medicine. N. Engl. J. Med., 2016, 375(13), 1289-1294.
[http://dx.doi.org/10.1056/NEJMsb1607705] [PMID: 27682039]
[247]
Holohan, C.; Van Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer, 2013, 13(10), 714-726.
[http://dx.doi.org/10.1038/nrc3599] [PMID: 24060863]
[248]
Cairns, R.A.; Mak, T.W. The current state of cancer metabolism. Nat. Rev. Cancer, 2016, 16(10), 613-614.
[http://dx.doi.org/10.1038/nrc.2016.100]
[249]
Mathupala, S.P.; Ko, Y.H.; Pedersen, P.L. Hexokinase II: cancer’s double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene, 2006, 25(34), 4777-4786.
[http://dx.doi.org/10.1038/sj.onc.1209603] [PMID: 16892090]
[250]
Naldini, L. Gene therapy returns to centre stage. Nature, 2015, 526(7573), 351-360.
[http://dx.doi.org/10.1038/nature15818] [PMID: 26469046]
[251]
Cox, D.B.T.; Platt, R.J.; Zhang, F. Therapeutic genome editing: prospects and challenges. Nat. Med., 2015, 21(2), 121-131.
[http://dx.doi.org/10.1038/nm.3793] [PMID: 25654603]
[252]
Ibraheem, D.; Elaissari, A.; Fessi, H. Gene therapy and DNA delivery systems. Int. J. Pharm., 2014, 459(1-2), 70-83.
[http://dx.doi.org/10.1016/j.ijpharm.2013.11.041] [PMID: 24286924]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy