[1]
Sun D, Liu Y, Yu Q, Liu D, Zhou Y, Liu J. Selective nuclei accumulation of ruthenium(II) complex enantiomers that target G-quadruplex DNA. J Inorg Biochem 2015; 150: 90-9.
[2]
Sun J, An Y, Zhang L, et al. Studies on synthesis, characterization, and G-quadruplex binding of Ru(II) complexes containing two dppz ligands. J Inorg Biochem 2011; 105: 149-54.
[3]
Colangelo D, Ghiglia A, Viano I, et al. Might telomerase enzyme be a possible target for trans- Pt(II) complexes. J Inorg Biochem 2004; 98: 61-7.
[4]
aLi YL, Qin QP, Liu YC, Chen ZF, Liang H. A platinum(II) complex of liriodenine from traditional Chinese medicine (TCM): Cell cycle arrest, cell apoptosis induction and telomerase inhibition activity via G-quadruplex DNA stabilization. J Inorg Biochem 2014; 137: 12-21.; bShi S, Huang HL, Gao X, et al. A comparative study of the interaction of two structurally
analogous ruthenium complexes with human
telomeric G-quadruplex DNA. J Inorg Biochem b 2013; 121: 19-27.
[5]
Le T, Han S, Chae J, Park HJ. G-quadruplex binding ligands: from naturally occurring to rationally designed molecules. Curr Pharm Des 2012; 18: 1948-72.
[6]
aXiong YX, Huang ZS, Tan JH. Targeting G-quadruplex nucleic acids with heterocyclic alkaloids and their derivatives. Eur J Med Chem 2015; 97: 538-51.; bKaushik M, Kaushik S, Bansal A, Saxena S, Kukreti S. Structural diversity and specific recognition of four stranded G- quadruplex DNA. Curr Mol Med 2011; 11: 744-69.; cHurley LH, Wheelhouse RT, Sun D, et al. G-quadruplexes as targets for drug design. Pharmacol Ther 2000; 85: 141-58.; dNeidle S, Read MA. G-quadruplexes as therapeutic targets. Biopolymers 2000; 56: 195-208.
[7]
a) Maheswari PU, Rajendran V, Palaniandavar M, Parthasarathi R, Subramanian V. Synthesis, characterization and DNA-binding properties of rac-[Ru(5,6-dmp)2(dppz)]2+-enantiopreferential DNA binding and co-ligand promoted exciton coupling. J Inorg Biochem 2006; 100: 3-17.; b) Maheswari PU, Barends S, et al. Unique ligand-based oxidative DNA cleavage by Zinc(II) complexes of Hpyramol and Hpyrimol. Chem Eur J 2007; 13: 5213-22.
[8]
aRoy S, Hagen KD, Maheswari PU, et al. Phenanthroline derivatives with improved selectivity as DNA- targeting anticancer or antimicrobial drugs. ChemMedChem 2008; 3: 1427-34.; bMaheswari PU, Roy S, Dulk HD, et al. The square-planar cytotoxic [Cu(pyrimol)Cl] complex acts as an efficient DNA cleaver without reductant. J Am Chem Soc 2006; 128: 710-1.
[9]
aWong YL, Dennis KP, Lee HK. New chloro, μ-Oxo, and alkyl derivatives of dioxomolybdenum(VI) and -tungsten(VI) complexes chelated with N2O tridentate ligands: Synthesis and catalytic activities toward olefin epoxidation. Inorg Chem 2002; 41: 5276-85.; bHoog PD, Pachon LD, Gamez P, Lutz M, Spek AL, Reedijk J. Solution-stable trinuclear zinc(II) cluster from 4-methyl-2-N-(2-pyridylmethylene)aminophenol (Hpyrimol). J Dalton Trans 2004; 17: 2614-5.
[10]
Özalp-Yaman S, Hoog PD, Maheswari PU, et al. Spectroelectrochemical studies of nuclease-active zinc(II) coordination compounds from the ligands Hpyramol and Hpyrimol. Electrochim Acta 2010; 55: 8655-63.
[11]
Husáriková L, Pepicka Z, Moncol J, Valigura D, Valko M, Mazur M. Unusual EPR spectra with inverse Axial g values of chloro salicylate –Cu(II)– 2,6-Pyridinedimethanol complex in frozen water–methanol solution. Appl Magn Reson 2013; 44: 571-82.
[12]
Maheswari PU, Harti F, Quesada M, et al. Spectro-electrochemical and DFT studies of a planar Cu(II)– phenolate complex active in the aerobic oxidation of primary alcohols. Inorg Chim Acta 2011; 374: 406-14.
[13]
Halfen JA, Victor G, Tolman WB. Modeling of the chemistry of the active site of galactose Oxidase. Angew Chem 1996; 35: 1687-90.
[14]
Benisvy L, Bill E, Blake AJ, et al. Phenoxyl radicals: H-bonded and coordinated to Cu(II) and Zn(II). Dalton Trans 2006; 1: 258-67.
[15]
Kieltyka R, Englebienne P, Fakhoury J, Autexier C, Moitessier N, Sleiman HF. A platinum supramolecular square as an effective G-quadruplex binder and telomerase inhibitor. J Am Chem Soc 2008; 130: 10040-1.
[16]
Olive PL, Banath JP. The comet assay: A method to measure DNA damage in individual cells. Nat Protoc 2006; 1: 23-9.
[17]
Karna P, Zughaier S, Pannu V, Simmons R, Narayan S, Aneja R. Induction of reactive oxygen species-mediated autophagy by a novel microtubule-modulating agent. J Biol Chem 2010; 285: 18737-48.
[18]
Kim M, Kooper DD, Hayes SF, Spangrude GJ. Rhodamine-123 staining in hematopoietic stem cells of young mice indicates mitochondrial activation rather than dye efflux. Blood 1998; 91: 4106-17.