[1]
Durek P, Walther D. The integrated analysis of metabolic and protein interaction networks reveals novel molecular organizing principles. BMC Syst Biol 2008; 2(1): 100.
[2]
Salas M. Protein-priming of DNA replication. Annu Rev Biochem 1991; 60(1): 39-71.
[3]
Ronson CW, Nixon BT, Ausubel FM. Conserved domains in bacterial regulatory proteins that respond to environmental stimuli. Cell 1987; 49(5): 579-81.
[4]
Terwilliger NB. Functional adaptations of oxygen-transport proteins. J Exp Biol 1998; 201(Pt 8): 1085-98.
[5]
Dorsam RT, Gutkind JS. G-protein-coupled receptors and cancer. Nat Rev Cancer 2007; 7(2): 79-94.
[6]
Zhang J, Ju Y, Lu H, Xuan P, Zou Q. Accurate Identification of Cancerlectins through Hybrid Machine Learning Technology. Int J Genomics 2016; 2016(4): 7604641.
[7]
Guo SH, Deng EZ, Xu LQ, et al. iNuc-PseKNC: a sequence-based predictor for predicting nucleosome positioning in genomes with pseudo k-tuple nucleotide composition. Bioinformatics 2014; 30(11): 1522-9.
[8]
Lin H, Deng EZ, Ding H, Chen W, Chou KC. iPro54-PseKNC: a sequence-based predictor for identifying sigma-54 promoters in prokaryote with pseudo k-tuple nucleotide composition. Nucleic Acids Res 2014; 42(21): 12961-72.
[9]
Lin H, Liang ZY, Tang H, Chen W. Identifying sigma70 promoters with novel pseudo nucleotide composition. IEEE/ACM Trans Comput Biol Bioinform 2018.
[10]
Ding H, Li D. Identification of mitochondrial proteins of malaria parasite using analysis of variance. Amino Acids 2015; 47(2): 329-33.
[11]
Liu B, Fang Y, Huang D-S, Chou K-C. iPromoter-2L: a two-layer predictor for identifying promoters and their types by multi-window-based PseKNC. Bioinformaitcs 2018; 34(1): 33-40.
[12]
Liu B, Liu F, Wang X, Chen J, Fang L, Chou K-C. Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences. Nucleic Acids Res 2015; 43(W1): W65-71.
[13]
Shanahan HP, Garcia MA, Jones S, Thornton JM. Identifying DNA-binding proteins using structural motifs and the electrostatic potential. Nucleic Acids Res 2004; 32(16): 4732-41.
[14]
Stawiski EW, Gregoret LM, Mandel-Gutfreund Y. Annotating nucleic acid-binding function based on protein structure. J Mol Biol 2003; 326(4): 1065-79.
[15]
Leyi W, Minghong L, Xing G, Quan Z. An improved protein structural classes prediction method by incorporating both sequence and structure information. IEEE Trans Nanobioscience 2015; 14(4): 339-49.
[16]
Zhang CT, Chou K-C. An optimization approach to predicting protein structural class from amino acid composition. Protein Sci 1992; 1(3): 401-8.
[17]
Cedano J, Aloy P, Pérez-Pons JA, Querol E. Relation between amino acid composition and cellular location of proteins. J Mol Biol 1997; 266(3): 594-600.
[18]
Liu B, Wang X, Lin L, Dong Q, Wang X. A discriminative method for protein remote homology detection and fold recognition combining Top-n-grams and latent semantic analysis. BMC Bioinformatics 2008; 9(1): 510.
[19]
Xu R, Zhou J, Liu B, et al. Identification of DNA-binding proteins by incorporating evolutionary information into pseudo amino acid composition via the top-n-gram approach. J Biomol Struct Dyn 2015; 33(8): 1720-30.
[20]
Liu B, Wang X, Lin L, Dong Q, Wang X. A discriminative method for protein remote homology detection and fold recognition combining Top-n-grams and latent semantic analysis. BMC Bioinformatics 2008; 9: 510.
[21]
Liu B, Xu J, Zou Q, Xu R, Wang X, Chen Q. Using distances between Top-n-gram and residue pairs for protein remote homology detection. BMC Bioinformatics 2014; 15(Suppl. 2): S3.
[22]
Xu Y, Shao XJ, Wu LY, Deng NY, Chou KC. iSNO-AAPair: incorporating amino acid pairwise coupling into PseAAC for predicting cysteine S-nitrosylation sites in proteins. PeerJ 2013; 1: e171.
[23]
Liu S, Wang S, Ding H, Eds. Protein sub-nuclear location by fusing AAC and PSSM features based on sequence information. International Conference on Electronics Information and Emergency Communication. 2015
[24]
Klein P, Delisi C. Prediction of protein structural class from the amino acid sequence. Biopolymers 1986; 25(9): 1659-72.
[25]
Lin H. The modified Mahalanobis Discriminant for predicting outer membrane proteins by using Chou’s pseudo amino acid composition. J Theor Biol 2008; 252(2): 350-6.
[26]
Lin H, Chen W. Prediction of thermophilic proteins using feature selection technique. J Microbiol Methods 2011; 84(1): 67-70.
[27]
Chou K-C. Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins 2001; 43(3): 246-55.
[28]
Tang H, Chen W, Lin H. Identification of immunoglobulins using Chou’s pseudo amino acid composition with feature selection technique. Mol Biosyst 2016; 12(4): 1269-75.
[29]
Tang H, Su ZD, Wei HH, Chen W, Lin H. Prediction of cell-penetrating peptides with feature selection techniques. Biochem Biophys Res Commun 2016; 477(1): 150-4.
[30]
Lin H, Chen W, Yuan LF, Li ZQ, Ding H. Using over-represented tetrapeptides to predict protein submitochondria locations. Acta Biotheor 2013; 61(2): 259-68.
[31]
Lin H, Ding C, Yuan LF, Chen W, Ding H, Li ZQ, et al. Predicting Subchloroplast Locations Of Proteins Based on the General Form Of Chou’s Pseudo Amino Acid Composition: Approached From Optimal Tripeptide Composition. Int J Biomath 2013; 6(2): 1350003.
[32]
Chou KC. Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins 2001; 43(3): 246-55.
[33]
Chou K-C, Cai YD. Using functional domain composition and support vector machines for prediction of protein subcellular location. J Biol Chem 2002; 277(48): 45765-9.
[34]
Cai YD, Zhou GP, Chou K-C. Support vector machines for predicting membrane protein types by using functional domain composition. Biophys J 2003; 84(5): 3257-63.
[35]
Shen HB, Chou K-C. PseAAC: a flexible web server for generating various kinds of protein pseudo amino acid composition. Anal Biochem 2008; 373(2): 386-8.
[36]
Chou K-C. Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics 2005; 21(1): 10-9.
[37]
Lin H, Wang H, Ding H, Chen YL, Li QZ. Prediction of subcellular localization of apoptosis protein using Chou’s pseudo amino acid composition. Acta Biotheor 2009; 57(3): 321-30.
[38]
Cao D-S, Xu Q-S, Liang Y-Z. propy: a tool to generate various modes of Chou’s PseAAC. Bioinformatics 2013; 29(7): 960-2.
[39]
Kawashima S, Pokarowski P, Pokarowska M, Kolinski A, Katayama T, Kanehisa M. AAindex: amino acid index database, progress report 2008. Nucleic Acids Res 2008; 36(Database issue): D202-5.
[40]
Liu B, Xu J, Lan X, et al. iDNA-Prot|dis: identifying DNA-binding proteins by incorporating amino acid distance-pairs and reduced alphabet profile into the general pseudo amino acid composition. PLoS One 2014; 9(9): e106691.
[41]
Dong Q, Zhou S, Guan J. A new taxonomy-based protein fold recognition approach based on autocross-covariance transformation. Bioinformatics 2009; 25(20): 2655-62.
[42]
Guo Y, Yu L, Wen Z, Li M. Using support vector machine combined with auto covariance to predict protein-protein interactions from protein sequences. Nucleic Acids Res 2008; 36(9): 3025-30.
[43]
Liu B, Wang X, Chen Q, Dong Q, Lan X. Using amino acid physicochemical distance transformation for fast protein remote homology detection. PLoS One 2012; 7(9): e46633.
[44]
Kawashima S, Kanehisa M. AAindex: amino acid index database. Nucleic Acids Res 2000; 28(1): 374.
[45]
Altschul SF, Madden TL, Schäffer AA, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25(17): 3389-402.
[46]
Holm L, Sander C. Removing near-neighbour redundancy from large protein sequence collections. Bioinformatics 1998; 14(5): 423-9.
[47]
Rangwala H, Karypis G. Profile-based direct kernels for remote homology detection and fold recognition. Bioinformatics 2005; 21(23): 4239-47.
[48]
Liu B, Zhang D, Xu R, et al. Combining evolutionary information extracted from frequency profiles with sequence-based kernels for protein remote homology detection. Bioinformatics 2014; 30(4): 472-9.
[49]
Wei L, Tang J, Zou Q. Local-DPP: An improved DNA-binding protein prediction method by exploring local evolutionary information. Inf Sci 2017; 2016(384): 135-44.
[50]
Waris M, Ahmad K, Kabir M, Hayat M. Identification of DNA binding proteins using evolutionary profiles position specific scoring matrix. Neurocomputing 2016; 199: 154-62.
[51]
Liu B, Wang S, Wang X. DNA binding protein identifcation by combining pseudo amino acid composition and profle-based protein representation. Sci Rep 2015; 5: 15497.
[52]
Song L, Li D, Zeng X, Wu Y, Guo L, Zou Q. nDNA-Prot: identification of DNA-binding proteins based on unbalanced classification. BMC Bioinformatics 2014; 15: 298.
[53]
Saini H, Raicar G, Lal SP, Dehzangi A, Imoto S, Sharma A. Protein Fold Recognition Using Genetic Algorithm Optimized Voting Scheme and Profile Bigram. J Softw 2016; 11(8): 756-67.
[54]
Paliwal KK, Sharma A, Lyons J, Dehzangi A. A tri-gram based feature extraction technique using linear probabilities of position specific scoring matrix for protein fold recognition. IEEE Trans Nanobioscience 2014; 13(1): 44-50.
[55]
Wei L, Zou Q. Recent progresses in machine learning-based methods for protein fold recognition. Int J Mol Sci 2016; 17: 2118.
[56]
Li D, Ju Y, Zou Q. Protein Folds Prediction with Hierarchical Structured SVM. Curr Proteomics 2016; 13(2): 79-85.
[57]
Zhao X, Zou Q, Liu B, Liu X. Exploratory predicting protein folding model with random forest and hybrid features. Curr Proteomics 2014; 11(4): 289-99.
[58]
Lin C, Zou Y, Qin J, et al. Hierarchical classification of protein folds using a novel ensemble classifier. PLoS One 2013; 8(2): e56499.
[59]
Xu R, Zhou J, Wang H, He Y, Wang X, Liu B. Identifying DNA-binding proteins by combining support vector machine and PSSM distance transformation. BMC Syst Biol 2015; 9(Suppl. 1): S10.
[60]
Zhang J, Liu B. PSFM-DBT: Identifying DNA-binding proteins by combing position specific frequency matrix and distance-bigram transformation. Int J Mol Sci 2017; 18(9): 1856.
[61]
Liu B, Wu H, Chou KC. Pse-in-One 2.0: An improved package of web servers for generating various modes of pseudo components of DNA, RNA, and protein sequences. Nat Sci 2017; 9(4): 67-91.
[62]
Liu B, Wu H, Zhang D, Wang X, Chou KC. Pse-Analysis: a python package for DNA/RNA and protein/ peptide sequence analysis based on pseudo components and kernel methods. Oncotarget 2017; 8(8): 13338-43.
[63]
Wang J, Yang B, Revote J, et al. POSSUM: a bioinformatics toolkit for generating numerical sequence feature descriptors based on PSSM profiles. Bioinformatics 2017; 33(17): 2756-8.
[64]
Chen W, Feng PM, Lin H, Chou KC. iRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition. Nucleic Acids Res 2013; 41(6): e68.
[65]
Liu B, Xu J, Lan X, et al. iDNA-Prot|dis: identifying DNA-binding proteins by incorporating amino acid distance-pairs and reduced alphabet profile into the general pseudo amino acid composition. PLoS One 2014; 9(9): e106691.
[66]
Xu Y, Wen X, Wen LS, Wu LY, Deng NY, Chou KC. iNitro-Tyr: prediction of nitrotyrosine sites in proteins with general pseudo amino acid composition. PLoS One 2014; 9(8): e105018.
[67]
Liu B, Fang L, Chen J, Liu F, Wang X. miRNA-dis: microRNA precursor identification based on distance structure status pairs. Mol Biosyst 2015; 11(4): 1194-204.
[68]
Liu B, Fang L, Liu F, Wang X, Chou KC. iMiRNA-PseDPC: microRNA precursor identification with a pseudo distance-pair composition approach. J Biomol Struct Dyn 2016; 34(1): 223-35.
[69]
Guo Y, Li M, Lu M, Wen Z, Huang Z. Predicting G-protein coupled receptors-G-protein coupling specificity based on autocross-covariance transform. Proteins 2006; 65(1): 55-60.
[70]
Dong Q, Zhou S, Guan J. A new taxonomy-based protein fold recognition approach based on autocross-covariance transfor-mation. Bioinformatics 2009; 25(20): 2655-62.
[71]
Dong Q, Wang S, Wang K, Liu X, Liu B. Identification of DNA-binding proteins by auto-cross covariance transformation. Bioinformatics Biomed 2015; pp. 470-5.
[72]
Liu B, Wang S, Dong Q, Li S, Liu X. Identification of DNA-binding proteins by combining auto-cross covariance transfor-mation and ensemble learning. IEEE Trans Nanobioscience 2016; 15(4): 328-34.
[73]
Chen J, Guo M, Wang X, Liu B. A comprehensive review and comparison of different computational methods for protein remote homology detection. Brief Bioinform 201; 19(2): 231-44.
[74]
Håndstad T, Hestnes AJ, Saetrom P. Motif kernel generated by genetic programming improves remote homology and fold detection. BMC Bioinformatics 2007; 8(1): 23.