[1]
Dill KA, MacCallum JL. The protein-folding problem, 50 years on. Science 2012; 338(6110): 1042-6.
[2]
Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER Suite: protein structure and function prediction. Nat Methods 2015; 12(1): 7-8.
[3]
Källberg M, Wang H, Wang S, et al. Template-based protein structure modeling using the RaptorX web server. Nat Protoc 2012; 7(8): 1511-22.
[4]
Li D, Ju Y, Zou Q. Protein folds prediction with hierarchical structured SVM. Curr Proteomics 2016; 13(2): 79-85.
[5]
Wei L, Liao M, Gao X, Zou Q. Enhanced protein fold prediction method through a novel feature extraction technique. IEEE Trans Nanobioscience 2015; 14(6): 649-59.
[6]
Zhang Y. I-TASSER: fully automated protein structure prediction in CASP8. Proteins 2009; 77(Suppl. 9): 100-13.
[7]
Marks DS, Hopf TA, Sander C. Protein structure prediction from sequence variation. Nat Biotechnol 2012; 30(11): 1072-80.
[8]
Vassura M, Margara L, Di Lena P, Medri F, Fariselli P, Casadio R. Reconstruction of 3D structures from protein contact maps. IEEE/ACM Trans Comput Biol Bioinform 2008; 5(3): 357-67.
[9]
Ma J, Wang S, Wang Z, Xu J. Protein contact prediction by integrating joint evolutionary coupling analysis and supervised learning. Bioinformatics 2015; 31(21): 3506-13.
[10]
Wang Z, Eickholt J, Cheng J. APOLLO: a quality assessment service for single and multiple protein models. Bioinformatics 2011; 27(12): 1715-6.
[11]
Miller CS, Eisenberg D. Using inferred residue contacts to distinguish between correct and incorrect protein models. Bioinformatics 2008; 24(14): 1575-82.
[12]
Tress ML, Valencia A. Predicted residue-residue contacts can help the scoring of 3D models. Proteins 2010; 78(8): 1980-91.
[13]
Wang S, Ma J, Peng J, Xu J. Protein structure alignment beyond spatial proximity. Sci Rep 2013; 3(3): 1448.
[14]
Xu J, Jiao F, Berger B. A parameterized algorithm for protein structure alignment. J Comput Biol 2007; 14(5): 564-77.
[15]
Horner DS, Pirovano W, Pesole G. Correlated substitution analysis and the prediction of amino acid structural contacts. Brief Bioinform 2008; 9(1): 46-56.
[16]
Göbel U, Sander C, Schneider R, Valencia A. Correlated mutations and residue contacts in proteins. Proteins 1994; 18(4): 309-17.
[17]
Neher E. How frequent are correlated changes in families of protein sequences? Proc Natl Acad Sci USA 1994; 91(1): 98-102.
[18]
Taylor WR, Hatrick K. Compensating changes in protein multiple sequence alignments. Protein Eng 1994; 7(3): 341-8.
[19]
Olmea O, Valencia A. Improving contact predictions by the combination of correlated mutations and other sources of sequence information. Fold Des 1997; 2(3): S25-32.
[20]
Pazos F, Helmer-Citterich M, Ausiello G, Valencia A. Correlated mutations contain information about protein-protein interaction. J Mol Biol 1997; 271(4): 511-23.
[21]
Korber BT, Farber RM, Wolpert DH, Lapedes AS. Covariation of mutations in the V3 loop of human immunodeficiency virus type 1 envelope protein: an information theoretic analysis. Proc Natl Acad Sci USA 1993; 90(15): 7176-80.
[22]
Clarke ND. Covariation of residues in the homeodomain sequence family. Protein Sci 1995; 4(11): 2269-78.
[23]
Larson SM, Di Nardo AA, Davidson AR. Analysis of covariation in an SH3 domain sequence alignment: applications in tertiary contact prediction and the design of compensating hydrophobic core substitutions. J Mol Biol 2000; 303(3): 433-46.
[24]
Kass I, Horovitz A. Mapping pathways of allosteric communication in GroEL by analysis of correlated mutations. Proteins 2002; 48(4): 611-7.
[25]
Noivirt O, Eisenstein M, Horovitz A. Detection and reduction of evolutionary noise in correlated mutation analysis. Protein Eng Des Sel 2005; 18(5): 247-53.
[26]
Lapedes AS, Giraud BG, Liu L, Stormo GD. Correlated mutations in models of protein sequences: phylogenetic and structural effects 1999. 236-56.
[27]
Weigt M, White RA, Szurmant H, Hoch JA, Hwa T. Identification of direct residue contacts in protein-protein interaction by message passing. Proc Natl Acad Sci USA 2009; 106(1): 67-72.
[28]
Jones DT, Buchan DW, Cozzetto D, Pontil M. PSICOV: precise structural contact prediction using sparse inverse covariance estimation on large multiple sequence alignments. Bioinformatics 2012; 28(2): 184-90.
[29]
Ekeberg M, Lövkvist C, Lan Y, Weigt M, Aurell E. Improved contact prediction in proteins: using pseudolikelihoods to infer Potts models. Phys Rev E Stat Nonlin Soft Matter Phys 2013; 87(1): 012707.
[30]
Ekeberg M, Hartonen T, Aurell E. Fast pseudolikelihood maximization for direct-coupling analysis of protein structure from many homologous amino-acid sequences. J Comput Phys 2014; 276: 341-56.
[31]
Feinauer C, Skwark MJ, Pagnani A, Aurell E. Improving contact prediction along three dimensions. PLOS Comput Biol 2014; 10(10): e1003847.
[32]
Kamisetty H, Ovchinnikov S, Baker D. Assessing the utility of coevolution-based residue-residue contact predictions in a sequence- and structure-rich era. Proc Natl Acad Sci USA 2013; 110(39): 15674-9.
[33]
Balakrishnan S, Kamisetty H, Carbonell JG, Lee SI, Langmead CJ. Learning generative models for protein fold families. Proteins-structure Function & Bioinformatics 2011; 79(4): 1061-78.
[34]
Shackelford G, Karplus K. Contact prediction using mutual information and neural nets. Proteins 2007; 69(Suppl. 8): 159-64.
[35]
Punta M, Rost B. PROFcon: novel prediction of long-range contacts. Bioinformatics 2005; 21(13): 2960-8.
[36]
Xue B, Faraggi E, Zhou Y. Predicting residue-residue contact maps by a two-layer, integrated neural-network method. Proteins 2009; 76(1): 176-83.
[37]
Fariselli P, Casadio R. A neural network based predictor of residue contacts in proteins. Protein Eng 1999; 12(1): 15-21.
[38]
Tegge AN, Wang Z, Eickholt J, Cheng J. NNcon: improved protein contact map prediction using 2D-recursive neural networks. Nucleic Acids Res 2009; 37(Suppl. 2): W515-8.
[39]
Di Lena P, Nagata K, Baldi P. Deep architectures for protein contact map prediction. Bioinformatics 2012; 28(19): 2449-57.
[40]
Wu S, Zhang Y. A comprehensive assessment of sequence-based and template-based methods for protein contact prediction. Bioinformatics 2008; 24(7): 924-31.
[41]
Yuan Z. Better prediction of protein contact number using a support vector regression analysis of amino acid sequence. BMC Bioinformatics 2005; 6(1): 248.
[42]
Cheng J, Baldi P. Improved residue contact prediction using support vector machines and a large feature set. BMC Bioinformatics 2007; 8: 113.
[43]
Nugent T, Jones DT. Predicting transmembrane helix packing arrangements using residue contacts and a force-directed algorithm. PLOS Comput Biol 2010; 6(3): e1000714.
[44]
Björkholm P, Daniluk P, Kryshtafovych A, Fidelis K, Andersson R, Hvidsten TR. Using multi-data hidden Markov models trained on local neighborhoods of protein structure to predict residue-residue contacts. Bioinformatics 2009; 25(10): 1264-70.
[45]
Li Y, Fang Y, Fang J. Predicting residue-residue contacts using random forest models. Bioinformatics 2011; 27(24): 3379-84.
[46]
Wang XF, Chen Z, Wang C, Yan RX, Zhang Z, Song J. Predicting residue-residue contacts and helix-helix interactions in transmembrane proteins using an integrative feature-based random forest approach. PLoS One 2011; 6(10): e26767.
[47]
Wang Z, Xu J. Predicting protein contact map using evolutionary and physical constraints by integer programming. Bioinformatics 2013; 29(13): i266-73.
[48]
Jones DT, Singh T, Kosciolek T, Tetchner S. MetaPSICOV: combining coevolution methods for accurate prediction of contacts and long range hydrogen bonding in proteins. Bioinformatics 2015; 31(7): 999-1006.
[49]
Kosciolek T, Jones DT. Accurate contact predictions using covariation techniques and machine learning. Proteins 2016; 84(Suppl. 1): 145-51.
[50]
Fariselli P, Olmea O, Valencia A, Casadio R. Prediction of contact maps with neural networks and correlated mutations. Protein Eng 2001; 14(11): 835-43.
[51]
Hamilton N, Burrage K, Ragan MA, Huber T. Protein contact prediction using patterns of correlation. Proteins 2004; 56(4): 679-84.
[52]
Yang J, Jin Q-Y, Zhang B, Shen H-B. R2C: improving ab initio residue contact map prediction using dynamic fusion strategy and Gaussian noise filter. Bioinformatics 2016; 32(16): 2435-43.
[53]
Ma J, Wang S, Wang Z, Xu J. Protein contact prediction by integrating joint evolutionary coupling analysis and supervised learning. Bioinformatics 2015; 31(21): 3506-13.
[54]
Skolnick J, Kihara D, Zhang Y. Development and large scale benchmark testing of the PROSPECTOR_3 threading algorithm. Proteins 2004; 56(3): 502-18.
[55]
Misura KMS, Chivian D, Rohl CA, Kim DE, Baker D. Physically realistic homology models built with ROSETTA can be more accurate than their templates. Proc Natl Acad Sci USA 2006; 103(14): 5361-6.
[56]
Monastyrskyy B, D’Andrea D, Fidelis K, Tramontano A, Kryshtafovych A. New encouraging developments in contact prediction: Assessment of the CASP11 results. Proteins 2016; 84(Suppl. 1): 131-44.
[57]
Xie J, Ding W, Chen L, Guo Q, Zhang WU. Advances in protein contact map prediction based on machine learning. Med Chem 2015; 11(3): 265-70.
[58]
Kamisetty H, Ovchinnikov S, Baker D. Assessing the utility of coevolution-based residue-residue contact predictions in a sequence- and structure-rich era. Proc Natl Acad Sci USA 2013; 110(39): 15674-9.
[59]
Wuyun Q, Zheng W, Peng Z, Yang J. A large-scale comparative assessment of methods for residue–residue contact prediction. Brief Bioinform 2018; 19(2): 219-30.
[60]
Kinch LN, Li W, Schaeffer RD, et al. CASP 11 target classification. Proteins 2016; 84(Suppl. 1): 20-33.
[61]
Vendruscolo M, Kussell E, Domany E. Recovery of protein structure from contact maps. Fold Des 1997; 2(5): 295-306.
[62]
Mirny L, Domany E. Protein fold recognition and dynamics in the space of contact maps. Proteins 1996; 26(4): 391-410.
[63]
Pollock DD, Taylor WR. Effectiveness of correlation analysis in identifying protein residues undergoing correlated evolution. Protein Eng 1997; 10(6): 647-57.
[64]
Izarzugaza JM, Graña O, Tress ML, Valencia A, Clarke ND. Assessment of intramolecular contact predictions for CASP7. Proteins 2007; 69(Suppl. 8): 152-8.
[65]
Dimmic MW, Hubisz MJ, Bustamente CD. Detecting coevolving amino acid sites using Bayesian mutational mapping. Bioinformatics 2005; 21(Suppl. 1): i126-35.
[66]
Ezkurdia I, Graña O, Izarzugaza JM, Tress ML. Assessment of domain boundary predictions and the prediction of intramolecular contacts in CASP8. Proteins 2009; 77(Suppl. 9): 196-209.
[67]
Monastyrskyy B, Fidelis K, Tramontano A, Kryshtafovych A. Evaluation of residue-residue contact predictions in CASP9. Proteins 2011; 79(Suppl. 10): 119-25.
[68]
Monastyrskyy B, D’Andrea D, Fidelis K, Tramontano A, Kryshtafovych A. Evaluation of residue-residue contact prediction in CASP10. Proteins 2014; 82(Suppl. 2): 138-53.
[69]
Piana S, Klepeis JL, Shaw DE. Assessing the accuracy of physical models used in protein-folding simulations: quantitative evidence from long molecular dynamics simulations. Curr Opin Struct Biol 2014; 24(1): 98-105.
[70]
Tai CH, Bai H, Taylor TJ, Lee B. Assessment of template-free modeling in CASP10 and ROLL. Proteins 2014; 82(Suppl. 2): 57-83.
[71]
Michel M, Hayat S, Skwark MJ, Sander C, Marks DS, Elofsson A. PconsFold: improved contact predictions improve protein models. Bioinformatics 2014; 30(17): i482-8.
[72]
Skolnick J, Kolinski A, Ortiz AR. MONSSTER: a method for folding globular proteins with a small number of distance restraints. J Mol Biol 1997; 265(2): 217-41.
[73]
Kim DE, Dimaio F, Yu-Ruei Wang R, Song Y, Baker D. One contact for every twelve residues allows robust and accurate topology-level protein structure modeling. Proteins 2014; 82(Suppl. 2): 208-18.
[74]
Graña O, Baker D, MacCallum RM, et al. CASP6 assessment of contact prediction. Proteins 2005; 61(Suppl. 7): 214-24.
[75]
Tress ML, Valencia A. Predicted residue-residue contacts can help the scoring of 3D models. Proteins 2010; 78(8): 1980-91.
[76]
Goldman D, Istrail S, Papadimitriou CH, Eds. Algorithmic aspects of protein structure similarity. 40th Annual Symposium on Foundations of Computer Science. 1999 Oct 17-19; New York City, USA: IEEE
[77]
Andonov R, Malod-Dognin N, Yanev N. Maximum contact map overlap revisited. J Comput Biol 2011; 18(1): 27-41.
[78]
Caprara A, Lancia G, Eds. Structural alignment of large—size proteins via lagrangian relaxation. Proceedings of the sixth annual international conference on Computational biology. 2002 April 18-21; Washington, DC, USA: ACM
[79]
Morcos F, Pagnani A, Lunt B, et al. Direct-coupling analysis of residue coevolution captures native contacts across many protein families. Proc Natl Acad Sci USA 2011; 108(49): E1293-301.
[80]
Baldassi C, Zamparo M, Feinauer C, et al. Fast and accurate multivariate Gaussian modeling of protein families: predicting residue contacts and protein-interaction partners. PLoS One 2014; 9(3): e92721.
[81]
Afonnikov DA, Oshchepkov DY, Kolchanov NA. Detection of conserved physico-chemical characteristics of proteins by analyzing clusters of positions with co-ordinated substitutions. Bioinformatics 2001; 17(11): 1035-46.
[82]
Afonnikov DA, Kolchanov NA. CRASP: a program for analysis of coordinated substitutions in multiple alignments of protein sequences. Nucleic Acids Res 2004; 32(Suppl. 2): W64-8.
[83]
Vicatos S, Reddy BV, Kaznessis Y. Prediction of distant residue contacts with the use of evolutionary information. Proteins 2005; 58(4): 935-49.
[84]
Wollenberg KR, Atchley WR. Separation of phylogenetic and functional associations in biological sequences by using the parametric bootstrap. Proc Natl Acad Sci USA 2000; 97(7): 3288-91.
[85]
Atchley WR, Wollenberg KR, Fitch WM, Terhalle W, Dress AW. Correlations among amino acid sites in bHLH protein domains: an information theoretic analysis. Mol Biol Evol 2000; 17(1): 164-78.
[86]
Tillier ER, Lui TW. Using multiple interdependency to separate functional from phylogenetic correlations in protein alignments. Bioinformatics 2003; 19(6): 750-5.
[87]
Martin LC, Gloor GB, Dunn SD, Wahl LM. Using information theory to search for co-evolving residues in proteins. Bioinformatics 2005; 21(22): 4116-24.
[88]
Gloor GB, Martin LC, Wahl LM, Dunn SD. Mutual information in protein multiple sequence alignments reveals two classes of coevolving positions. Biochemistry 2005; 44(19): 7156-65.
[89]
Dunn SD, Wahl LM, Gloor GB. Mutual information without the influence of phylogeny or entropy dramatically improves residue contact prediction. Bioinformatics 2008; 24(3): 333-40.
[90]
Lockless SW, Ranganathan R. Evolutionarily conserved pathways of energetic connectivity in protein families. Science 1999; 286(5438): 295-9.
[91]
Süel GM, Lockless SW, Wall MA, Ranganathan R. Evolutionarily conserved networks of residues mediate allosteric communication in proteins. Nat Struct Biol 2003; 10(1): 59-69.
[92]
Dekker JP, Fodor A, Aldrich RW, Yellen G. A perturbation-based method for calculating explicit likelihood of evolutionary co-variance in multiple sequence alignments. Bioinformatics 2004; 20(10): 1565-72.
[93]
Singer MS, Vriend G, Bywater RP. Prediction of protein residue contacts with a PDB-derived likelihood matrix. Protein Eng 2002; 15(9): 721-5.
[94]
Eyal E, Frenkel-Morgenstern M, Sobolev V, Pietrokovski S. A pair-to-pair amino acids substitution matrix and its applications for protein structure prediction. Proteins 2007; 67(1): 142-53.
[95]
Eyal E, Pietrokovski S, Bahar I. Rapid assessment of correlated amino acids from pair-to-pair (P2P) substitution matrices. Bioinformatics 2007; 23(14): 1837-9.
[96]
Lapedes A, Giraud B, Jarzynski C. Using sequence alignments to
predict protein structure and stability with high accuracy. arXiv
preprint arXiv:12072484 2012.
[97]
Marks DS, Colwell LJ, Sheridan R, et al. Protein 3D structure computed from evolutionary sequence variation. PLoS One 2011; 6(12): e28766.
[98]
Hopf TA, Colwell LJ, Sheridan R, Rost B, Sander C, Marks DS. Three-dimensional structures of membrane proteins from genomic sequencing. Cell 2012; 149(7): 1607-21.
[99]
Sułkowska JI, Morcos F, Weigt M, Hwa T, Onuchic JN. Genomics-aided structure prediction. Proc Natl Acad Sci USA 2012; 109(26): 10340-5.
[100]
Burger L, van Nimwegen E. Accurate prediction of protein-protein interactions from sequence alignments using a Bayesian method. Mol Syst Biol 2008; 4(1): 165.
[101]
Burger L, van Nimwegen E. Disentangling direct from indirect co-evolution of residues in protein alignments. PLOS Comput Biol 2010; 6(1): e1000633.
[102]
Kaján L, Hopf TA, Kalaš M, Marks DS, Rost B. FreeContact: fast and free software for protein contact prediction from residue co-evolution. BMC Bioinformatics 2014; 15(1): 85.
[103]
Seemayer S, Gruber M, Söding J. CCMpred--fast and precise prediction of protein residue-residue contacts from correlated mutations. Bioinformatics 2014; 30(21): 3128-30.
[104]
Fares MA, Travers SAA. A novel method for detecting intramolecular coevolution: adding a further dimension to selective constraints analyses. Genetics 2006; 173(1): 9-23.
[105]
Hearst MA, Dumais ST, Osuna E, Platt J, Scholkopf B. Support vector machines. IEEE Intell Syst Their Appl 1998; 13(4): 18-28.
[106]
Li D, Hu X, Liu X, Feng Z, Ding C. Using feature optimization-based support vector machine method to recognize the β-hairpin motifs in enzymes. Saudi J Biol Sci 2017; 24(6): 1361-9.
[108]
Schmidhuber J. Deep learning in neural networks: an overview. Neural Netw 2015; 61: 85-117.
[109]
Eickholt J, Cheng J. A study and benchmark of DNcon: a method for protein residue-residue contact prediction using deep networks. BMC Bioinformatics 2013; 14(Suppl. 14): S12.
[110]
Eickholt J, Cheng J. Predicting protein residue-residue contacts using deep networks and boosting. Bioinformatics 2012; 28(23): 3066-72.
[111]
Wang S, Sun S, Li Z, Zhang R, Xu J. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model. PLOS Comput Biol 2017; 13(1): e1005324.
[112]
Atchley WR, Zhao J, Fernandes AD, Drüke T. Solving the protein sequence metric problem. Proc Natl Acad Sci USA 2005; 6395-400.
[113]
Ding W, Xie J, Dai D, Zhang H, Xie H, Zhang W. CNNcon: improved protein contact maps prediction using cascaded neural networks. PLoS One 2013; 8(4): e61533.
[114]
Bacardit J, Widera P, Márquez-Chamorro A, Divina F, Aguilar-Ruiz JS, Krasnogor N. Contact map prediction using a large-scale ensemble of rule sets and the fusion of multiple predicted structural features. Bioinformatics 2012; 28(19): 2441-8.
[115]
Yang J, Jang R, Zhang Y, Shen H-B. High-accuracy prediction of transmembrane inter-helix contacts and application to GPCR 3D structure modeling. Bioinformatics 2013; 29(20): 2579-87.
[116]
Skwark MJ, Raimondi D, Michel M, Elofsson A. Improved contact predictions using the recognition of protein like contact patterns. PLOS Comput Biol 2014; 10(11): e1003889.
[117]
Remmert M, Biegert A, Hauser A, Söding J. HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat Methods 2011; 9(2): 173-5.
[118]
Hobohm U, Sander C. Enlarged representative set of protein structures. Protein Sci 1994; 3(3): 522-4.
[119]
Altschul SF, Madden TL, Schäffer AA, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25(17): 3389-402.
[120]
Cheng J, Randall AZ, Sweredoski MJ, Baldi P. SCRATCH: a protein structure and structural feature prediction server. Nucleic Acids Res 2005; 33: 72-6.