[1]
Deligeorgiev, T.; Gadjev, N.; Vasilev, A.; Kaloyanova, S.; Vaquero, J.J. Alvarez-Builla, J. Green chemistry in organic synthesis. Mini Rev. Org. Chem., 2010, 7(1), 44-53.
[2]
Panda, S.S.; Jain, S.C. On water synthesis of spiro-indoles via Schiff bases. Monatsh. Chem., 2012, 143(8), 1187-1194.
[3]
Ramos, N.C.; Echevarria, A.; Valbon, A.; Bortoluzzi, A.J.; Guedes, G.P.; Rodrigues-Santos, C.E. Regioselective synthesis of imines (2-N-amine-3-N-(phenylmethylene)-5-pyridine) in water under microwave irradiation. Cogent Chem., 2016, 2(1), 1207863.
[4]
Simon, M.O.; Li, C.J. Green chemistry oriented organic synthesis in water. Chem. Soc. Rev., 2012, 41(4), 1415-1427.
[5]
Butler, R.N.; Coyne, A.G. Water: Nature’s reaction enforcer-comparative effects for organic synthesis in-water and on-water. Chem. Rev., 2010, 110(10), 6302-6337.
[6]
Jung, Y.; Marcus, R.A. On the theory of organic catalysis on water. J. Am. Chem. Soc., 2007, 129(17), 5492-5502.
[7]
Lubineau, A.; Augé, J. Water as Solvent in Organic Synthesis; Knochel, P., Ed.; Springer: Berlin, Heidelberg, 1999, Vol. 206, pp. 1-39.
[8]
Gu, Y. Multicomponent reactions in unconventional solvents: state of the art. Green Chem., 2012, 14(8), 2091-2128.
[9]
Saggiomo, V.; Lüning, U. On the formation of imines in water-a comparison. Tetrahedron Lett., 2009, 50(32), 4663-4665.
[10]
Kommi, D.N.; Kumar, D.; Chakraborti, A.K. All water chemistry for a concise total synthesis of the novel class anti-anginal drug (RS),(R), and (S)-ranolazine. Green Chem., 2013, 15(3), 756-767.
[11]
Texier-Boullet, F. A simple, convenient and mild synthesis of imines on alumina surface without solvent. Synthesis, 1985, 1985(6/7), 679-681.
[12]
Westheimer, F.H.; Taguchi, K. Catalysis by molecular sieves in the preparation of ketimines and enamines. J. Org. Chem., 1971, 36(11), 1570-1572.
[13]
Tanaka, K.; Toda, F. Solvent-free organic synthesis. Chem. Rev., 2000, 100(3), 1025-1074.
[14]
Varma, R. Solvent-free organic syntheses. using supported reagents and microwave irradiation. Green Chem., 1999, 1(1), 43-55.
[15]
Schmeyers, J.; Toda, F.; Boy, J.; Kaupp, G. Quantitative solid–solid synthesis of azomethines. J. Chem. Soc., Perkin Trans. 2, 1998, 4, 989-994.
[16]
Varma, R.S.; Dahiya, R.; Kumar, S. Clay catalyzed synthesis of imines and enamines under solvent-free conditions using microwave irradiation. Tetrahedron Lett., 1997, 38(12), 2039-2042.
[17]
Tanaka, K.; Shiraishi, R. Clean and efficient condensation reactions of aldehydes and amines in a water suspension medium. Green Chem., 2000, 2(6), 272-273.
[18]
Tanaka, K.; Shiraishi, R.; Toda, F. A new method for stereoselective bromination of stilbene and chalcone in a water suspension medium. J. Chem. Soc., Perkin Trans. 1, 1999, 21, 3069-3070.
[19]
Adams, J.P. Imines, enamines and oximes. J. Chem. Soc., Perkin Trans. 1, 2000, 1(2), 125-139.
[20]
Higuchi, M.; Yamamoto, K. Novel cyclic molecules: Selective synthesis of cyclic phenylazomethines. Org. Lett., 1999, 1(12), 1881-1883.
[21]
David, O.; Meester, W.J.; Bieräugel, H.; Schoemaker, H.E.; Hiemstra, H.; van Maarseveen, J.H. Intramolecular Staudinger Ligation: A Powerful Ring‐Closure Method To Form Medium‐Sized Lactams. Angew. Chem. Int. Ed., 2003, 42(36), 4373-4375.
[22]
Palomo, C.; Aizpurua, J.M.; Ganboa, I.; Oiarbide, M. Asymmetric synthesis of β-lactams through the Staudinger reaction and their use as building blocks of natural and nonnatural products. Curr. Med. Chem., 2004, 11(14), 1837-1872.
[23]
Snell, E.E.; Jenkins, W.T. The mechanism of the transamination reaction. J. Cell. Comp. Physiol., 1959, 54(S1), 161-177.
[24]
Souza, A.O.D.; Galetti, F.; Silva, C.L.; Bicalho, B.; Parma, M.M.; Fonseca, S.F.; Andrade-Neto, M. Antimycobacterial and cytotoxicity activity of synthetic and natural compounds. Quim. Nova, 2007, 30(7), 1563-1566.
[25]
Shi, L.; Ge, H.M.; Tan, S.H.; Li, H.Q.; Song, Y.C.; Zhu, H.L.; Tan, R.X. Synthesis and antimicrobial activities of Schiff bases derived from 5-chloro-salicylaldehyde. Eur. J. Med. Chem., 2007, 42(4), 558-564.
[26]
Serdar, M.; Gümrükcüoğlu, N.; Karaoğlu, Ş.A.; Demirtaş, N. Synthesis of some novel 3,5-diaryl-1,2,4-triazole derivatives and investigation of their antimicrobial activities. Turk. J. Chem., 2007, 31(3), 315-326.
[27]
Rezaei, Z.; Khabnadideh, S.; Pakshir, K.; Hossaini, Z.; Amiri, F.; Assadpour, E. Design, synthesis, and antifungal activity of triazole and benzotriazole derivatives. Eur. J. Med. Chem., 2009, 44(7), 3064-3067.
[28]
Bagihalli, G.B.; Avaji, P.G.; Patil, S.A.; Badami, P.S. Synthesis, spectral characterization, in vitro antibacterial, antifungal and cytotoxic activities of Co (II), Ni (II) and Cu (II) complexes with 1,2 4-triazole Schiff bases. Eur. J. Med. Chem., 2008, 43(12), 2639-2649.
[29]
Balaydın, H.T.; Özil, M.; Şentürk, M. Synthesis and glutathione reductase inhibitory properties of 5‐methyl‐2, 4‐dihydro‐3H‐1,2,4‐triazol‐3‐one’s aryl Schiff base derivatives. Arch. Pharm. (Weinheim), 2018, 1800086.
[30]
El-Sherief, H.A.; Youssif, B.G.; Bukhari, S.N.A.; Abdel-Aziz, M.; Abdel-Rahman, H.M. Novel 1,2,4-triazole derivatives as potential anticancer agents: Design, synthesis, molecular docking and mechanistic studies. Bioorg. Chem., 2018, 76, 314-325.
[31]
Gümüş, M.K.; Gorobets, N.Y.; Sedash, Y.V.; Chebanov, V.A.; Desenko, S.M. A modified Biginelli reaction toward oxygen-bridged tetrahydropyrimidines fused with substituted 1,2,4-triazole ring. Chem. Heterocycl. Compd., 2017, 53(11), 1261-1267.
[33]
Chernyshev, V.M.; Tarasova, E.V.; Chernysheva, A.V.; Taranushich, V.A. Synthesis of 3-pyridyl-substituted 5-amino-1,2,4-triazoles from aminoguanidine and pyridinecarboxylic acids. Russ. J. Appl. Chem., 2011, 84(11), 1890-1896.
[34]
Patil, R.D.; Adimurthy, S. Catalytic methods for imine synthesis. Asian J. Org. Chem., 2013, 2(9), 726-744.