[1]
Torre LA. Global cancer incidence and mortality rates and trends- an update. Cancer Epidemiol Biomarkers Prev 2016; 25(1): 16-27.
[2]
Finn O. Immuno-oncology: Understanding the function and dysfunction of the immune system in cancer. Ann Oncol 2012; 23: 6-9.
[3]
Guo C. Therapeutic cancer vaccines: past, present, and future. Adv Cancer Res 2013; 119: 421-75.
[4]
Dougan M, Dranoff G. Immune therapy for cancer. Annu Rev Immunol 2009; 27: 83-117.
[5]
Sette A, Fikes J. Epitope-based vaccines: an update on epitope identification, vaccine design and delivery. Curr Opin Immunol 2003; 15(4): 461-70.
[6]
Srivastava PK. Therapeutic cancer vaccines. Curr Opin Immunol 2006; 18(2): 201-5.
[7]
Yamada A. Next‐generation peptide vaccines for advanced cancer. Cancer Sci 2013; 104(1): 15-21.
[8]
Nezafat N. A novel multi-epitope peptide vaccine against canceran in silico approach. J Theor Biol 2014; 349: 121-34.
[9]
Negahdaripour M. A novel HPV prophylactic peptide vaccine, designed by immunoinformatics and structural vaccinology approaches. Infect Genet Evol 2017; 54: 402-6.
[10]
Mahmoodi S. Harnessing bioinformatics for designing a novel multiepitope peptide vaccine against breast cancer. Curr Pharm Biotechnol 2016; 17(12): 1100-14.
[11]
Fulda S. Modulation of apoptosis B natural products for cancer therapy. Planta Med 2010; 76(11): 1075-9.
[12]
Suhrbier A. Multi‐epitope DNA vaccines. Immunol Cell Biol 1997; 75(4): 402-8.
[13]
Thor Straten P, Andersen MH. The anti-apoptotic members of the BCl-2 family are attractive tumor-associated antigens. Oncotarget 2010; 1(4): 239.
[14]
Hassan M. Apoptosis and molecular targeting therapy in cancer. BioMed Res Int 2014; 2014: 150845.
[15]
Kelly, R.J. Impacting tumor cell-fate by targeting the inhibitor of apoptosis protein survivin. Mol. Cancer, 2011, 10, 1, 35.
[16]
Huang J. MicroRNA regulation and therapeutic targeting of survivin in cancer. Am J Cancer Res 2015; 5(1): 20-31.
[17]
Soleimanpour E, Babaei E. Survivin as a potential target for response to therapeutics cancer therapy. Asian Pac J Cancer Prev 2015; 16(15): 6187-91.
[18]
Hata AN, Engelman JA, Faber AC. The BCl2 family: Key mediators of the targeted anticancer. Cancer Discov 2015; 5(5): 475-87.
[19]
Mei HF. β-Defensin 2 as an adjuvant promotes anti-melanoma immune responses and inhibits the growth of implanted murine melanoma in vivo. PLoS One 2012; 7(2): 31328.
[20]
Suarez-Carmona M. Defensins: “Simple” antimicrobial peptides or broad-spectrum molecules. Cytokine Growth Factor Rev 2015; 26(3): 361-70.
[21]
Ferris LK. Human beta-defensin 3 induces maturation of human Langerhans cell-like dendritic cells: an antimicrobial peptide that functions as an endogenous adjuvant. J Invest Dermatol 2013; 133(2): 460-8.
[22]
Kumar Pandey R. Designing B‐and T‐cell multi‐epitope based subunit vaccine using immunoinformatics approach to control Zika virus infection. J Cell Biochem 2018; 119(9): 7631-42.
[23]
Rammensee, H.-G.; Bachmann, J.; Stevanovic, S. MHC ligands and peptide motifs. Mol. Biol. Intellig.Unit, Ed. Springer-Verlag Berlin Heidelberg, 2013, pp. VIII, 462.
[24]
Reche PA, Glutting JP, Reinherz EL. Prediction Prediction of MHC class I binding peptides using profile motifs. Hum Immunol 2002; 63(9): 701-9.
[25]
Singh H, Raghava G. ProPred1: prediction of promiscuous MHC class-I binding sites. Bioinformatics 2003; 19(8): 1009-14.
[26]
Zhang Q. Immune epitope database analysis resource (IEDB-AR). Nucleic Acids Res 2008; 36(2): 513-8.
[27]
Bhasin M, Raghava G. Prediction of CTL epitopes using QM, SVM and ANN techniques. Vaccine 2004; 22(23): 3195-204.
[28]
Larsen JE, Lund O, Nielsen M. Improved method for predicting linear B-cell epitopes. Immunome Res 2006; 2(1): 2.
[29]
EL‐Manzalawy, Y.; Dobbs, D.; Honavar, V. Predicting linear B‐cell epitopes using string kernels. Aging Soc 2008; 21(4): 243-55.
[30]
Magnan CN. High-throughput prediction of protein antigenicity using protein microarray data. Bioinformatics 2010; 26(23): 2936-43.
[31]
Doytchinova IA, Flower DR. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics 2007; 8(1): 4.
[32]
Wang J, Zhang D, Li J. PREAL: prediction of allergenic protein by maximum Relevance Minimum Redundancy (mRMR) feature selection. BMC Syst Biol 2013; 7(5): 9.
[33]
Ivanciuc O, Schein CH, Braun W. SDAP: database and computational tools for allergenic proteins. Nucleic Acids Res 2003; 31(1): 359-62.
[34]
Xu X, Zhao P, Chen S-J. Vfold: A web server for RNA structure and folding thermodynamics prediction. PLoS One 2014; 9(9): 107504.
[35]
Gasteiger, E. Protein identification and analysis tools on the ExPASy server. In: John, M.W (Ed): The Proteomics Proto., Handbook, Humana Press. 2005, pp. 571-607.
[36]
Yu CS. Prediction of protein subcellular localization. Proteins 2006; 64(3): 643-51.
[37]
Chou K-C, Shen H-B. Predicting a top-down strategy to augment the power for plant protein subcellular localization. PLoS One 2010; 5(6): 11335.
[38]
Briesemeister S, Rahnenführer J, Kohlbacher O. Going from where to why interpretable prediction of protein subcellular localization. Bioinformatics 2010; 26(9): 1232-8.
[39]
Pierleoni A. BaCelLo: a balanced subcellular localization predictor. Bioinformatics 2006; 22(14): 408-16.
[40]
Almagro-Armenteros JJ, Sønderby CK, Sønderby SK, Nielsen H, Winther O. DeepLoc: Prediction of protein subcellular localization using deep learning. Bioinformatics 2017; 33(21): 3387-95.
[41]
Blom N. Prediction of post‐translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 2004; 4(6): 1633-49.
[42]
Gupta R, Jung E, Brunak S. Predicition of N-glycosylation sites in human proteins. Center for Biological Sequence Analysis at Technical University of Denmark DTU 2004.
[43]
Monigatti F. The Sulfinator: predicting tyrosine sulfation sites in protein sequences. Bioinformatics 2002; 5(18): 769-70.
[44]
Ghaffari-Nazari H. Improving multi-epitope long peptide vaccine potency by using a strategy that enhances CD4+ T help in BALB/c mice. PLoS One 2015; 10(1): e0142563.
[45]
Khalili S. In silico analysis Wilms’ tumor protein to designing a novel multi-epitope DNA vaccine against cancer. J Theor Biol 2015; 379: 66-78.
[46]
Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature 2011; 480: 7378-480.
[47]
Yang B. DNA vaccine for cancer immunotherapy. Hum Vaccin Immunother 2014; 10(11): 3153-64.
[48]
Gilboa E. The promise of cancer vaccines. Nat Rev Cancer 2004; 4(5): 401.
[49]
Rice J, Ottensmeier CH, Stevenson FK. DNA vaccines: precision tools for activating effective immunity against cancer. Nat Rev Cancer 2008; 8(2): 108.
[50]
Cho H-I, Celis E. Design of immunogenic and effective multi-epitope DNA vaccines for melanoma. Cancer Immunol Immunother 2012; 61(3): 343-51.
[51]
Fioretti D, Iurescia S, Fazio VM, Rinaldi M. DNA vaccines: developing new strategies against cancer. J Biomed Biotechnol 2010; 1-16.
[52]
Garg H. Survivin: A unique target for tumor therapy. Cancer Cell Int 2016; 16(1): 49.
[53]
Yip K, Reed J. BCl2 family proteins and cancer. Oncogene 2008; 27(50): 6398.
[54]
Mobahat M, Narendran A, Riabowol K. Survivin as a preferential target for cancer therapy. Int J Mol Med Sci 2014; 15: 22494-516.
[55]
Oblak A, Jerala R. Toll-like receptor 4 activation in cancer progression and therapy. Clin Dev Immunol 2011; 2011: 609579.
[57]
Khong H, Overwijk WW. Adjuvants for peptide-based cancer vaccines. J Immunother Cancer 2016; 4(1): 56.
[58]
Takamatsu N. Production of enkephalin in tobacco protoplasts using tobacco mosaic virus RNA vector. FEBS Lett 1990; 269(1): 73-6.
[59]
Livingston B. A rational strategy to design multiepitope immunogens based on multiple Th lymphocyte epitopes. J Immunol 2002; 168(11): 5499-506.
[60]
Leitner WW. Immune responses induced by intramuscular or gene gun injection of protective deoxyribonucleic acid vaccines that express the circumsporozoite protein from plasmodium berghei malaria parasites. J Immunol 1997; 159(12): 6112-9.
[61]
Kensil CR, Patel U, Lennick M, Marciani D. Separation and characterization of saponins with adjuvant activity from Quillaja saponaria Molina cortex. J Immunol 1991; 146(2): 431-7.
[62]
Olsen JV, Blagoev B, Gnad F, et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 2006; 127(3): 635-48.
[63]
Dougan D, Micevski D, Truscot K. The N-end rule pathway: from recognition by N-recognins, to destruction by AAA+ proteases. Biochim Biophys Acta Bioenerg 2012; 1823(1): 83-91.