[1]
Thangavelu, K.; Chong, Q.Y.; Low, B.C.; Sivaraman, J. Structural basis for the active site inhibition mechanism of human kidney-type glutaminase (KGA). Sci. Rep., 2014, 4, 3837.
[2]
Ericson, J.W.; Cerione, R.A. Glutaminase: a hot spot for regulation of cancer cell metabolism. Oncotarget, 2010, 1, 734-740.
[3]
Rajagopalan, K.N.; DeBerardinis, R.J. Role of glutamine in cancer: therapeutic and imaging implications. . J. Nucl. Med., 2011, 52, 1005-1008.
[4]
Roberts, J.; McGregor, W.G. Inhibition of mouse retroviral disease by bioactive glutaminase-asparaginase. J. Gen. Virol., 1991, 72, 299-305.
[5]
Pallem, C.; Manipati, S.; Somalanka, S.R. Process optimization of L-glutaminase production by Trichodermakoningii under Solid State Fermentation (SSF). Int. J. Appl. Biol. Pharm, 2010, 1, 168-1174.
[6]
Gomes, J.; Steiner, W. The biocatalytic potential of extremophiles and extremozymes. Food Technol. Biotechnol., 2004, 42, 223-235.
[7]
Niehaus, F.; Bertoldo, C.; Kahler, M.; Antranikian, G. Extremophiles as a source of novel enzymes for industrial application. Appl. Microbiol. Biotechnol., 1999, 51, 711-729.
[8]
Dokholyana, N.V.; Mirnya, L.A.; Shakhnovich, E.I. Understanding conserved amino acids in proteins. Physica A, 2002, 314, 600-606.
[9]
Devi, S.; Sharma, N.; Savitri.; Bhalla, T.C. Comparative analysis of amino acid sequence from mesophiles and thermophiles in respective of carbo-nitrogen hydrolase family. 3 Biotech., 2013, 3, 491- 507.
[10]
Berg, J.M.; Tymoczko, J.L.; Stryer, L. Biochemistry, 5th ed; W.H. Freeman: New York, USA, 2002.
[11]
Jin, Q.; Yuan, Z.; Xu, J.; Wang, Y.; Shen, Y.; Lu, W.; Wang, J.; Liu, H.; Yang, J.; Yang, F.; Zhang, X.; Zhang, J.; Yang, G.; Wu, H. Qu. D.; Dong, J.; Sun, L.; Xue, Y.; Zhao, A.; Gao, Y.; Zhu, J.; Kan, B.; Ding, K.; Chen, S.; Cheng, H.; Yao, Z.; He, B.; Chen, R.; Ma, D.; Qiang, B.; Wen, Y.; Hou, Y.; Yu, J. Genome sequence of Shigella flexneri 2a: insights into pathogenicity through comparison with genomes of Escherichia coli K12 and O 157. Nucleic Acids Res., 2002, 30, 4432-4441.
[12]
Parkhill, J.; Wren, B.W.; Thomson, N.R.; Titball, R.W.; Holden, M.T.; Prentice, M.B.; Sebaihia, M.; James, K.D.; Churcher, C.; Mungall, K.L.; Baker, S.; Basham, D.; Bentley, S.D.; Brooks, K.; Cerdeño-Tárraga, A.M.; Chillingworth, T.; Cronin, A.; Davies, R.M.; Davis, P.; Dougan, G.; Feltwell, T.; Hamlin, N.; Holroyd, S.; Jagels, K.; Karlyshev, A.V.; Leather, S.; Moule, S.; Oyston, P.C.; Quail, M.; Rutherford, K.; Simmonds, M.; Skelton, J.; Stevens, K.; Whitehead, S.; Barrell, B.G. Genome sequence of Yersinia pestis, the causative agent of plague. Nature, 2001, 413, 523-537.
[13]
Wood, D.W.; Setubal, J.C.; Kaul, R.; Monks, D.E.; Kitajima, J.P.; Okura, V.K.; Zhou, Y.; Chen, L.; Wood, G.E.; Almeida, N.F.; Woo, L.; Chen, Y.; Paulsen, I.T.; Eisen, J.A.; Karp, P.D.; Bovee, D.; Chapman, P.; Clendenning, J.; Deatherage, G.; Gillet, W.; Grant, C.; Kutyavin, T.; Levy, R.; Li, M.J.; McClelland, E.; Palmieri, A.; Raymond, C.; Rouse, G.; Saenphimmachak, C.; Wu, Z.; Romero, P.; Gordon, D.; Zhang, S.; Yoo, H.; Tao, Y.; Biddle, P.; Jung, M.; Krespan, W.; Perry, M.; Gordon-Kamm, B.; Liao, L.; Kim, S.; Hendrick, C.; Zhao, Z.Y.; Dolan, M.; Chumley, F.; Tingey, S.V.; Tomb, J.F.; Gordon, M.P.; Olson, M.V.; Nester, E.W. The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science, 2001, 294, 2317-2323.
[14]
Sebaihia, M.; Peck, M.W.; Minton, N.P.; Thomson, N.R.; Holden, M.T.; Mitchell, W.J.; Carter, A.T.; Bentley, S.D.; Mason, D.R.; Crossman, L.; Paul, C.J.; Ivens, A.; Wells-Bennik, M.H.; Davis, I.J.; Cerdeño-Tárraga, A.M.; Churcher, C.; Quail, M.A.; Chillingworth, T.; Feltwell, T.; Fraser, A.; Goodhead, I.; Hance, Z.; Jagels, K.; Larke, N.; Maddison, M.; Moule, S.; Mungall, K.; Norbertczak, H.; Rabbinowitsch, E.; Sanders, M.; Simmonds, M.; White, B.; Whithead, S.; Parkhill, J. Genome sequence of a proteolytic (Group I) Clostridium botulinum strain Hall A and comparative analysis of the clostridial genomes. Genome Res., 2007, 17, 1082-1092.
[15]
Omura, S.; Ikeda, H.; Ishikawa, J.; Hanamoto, A.; Takahashi, C.; Shinose, M.; Takahashi, Y.; Horikawa, H.; Nakazawa, H.; Osonoe, T.; Kikuchi, H.; Shiba, T.; Sakaki, Y.; Hattori, M. Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. . Proc. Natl. Acad. Sci. USA, 2001, 98, 12215-12220.
[16]
Manzoor, S.; Bongcam, R.; Schnürer, E.A.; Müller, B. First genome sequence of a syntrophic acetate-oxidizing bacterium, Tepidanaerobacter acetatoxydans strain Re1. Genome Announc., 2013, 1, 00213-212.
[17]
Stover, C.K.; Pham, X.Q.; Erwin, A.L.; Mizoguchi, S.D.; Warrener, P.; Hickey, M.J.; Brinkman, F.S.; Hufnagle, W.O.; Kowalik, D.J.; Lagrou, M.; Garber, R.L.; Goltry, L.; Tolentino, E.; Westbrock-Wadman, S.; Yuan, Y.; Brody, L.L.; Coulte, S.N.; Folger, K.R.; Kas, A.; Larbig, K.; Lim, R.; Smith, K.; Spencer, D.; Wong, G.K.; Wu, Z.; Paulsen, I.T.; Reizer, J.; Saier, M.H.; Hancock, R.E.; Lory, S.; Olson, M.V. Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature, 2000, 406, 6799959-6799964.
[18]
Brown, G.; Singer, A.; Proudfoot, M.; Skarina, T.; Kim, Y.; Chang, C.; Dementieva, I.; Kuznetsova, E.; Gonzalez, C.F.; Joachimiak, A.; Savchenko, A.; Yakunin, A.F. Functional and structural characterization of four glutaminases from Escherichia coli and Bacillus subtilis. Biochemistry, 2008, 47, 5724-5735.
[19]
Takami, H.; Takaki, Y.; Chee, G.J.; Nishi, S.; Shimamura, S.; Suzuki, H.; Matsui, S.; Uchiyama, I. Thermoadaptation trait revealed by the genome sequence of thermophilic Geobacillus kaustophilu. Nucleic Acids Res., 2004, 32, 6292-6303.
[20]
Nakamura, Y.; Kaneko, T.; Sato, S.; Ikeuchi, M.; Katoh, H.; Sasamoto, S.; Watanabe, A.; Iriguchi, M.; Kawashima, K.; Kimura, T.; Kishida, Y.; Kiyokawa, C.; Kohara, M.; Matsumoto, M.; Matsuno, A.; Nakazaki, N.; Shimpo, S.; Sugimoto, M.; Takeuchi, C.; Yamada, M.; Tabata, S. Complete genome structure of the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1. DNA Res., 2002, 9, 123-130.
[21]
Bishnoi, U.; Polson, S.W.; Sherrier, D.J.; Bais, H.P. Draft genome sequence of a natural root isolate, Bacillus subtilis UD1022, a potential plant growth-promoting biocontrol agent. Genome Announc., 2015, 3, e00696-e00715.
[22]
Stolyar, S.; Liu, Z.; Thiel, V.; Tomsho, L.P.; Pinel, N.; Nelson, W.C.; Lindemann, S.R.; Romine, M.F.; Haruta, S.; Schuster, S.C.; Bryant, D.A.; Fredricksona, J.K. Genome sequence of the thermophilic cyanobacterium Thermosynechococcus sp. strain NK55a. Genome Announc., 2014, 2, e01060-e01713.
[23]
Vishnivetskaya, T.A.; Lucas, S.; Copeland, A.; Lapidus, A.; del Rio, G.T.; Dalin, E.; Tice, H.; Bruce, D.C.; Goodwin, L.A.; Pitluck, S.; Saunders, E.; Brettin, T.; Detter, C.; Han, C.; Larimer, F.; Land, M.L.; Hauser, L.J.; Kyrpides, N.C.; Ovchinnikova, G.; Kathariou, S.; Ramaley, R.F.; Rodrigues, D.F.; Hendrix, C.; Richardson, P.; Tiedje, J.M. Complete genome sequence of the thermophilic bacterium Exiguobacterium sp. AT1b. J. Bacteriol., 2011, 193, 2880-2891.
[24]
Bradbury, M.; Greenfield, P.; Midgley, D.; Li, D.; Tran-Dinh, N.; Brown, J. Draft genome sequence of Clostridium sporogenes PA 3679, the common nontoxigenic surrogate for proteolytic Clostridium botulinum. J. Bacteriol., 2012, 194, 1631-1632.
[25]
Göker, M.; Saunders, E.; Lapidus, A.; Nolan, M.; Lucas, S.; Hammon, N.; Deshpande, S.; Cheng, J.F.; Han, C.; Tapia, R.; Goodwin, L.A.; Pitluck, S.; Liolios, K.; Mavromatis, K.; Pagani, I.; Ivanova, N.; Mikhailova, N.; Pati, A.; Chen, A.; Palaniappan, K.; Land, M.; Chang, Y.J.; Jeffries, C.D.; Brambilla, E.M.; Rohde, M.; Spring, S.; Detter, J.C.; Woyke, T.; Bristow, J.; Eisen, J.A.; Markowitz, V.; Hugenholtz, P.; Kyrpides, N.C.; Klenk, H.P. Genome sequence of the moderately thermophilic, amino- acid degrading and sulphur-reducing bacterium Thermovirga lienii type strain (Cas60314-T). Stand. Genomic Sci., 2012, 6, 230-239.
[26]
Ohnishi, Y.; Ishikawa, J.; Hara, H.; Suzuki, H.; Ikenoya, M.; Ikeda, H.; Yamashita, A.; Hattori, M.; Horinouchi, S. Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. J. Bacteriol., 2008, 190, 4050-4060.
[27]
Saum, S.H.; Pfeiffer, F.; Palm, P.; Rampp, M.; Schuster, S.C.; Müller, V.; Oesterhelt, D. Chloride and organic osmolytes: a hybrid strategy to cope with elevated salinities by the moderately halophilic, chloride- dependent bacterium Halobacillus halophilus. Environ. Microbiol., 2013, 15, 1619-1633.
[29]
Ivanova, N.; Sikorski, J.; Chertkov, O.; Nolan, M.; Lucas, S.; Hammon, N.; Deshpande, S.; Cheng, J.F.; Tapia, R.; Han, C.; Goodwin, L.; Pitluck, S.; Huntemann, M.; Liolios, K.; Pagani, I.; Mavromatis, K.; Ovchinikova, G.; Pati, A.; Chen, A.; Palaniappan, K.; Land, M.; Hauser, L.; Brambilla, E.M.; Kannan, K.P.; Rohde, M.; Tindall, B.J.; Göker, M.; Detter, J.C.; Woyke, T.; Bristow, J.; Eisen, J.A.; Markowitz, V.; Hugenholtz, P.; Kyrpides, N.C.; Klenk, H.P.; Lapidus, A. Complete genome sequence of the extremely halophilic Halanaerobium praevalens type strain (GSL). Stand. Genomic Sci., 2011, 4, 312-321.
[30]
Zhao, B.; Mesbah, N.M.; Dalin, E.; Goodwin, L.; Nolan, M.; Pitluck, S.; Chertkov, O.; Brettin, T.S.; Han, J.; Larimer, F.W.; Land, M.L.; Hauser, L.; Kyrpides, N.; Wiegel, J. Complete genome sequence of the anaerobic, halophilic alkalithermophile Natranaerobius thermophilus JW/NM-WN-LF. J. Bacteriol., 2011, 193, 4023-4024.
[31]
Joseph, T.C.; Baby, A.; Reghunathan, D.; Varghese, A.M.; Murugadas, V.; Lalitha, K.V. Draft genome sequence of the halophilic and highly halotolerant Gamma proteobacteria strain MFB021. Genome Announc., 2014, 2, e01156-e14.
[32]
Papke, R.T.; de la Haba, R.R.; Infante-Domínguez, C.; Pérez, D.; Sánchez-Porro, C.; Lapierre, P.; Ventosa, A. Draft genome sequence of the moderately halophilic bacterium Marinobacter lipolyticus strain SM19. Genome Announc., 2013, 1(4), e00379-e00413.
[33]
Bharadwaj, S.V.V.; Shrivastav, A.; Dubey, S.; Ghosh, T.; Paliwal, C.; Maurya, R.; Mishra, S. Draft genome sequence of halomonas hydrothermalis MTCC 5445, isolated from the West coast of India. Genome Announc., 2015, 3, e01419-e14.
[34]
Methé, B.A.; Nelson, K.E.; Deming, J.W.; Momen, B.; Melamud, E.; Zhang, X.; Moult, J.; Madupu, R.; Nelson, W.C.; Dodson, R.J.; Brinkac, L.M.; Daugherty, S.C.; Durkin, A.S.; DeBoy, R.T.; Kolonay, J.F.; Sullivan, S.A.; Zhou, L.; Davidsen, T.M.; Wu, M.; Huston, A.L.; Lewis, M.; Weaver, B.; Weidman, J.F.; Khouri, H.; Utterback, T.R.; Feldblyum, T.V.; Fraser, C.M. The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc. Natl. Acad. Sci. USA, 2005, 102, 10913-10918.
[35]
Aono, E.; Baba, T.; Ara, T.; Nishi, T.; Nakamichi, T.; Inamoto, E.; Toyonaga, H.; Hasegawa, M.; Takai, Y.; Okumura, Y.; Baba, M.; Tomita, M.; Kato, C.; Oshima, T.; Nakasone, K.; Mori, H. Complete genome sequence and comparative analysis of Shewanella violacea, a psychrophilic and piezophilic bacterium from deep sea floor sediments. Mol. Biosyst., 2010, 6, 1216-1226.
[36]
Feng, S.; Powell, S.M.; Wilson, R.; Bowman, J.P. Extensive gene acquisition in the extremely psychrophilic bacterial species Psychroflexus torquis and the link to sea-ice ecosystem specialism. Genome Biol. Evol., 2014, 6, 133-148.
[37]
Truong, L.V.; Tuyen, H.; Helmke, E.; Binh, L.T.; Schweder, T. Cloning of two pectate lyase genes from the marine antarctic bacterium Pseudoalteromonas haloplanktis strain ANT/505 and characterization of the enzymes. Extremophiles, 2001, 5, 35-44.
[38]
Pandiyan, A.; Ray, M.K. Draft genome sequence of the Antarctic psychrophilic bacterium Pseudomonas syringae strain Lz4W. Genome Announc., 2013, 1, e00377-e13.
[39]
Margolles, A.; Gueimonde, M.; Sánchez, B. Genome sequence of the Antarctic psychrophile bacterium Planococcus antarcticus DSM 14505. J. Bacteriol., 2012, 194, 16, 4465.
[40]
Pearson, M.D.; Noller, H.F. The draft genome of Planococcus donghaensis MPA1U2 reveals nonsporulation pathways controlled by a conserved Spo0A regulon. J. Bacteriol., 2011, 193(21), 6106
[41]
Feng, S.; Powell, S.M.; Wilson, R.; Bowman J.P. The complete sequence of Psychroflexus torquis an extreme psychrophile from sea-ice that is stimulated by light. Uniprot, 2018, Feb 27.
[42]
Sievers, F.; Wilm, A.; Dineen, D.G.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; Thompson, J.D.; Higgins, D.G. Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Mol. Syst. Biol., 2011, 7, 539.
[43]
Felsenstein, J. PHYLIP©-Phylogeny inference package (Version 3.2). Cladistics, 1989, 5, 164-166.
[44]
Kyte, J.; Doolittle, R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol., 1982, 157, 105-132.
[45]
Bjellqvist, B.; Hughes, G.J.; Pasquali, C.; Paquet, N.; Ravier, F.; Sanchez, J.C. The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences. Electrophoresis, 1993, 14, 1023-1031.
[46]
Gill, S.C.; Hippel, P.H.V. Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem., 1989, 182, 319-326.
[47]
Guruprasad, K.; Reddy, B.V.B.; Pandit, M.W. Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng., 1990, 4, 155-161.
[48]
Woese, C.R. Bacterial evolution. Microbiol. Rev., 1987, 51, 221-271.
[49]
Rokas, A.; Williams, B.L.; King, N.; Carroll, S.B. Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature, 2003, 425, 798-804.
[50]
Lehti, T.A.; Bauchart, P.; Kukkonen, M.; Dobrindt, U.; Korhonen, T.K.; Westerlund-Wikström, B. Phylogenetic group-associated differences in regulation of the common colonization factor Mat fimbria in Escherichia coli. Mol. Microbiol., 2013, 87, 1200-1222.
[51]
Oshima, K.; Ueda, K.; Beppu, T.; Nishida, H. Unique Evolution of Symbiobacterium thermophilum suggested from gene content and orthologous protein sequence comparisons. Int. J. Evol. Biol., 2011, 2011, 376-381.
[52]
Sabu, A.; Chandrasekaran, M.; Pandey, A. Biopotential of microbial glutaminases. Chem. Today, 2000, 18, 21-25.
[53]
Gromiha, M.M.; Suresh, M.X. Discrimination of mesophilic and thermophilic proteins using machine learning algorithms. Proteins, 2008, 20, 1274-1279.
[54]
Zeldovich, K.B.; Berezovsky, I.N.; Shakhnovich, E.I. Protein and DNA sequence determinants of thermophilic adaptation. PLOS Comput. Biol., 2007, 3, e5.
[55]
Perutz, M.F.; Raidt, H. Stereochemical basis of heat stability in bacterial ferredoxins and in haemoglobin A2. Nature, 1975, 255, 256-259.
[56]
Kumar, S.; Tsai, C.J.; Nussinov, R. Factors enhancing protein thermostability. Protein Eng., 2000, 13, 179-191.
[57]
Xiao, L.; Honig, B. Electrostatic contributions to the stability of hyperthermophilic proteins. J. Mol. Biol., 1999, 289, 1435-1444.
[58]
Atsushi, I. Thermostability and aliphatic index of globular proteins. J. Biochem., 1980, 88, 1895-1898.
[59]
Sharma, N.; Kushwaha, R.; Sodhi, J.S.; Bhalla, T.C. In silico analysis of amino acid sequences in relation to specificity and physiochemical properties of some microbial nitrilases. J. Proteomics Bioinform., 2009, 2, 185-192.
[60]
Requejo, R.; Hurd, T.R.; Costa, N.J.; Murphy, M.P. Cysteine residues exposed on protein surfaces are the dominant intramitochondrial thiol and may protect against oxidative damage. FEBS J., 2007, 277, 1465-1480.
[61]
Yan, B.X.; Sun, Y.Q. Glycine residues provide flexibility for enzyme active sites. J. Biol. Chem., 1997, 272, 3190-3194.
[62]
Smole, Z.; Nikolic, N.; Supek, F.; Šmuc, T.; Sbalzarini, I.F.; Krisko, A. Proteome sequence features carry signatures of the environmental niche of prokaryotes. BMC Evol. Biol., 2011, 11, 1-10.
[63]
Madigan, M.T.; Oren, A. Thermophilic and halophilic extremophiles. Curr. Opin. Microbiol., 1999, 2, 265-269.
[64]
Metpally, R.P.R.; Reddy, B.V.B. Comparative proteome analysis of psychrophilic versus mesophilic bacterial species: insights into the molecular basis of cold adaptation of proteins. BMC Genomics, 2009, 10, 11.
[65]
Kumar, V.; Sharma, N.; Bhalla, T.C. In silico analysis of β-galactosidases primary and secondary structure in relation to temperature adaptation. J. Amino Acids, 2014, 2014, 475839.