[1]
Kang, K.; Meng, Y.S.; Bréger, J.; Grey, C.P.; Ceder, G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science, 2006, 311, 977-980.
[2]
Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater., 2008, 7, 845-854.
[3]
Kötz, R.; Carlen, M. Principles and applications of electrochemical capacitors. Electrochim. Acta, 2000, 45, 2483-2498.
[4]
Bhujun, B.; Tan, M.T.; Shanmugam, A.S. Study of mixed ternary transition metal ferrites as potential electrodes for supercapacitor applications. Results Phys., 2017, 7, 345-353.
[5]
Hosono, E.; Kudo, T.; Honma, I.; Matsuda, H.; Zhou, H. Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density. Nano Lett., 2009, 9, 1045-1051.
[6]
Jansen, A.N.; Kahaian, A.J.; Kepler, K.D.; Nelson, P.A.; Amine, K.; Dees, D.W.; Vissers, D.R.; Thackeray, M.M. Development of a high-power lithium-ion battery. J. Power Sources, 1999, 81, 902-905.
[7]
Cui, L.F.; Yang, Y.; Hsu, C.M.; Cui, Y. Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries. Nano Lett., 2009, 9, 3370-3374.
[8]
Li, Y.; Tan, B.; Wu, Y. Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett., 2008, 8, 265-270.
[9]
Wu, Z.S.; Ren, W.; Wen, L.; Gao, L.; Zhao, J.; Chen, Z.; Zhou, G.; Li, F.; Cheng, H.M. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano, 2010, 4, 3187-3194.
[10]
Yang, Y.; Zheng, G.; Misra, S.; Nelson, J.; Toney, M.F.; Cui, Y. High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries. J. Am. Chem. Soc., 2012, 134, 15387-15394.
[11]
Wang, X.; Hou, X.; Mao, J.; Gao, Y.; Ru, Q.; Hu, S.; Lam, K-h. Synthesis of intertwined Zn0.5Mn0.5Fe2O4@CNT composites as a superior anode material for Li-ion batteries. J. Mater. Sci., 2016, 51, 5843-5856.
[12]
Jang, B.; Park, M.; Chae, O.B.; Park, S.; Kim, Y.; Oh, S.M.; Piao, Y.; Hyeon, T. Direct synthesis of self-assembled ferrite/carbon hybrid nanosheets for high performance lithium-ion battery anodes. J. Am. Chem. Soc., 2012, 134, 15010-15015.
[13]
Zhao, H.; Zheng, Z.; Wong, K.W.; Wang, S.; Huang, B.; Li, D. Fabrication and electrochemical performance of nickel ferrite nanoparticles as anode material in lithium ion batteries. Electrochem. Commun., 2007, 9, 2606-2610.
[14]
Chu, Y.Q.; Fu, Z.W.; Qin, Q.Z. Cobalt ferrite thin films as anode material for lithium ion batteries. Electrochim. Acta, 2004, 49, 4915-4921.
[15]
Jin, Y.H.; Seo, S.D.; Shim, H.W.; Park, K.S.; Kim, D.W. Synthesis of core/shell spinel ferrite/carbon nanoparticles with enhanced cycling stability for lithium ion battery anodes. Nanotechnology, 2012, 23, 125402.
[16]
He, C.; Wu, S.; Zhao, N.; Shi, C.; Liu, E.; Li, J. Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material. ACS Nano, 2013, 7, 4459-4469.
[17]
Zhang, Z.; Li, W.; Zou, R.; Kang, W.; San Chui, Y.; Yuen, M.F.; Lee, C.S.; Zhang, W. Layer-stacked cobalt ferrite (CoFe2O4) mesoporous platelets for high-performance lithium ion battery anodes. J. Mater. Chem. A, 2015, 3, 6990-6997.
[18]
Fu, Y.; Wan, Y.; Xia, H.; Wang, X. Nickel ferrite–graphene heteroarchitectures: Toward high-performance anode materials for lithium-ion batteries. J. Power Sources, 2012, 213, 338-342.
[19]
Wang, Y.; Cao, G. Developments in nanostructured cathode materials for high‐performance lithium‐ion batteries. Adv. Mater., 2008, 20, 2251-2269.
[20]
Li, Z.H.; Zhao, T.P.; Zhan, X.Y.; Gao, D.S.; Xiao, Q.Z.; Lei, G.T. High capacity three-dimensional ordered macroporous CoFe2O4 as anode material for lithium ion batteries. Electrochim. Acta, 2010, 55, 4594-4598.
[21]
Ding, Y.; Yang, Y.; Shao, H. High capacity ZnFe2O4 anode material for lithium ion batteries. Electrochim. Acta, 2011, 56, 9433-9438.
[22]
Zhang, W.; Quan, B.; Lee, C.; Park, S.K.; Li, X.; Choi, E.; Diao, G.; Piao, Y. One-step facile solvothermal synthesis of copper ferrite-graphene composite as a high-performance supercapacitor material. ACS Appl. Mater. Interfaces, 2015, 7, 2404-2414.
[23]
Ding, Y.; Yang, Y.; Shao, H. Synthesis and characterization of nanostructured CuFe2O4 anode material for lithium ion battery. Solid State Ion., 2012, 217, 27-33.
[24]
Fu, Y.; Chen, Q.; He, M.; Wan, Y.; Sun, X.; Xia, H.; Wang, X. Copper ferrite-graphene hybrid: A multifunctional heteroarchi-tecture for photocatalysis and energy storage. Ind. Eng. Chem. Res., 2012, 51, 11700-11709.
[25]
Bhattacharya, P.; Dhibar, S.; Hatui, G.; Mandal, A.; Das, T.; Das, C.K. Graphene decorated with hexagonal shaped M-type ferrite and polyaniline wrapper: A potential candidate for electromagnetic wave absorbing and energy storage device applications. RSC Adv, 2014, 4, 17039-17053.
[26]
Rasheed, A.; Mahmood, M.; Ali, U.; Shahid, M.; Shakir, I.; Haider, S.; Khan, M.A.; Farooq, M. ZrxCo0.8−xNi0.2−xFe2O4-graphene nanocomposite for enhanced structural, dielectric and visible light photocatalytic applications. Ceram. Int., 2016, 42, 15747-15755.
[27]
Shakir, I.; Sarfraz, M.; Ali, Z.; Aboud, M.F.; Agboola, P.O. Magnetically separable and recyclable graphene-MgFe2O4 nanocomposites for enhanced photocatalytic applications. J. Alloy Compd., 2016, 660, 450-455.
[28]
Pramanik, N.; De, J.; Basu, R.K.; Rath, T.; Kundu, P.P. Fabrication of magnetite nanoparticle doped reduced graphene oxide grafted polyhydroxyalkanoate nanocomposites for tissue engineering application. RSC Adv, 2016, 6, 46116-46133.
[29]
Wang, L.; Zhuo, L.; Cheng, H.; Zhang, C.; Zhao, F. Porous carbon nanotubes decorated with nanosized cobalt ferrite as anode materials for high-performance lithium-ion batteries. J. Power Sources, 2015, 283, 289-299.
[30]
Varzi, A.; Bresser, D.; von Zamory, J.; Müller, F.; Passerini, S. ZnFe2O4‐C/LiFePO4‐CNT: A novel high‐power lithium‐ion battery with excellent cycling performance. Adv. Energy Mater., 2014, 4, 1400054.
[31]
Yang, Y.; Li, J.; Chen, D.; Zhao, J. A facile electrophoretic deposition route to the Fe3O4/CNTs/rGO composite electrode as a binder-free anode for lithium ion battery. ACS Appl. Mater. Interfaces, 2016, 8, 26730-26739.
[32]
Jin, R.; Wang, Q.; Cui, Y.; Zhang, S. MFe2O4 (M= Ni, Co) nanoparticles anchored on amorphous carbon coated multiwalled carbon nanotubes as anode materials for lithium-ion batteries. Carbon, 2017, 123, 448-459.
[33]
Momeni, M.M.; Nazari, Z.; Kazempour, A.; Hakimiyan, M.; Mirhoseini, S.M. Preparation of CuO nanostructures coating on copper as supercapacitor materials. Surf. Eng., 2014, 30, 775-778.
[34]
Momeni, M.M.; Ghayeb, Y.; Menati, M. Fabrication, characterization and photoelectrochemical properties of cuprous oxide-reduced graphene oxide photocatalysts for hydrogen generation. J. Mater. Sci. Mater. Electron., 2018, 29, 4136-4146.
[35]
Momeni, M.M.; Ahadzadeh, I. Fabrication of tungsten decorated titania nanotube arrays as electrode materials for supercapacitor applications. Int. J. Hydrog Energy, 2015, 40, 8769-8777.
[36]
Momeni, M.M.; Ghayeb, Y.; Ezati, F. Fabrication, characterization and photoelectrochemical activity of tungsten-copper co-sensitized TiO2 nanotube composite photoanodes. J. Colloid Interface Sci., 2018, 514, 70-82.
[37]
Momeni, M.M.; Ghayeb, Y. Mozafari1, A.A. Optical and photo catalytic characteristics of Ag2S/TiO2 nanocomposite films prepared by electrochemical anodizing and SILAR approach. J. Mater. Sci. Mater. Electron., 2016, 27, 11201-11210.
[38]
Momeni, M.M. Dye-sensitized solar cell and photocatalytic performance of nanocomposite photocatalyst prepared by electrochemical anodization. Bull. Mater. Sci., 2016, 39, 1389-1395.
[39]
Momeni, M.M.; Ghayeb, Y. Cobalt modified tungsten-titania nanotube composite photoanodes for photoelectrochemical solar water splitting. J. Mater. Sci. Mater. Electron., 2016, 27, 3318-3327.
[40]
Momeni, M.M.; Ghayeb, Y. Fabrication, characterization and photocatalytic properties of Au/TiO2-WO3 nanotubular composite synthesized by photo-assisted deposition and electrochemical anodizing methods. J. Mol. Catal. Chem., 2016, 417, 107-115.
[41]
Momeni, M.M.; Hakimian, M.; Kazempour, A. Preparation and characterisation of manganese-TiO2 nanocomposites for solar water splitting. Surf. Eng., 2016, 32, 514-519.
[42]
(a)Pitkethly, M.J. Nanomaterials-the driving force. Mater. Today, 2004, 7, 20-29.
(b)Naseri, M.G.; Saion, E.B.; Ahangar, H.A.; Shaari, A.H. Fabrication, characterization, and magnetic properties of copper ferrite nanoparticles prepared by a simple, thermal-treatment method. Mater. Res. Bull., 2013, 48, 1439-1446.
[43]
Lv, W.Z.; Liu, B.; Luo, Z.K.; Ren, X.Z.; Zhang, P.X. XRD studies on the nanosized copper ferrite powders synthesized by sonochemical method. J. Alloy Compd., 2008, 465, 261-264.
[44]
Rashad, M.M.; Mohamed, R.M.; Ibrahim, M.A.; Ismail, L.F.M.; Abdel-Aal, E.A. Magnetic and catalytic properties of cubic copper ferrite nanopowders synthesized from secondary resources. Adv. Powder Technol., 2012, 23, 315-323.
[45]
Ponhan, W.; Maensiri, S. Fabrication and magnetic properties of electrospun copper ferrite (CuFe2O4) nanofibers. Solid State Sci., 2009, 11, 479-484.
[46]
Hankare, P.P.; Sanadi, K.R.; Pandav, R.S.; Patil, N.M.; Garadkar, K.M.; Mulla, I.S. Structural, electrical and magnetic properties of cadmium substituted copper ferrite by sol-gel method. J. Alloy Compd., 2012, 540, 290-296.
[47]
Goya, G.F.; Rechenberg, H.R.; Jiang, J.Z. Structural and magnetic properties of ball milled copper ferrite. J. Appl. Phys., 1998, 84, 1101-1108.
[48]
Liu, T.; Wang, L.; Yang, P.; Hu, B. Preparation of nanometer CuFe2O4 by auto-combustion and its catalytic activity on the thermal decomposition of ammonium perchlorate. Mater. Lett., 2008, 62, 4056-4058.
[49]
Deraz, N.M. Size and crystallinity-dependent magnetic properties of copper ferrite nano-particles. J. Alloy Compd., 2010, 501, 317-325.
[50]
Singh, S.; Yadav, B.C.; Prakash, R.; Bajaj, B. Synthesis of nanorods and mixed shaped copper ferrite and their applications as liquefied petroleum gas sensor. Appl. Surf. Sci., 2011, 257, 10763-10770.
[51]
Pandya, P.B.; Joshi, H.H.; Kulkarni, R.G. Magnetic and structural properties of CuFe2O4 prepared by the co-precipitation method. J. Mater. Sci. Lett., 1991, 10, 474-476.
[52]
Tao, S.; Gao, F.; Liu, X.; Sørensen, O.T. Preparation and gas-sensing properties of CuFe2O4 at reduced temperature. Mater. Sci. Eng. B, 2000, 77, 172-176.
[53]
Sultana, S.; Khan, M.Z.; Umar, K. Synthesis and characterization of copper ferrite nanoparticles doped polyaniline. J. Alloys Compd., 2012, 535, 44-49.
[54]
Liu, Y.C.; Fu, Y.P. Magnetic and catalytic properties of copper ferrite nanopowders prepared by a microwave-induced combustion process. Ceram. Int., 2010, 36, 1597-1601.
[55]
Qi, J.Q.; Chen, W.P.; Lu, M.; Wang, Y.; Tian, H.Y.; Li, L.T.; Chan, H.L.W. Fabrication of copper ferrite nanowalls on ceramic surfaces by an electrochemical method. Nanotechnology, 2005, 16, 3097.
[56]
Reddy, M.P.; Madhuri, W.; Reddy, N.R.; Kumar, K.S.; Murthy, V.R.K.; Reddy, R.R. Influence of copper substitution on magnetic and electrical properties of MgCuZn ferrite prepared by microwave sintering method. Mater. Sci. Eng. C, 2010, 30, 1094-1099.
[57]
Gingaşu, D.; Mîndru, I.; Patron, L.; Carp, O.; Matei, D.; Neagoe, C.; Balint, I. Copper ferrite obtained by two “soft chemistry” routes. J. Alloy Compd., 2006, 425, 357-361.
[58]
Zhang, L.; Yu, X.; Hu, H.; Li, Y.; Wu, M.; Wang, Z.; Li, G.; Sun, Z.; Chen, C. Facile synthesis of iron oxides/reduced graphene oxide composites: Application for electromagnetic wave absorption at high temperature. Sci. Rep., 2015, 5, 9298.
[59]
Chen, J.; Yao, B.; Li, C.; Shi, G. An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon, 2013, 64, 225-229.
[60]
Huang, X.; Zhang, J.; Rao, W.; Sang, T.; Song, B.; Wong, C. Tunable electromagnetic properties and enhanced microwave absorption ability of flaky graphite/cobalt zinc ferrite composites. J. Alloys Compd., 2016, 662, 409-414.
[61]
Nethravathi, C.; Rajamathi, M. Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon, 2008, 46, 1994-1998.
[62]
Mishra, S.K.; Tripathi, S.N.; Choudhary, V.; Gupta, B.D. SPR based fibre optic ammonia gas sensor utilizing nanocomposite film of PMMA/reduced graphene oxide prepared by in situ polymerization. Sens. Actuators B Chem., 2014, 199, 190-200.
[63]
Jabbar, A.; Yasin, G.; Khan, W.Q.; Anwar, M.Y.; Korai, R.M.; Nizam, M.N.; Muhyodin, G. Electrochemical deposition of nickel graphene composite coatings: effect of deposition temperature on its surface morphology and corrosion resistance. RSC Adv, 2017, 7, 31100-31109.
[64]
Liu, G.; Wang, L.; Wang, B.; Gao, T.; Wang, D. A reduced graphene oxide modified metallic cobalt composite with superior electrochemical performance for supercapacitors. RSC Adv, 2015, 5, 63553-63560.
[65]
Li, Z.; Kinloch, I.A.; Young, R.J. The role of interlayer adhesion in graphene oxide upon its reinforcement of nanocomposites. Philos. Trans. A Math. Phys. Eng. Sci., 2016, 374, 20150283.
[66]
Urbas, K.; Aleksandrzak, M.; Jedrzejczak, M.; Jedrzejczak, M.; Rakoczy, R.; Chen, X.; Mijowska, E. Chemical and magnetic functionalization of graphene oxide as a route to enhance its biocompatibility. Nanoscale Res. Lett., 2014, 9, 656.
[67]
Lian, P.; Zhu, X.; Liang, S.; Li, Z.; Yang, W.; Wang, H. Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochim. Acta, 2010, 55, 3909-3914.
[68]
Fu, Y.; Wang, X. Magnetically separable ZnFe2O4–graphene catalyst and its high photocatalytic performance under visible light irradiation. Ind. Eng. Chem. Res., 2011, 50, 7210-7218.
[69]
Ameer, S.; Gul, I.H.; Mahmood, N.; Mujahid, M. Semiconductor-to-metallic flipping in a ZnFe2O4–graphene based smart nano-system: Temperature/microwave magneto-dielectric spectroscopy. Mater. Charact., 2015, 99, 254-265.
[70]
Zhang, Q.; Zhu, M.; Zhang, Q.; Li, Y.; Wang, H. Synthesis and characterization of carbon nanotubes decorated with manganese–zinc ferrite nanospheres. Mater. Chem. Phys., 2009, 116, 658-662.
[71]
Soomro, S.A.; Gul, I.H.; Khan, M.Z.; Naseer, H.; Khan, A.N. Dielectric properties evaluation of NiFe2O4/MWCNTs nanohybrid for microwave applications prepared via novel one step synthesis. Ceram. Int., 2017, 43, 4090-4095.
[72]
Koops, C. On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys. Rev., 1951, 83, 121.
[73]
George, M.; Nair, S.S.; Malini, K.A.; Joy, P.A.; Anantharaman, M.R. Finite size effects on the electrical properties of sol–gel synthesized CoFe2O4 powders: Deviation from Maxwell–Wagner theory and evidence of surface polarization effects. J. Phys. D Appl. Phys., 2007, 40, 1593.
[74]
Yu, Z.; Ang, C. Maxwell–Wagner polarization in ceramic composites BaTiO3–(Ni0.3Zn0.7) Fe2.1O4. J. Appl. Phys., 2002, 91, 794-797.
[75]
Van Uitert, L.G. Dielectric properties of and conductivity in ferrites. Proc. IEEE, 1956, 44, 1294-1303.
[76]
Kambale, R.C.; Shaikh, P.A.; Bhosale, C.H.; Rajpure, K.Y.; Kolekar, Y.D. Dielectric properties and complex impedance spectroscopy studies of mixed Ni–Co ferrites. Smart Mater. Struct., 2009, 18, 085014.
[77]
El Ata, A.A.; Attia, S.M.; Meaz, T.M. AC conductivity and dielectric behavior of CoAlxFe2−xO4. Solid State Sci., 2004, 6, 61-69.
[78]
Selvan, R.K.; Kalaiselvi, N.; Augustin, C.O.; Doh, C.H.; Sanjeeviraja, C. CuFe2O4/SnO2 nanocomposites as anodes for Li-ion batteries. J. Power Sources, 2006, 157, 522-527.
[79]
Ilyas, T.; Nasim, F.; Choucair, M.; Ullah, S.; Khan, M.A.; Badshah, A.; Nadeem, M.A. A high performance electrode material for lithium ion batteries derived from a cobalt-based coordination polymer. Int. J. Hydrog Energy, 2016, 41, 17029-17036.
[80]
Kollu, P.; Kumar, P.R.; Santosh, C.; Kim, D.K.; Grace, A.N. A high capacity MnFe2O4/rGO nanocomposite for Li and Na-ion battery applications. RSC Adv, 2015, 5, 63304-63310.