[1]
Quan, Q.; Lin, X.; Zhang, N.; Xu, Y.J. Graphene and its derivatives as versatile templates for materials synthesis and functional applications. Nanoscale, 2017, 9(7), 2398-2416.
[2]
Cheng, C.; Li, S.; Thomas, A.; Kotov, N.A.; Haag, R. Functional graphene nanomaterials based architectures: Biointeractions, fabrications, and emerging biological applications. Chem. Rev., 2017, 117(3), 1826-1914.
[3]
Xu, J.H.; Wang, Y.Z.; Hu, S.S. Nanocomposites of graphene and graphene oxides: Synthesis, molecular functionalization and application in electrochemical sensors and biosensors. A review. Microchim. Acta, 2017, 184(1), 1-44.
[4]
Chen, Y.W.; Su, Y.L.; Hu, S.H.; Chen, S.Y. Functionalized graphene nanocomposites for enhancing photothermal therapy in tumor treatment. Adv. Drug Deliv. Rev., 2016, 105, 190-204.
[5]
Voiry, D.; Yang, J.; Kupferberg, J.; Fullon, R.; Lee, C.; Jeong, H.Y.; Shin, H.S.; Chhowalla, M. High-quality graphene via microwave reduction of solution-exfoliated graphene oxide. Science, 2016, 353(6306), 1413-1416.
[6]
Lee, C.G.; Park, S.; Ruoff, R.S.; Dodabalapur, A. Integration of reduced graphene oxide into organic field-effect transistors as conducting electrodes and as a metal modification layer. Appl. Phys. Lett., 2009, 95(2), 023304.
[7]
Qu, K.G.; Zheng, Y.; Dai, S.; Qiao, S.Z. Graphene oxide-polydopamine derived N, S-codoped carbon nanosheets as superior bifunctional electrocatalysts for oxygen reduction and evolution. Nano Energy, 2016, 19, 373-381.
[8]
Georgakilas, V.; Tiwari, J.N.; Kemp, K.C.; Perman, J.A.; Bourlinos, A.B.; Kim, K.S.; Zboril, R. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem. Rev., 2016, 116(9), 5464-5519.
[9]
Barahuie, F.; Saifullah, B.; Dorniani, D.; Fakurazi, S.; Karthivashan, G.; Hussein, M.Z.; Elfghi, F.M. Graphene oxide as a nanocarrier for controlled release and targeted delivery of an anticancer active agent, chlorogenic acid. Mater. Sci. Eng. C Mater. Biol.
Appl, 2017, 74(Supplement. C), 177-185.
[10]
Dong, J.; Wang, K.Q.; Sun, L.P.; Sun, B.L.; Yang, M.F.; Chen, H.Y.; Wang, Y.; Sun, J.Y.; Dong, L.F. Application of graphene quantum dots for simultaneous fluorescence imaging and tumor-targeted drug delivery. Sens. Actuator B Chem., 2018, 256, 616-623.
[11]
Chen, L.; Zhong, X.Y.; Yi, X.; Huang, M.; Ning, P.; Liu, T.; Ge, C.C.; Chai, Z.F.; Liu, Z.; Yang, K. Radionuclide I-131 labeled reduced graphene oxide for nuclear imaging guided combined radio- and photothermal therapy of cancer. Biomaterials, 2015, 66, 21-28.
[12]
Raffa, V.; Ciofani, G.; Nitodas, S.; Karachalios, T.; D’Alessandro, D.; Masini, M.; Cuschieri, A. Can the properties of carbon nanotubes influence their internalization by living cells? Carbon, 2008, 46(12), 1600-1610.
[13]
Rosen, A.B.; Kelly, D.J.; Schuldt, A.J.T.; Lu, J.; Potapova, I.A.; Doronin, S.V.; Robichaud, K.J.; Robinson, R.B.; Rosen, M.R.; Brink, P.R.; Gaudette, G.R.; Cohen, I.S. Finding fluorescent needles in the cardiac haystack: Tracking human mesenchymal stem cells labeled with quantum dots for quantitative in vivo three-dimensional fluorescence analysis. Stem Cells, 2007, 25(8), 2128-2138.
[14]
Linares, J.; Matesanz, M.C.; Vila, M.; Feito, M.J.; Gonçalves, G.; Vallet-Regí, M.; Marques, P.A.A.P.; Portolés, M.T. Endocytic mechanisms of graphene oxide nanosheets in osteoblasts, hepatocytes and macrophages. ACS Appl. Mater. Interfaces, 2014, 6(16), 13697-13706.
[15]
Chang, Y.L.; Yang, S.T.; Liu, J.H.; Dong, E.; Wang, Y.W.; Cao, A.N.; Liu, Y.F.; Wang, H.F. In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol. Lett., 2011, 200(3), 201-210.
[16]
Park, S.; Kim, H.; Seol, D.; Park, T.; Leem, M.; Ha, H.; An, H.; Kim, H.Y.; Jeong, S.J.; Park, S.; Kim, H.; Kim, Y. Evenly transferred single-layered graphene membrane assisted by strong substrate adhesion. Nanotechnology, 2017, 28(14), 145706.
[17]
Shadjou, N.; Hasanzadeh, M. Graphene and its nanostructure derivatives for use in bone tissue engineering: Recent advances. J. Biomed. Mater. Res. A, 2016, 104(5), 1250-1275.
[18]
Duan, G.X.; Kang, S.G.; Tian, X.; Garate, J.A.; Zhao, L.; Ge, C.C.; Zhou, R.H. Protein corona mitigates the cytotoxicity of graphene oxide by reducing its physical interaction with cell membrane. Nanoscale, 2015, 7(37), 15214-15224.
[19]
Hu, X.; Lu, K.; Mu, L.; Kang, J.; Zhou, Q. Interactions between graphene oxide and plant cells: Regulation of cell morphology, uptake, organelle damage, oxidative effects and metabolic disorders. Carbon, 2014, 80(Supplement. C), 665-676.
[20]
Kempaiah, R.; Salgado, S.; Chung, W.L.; Maheshwari, V. Graphene as membrane for encapsulation of yeast cells: Protective and electrically conducting. Chem. Commun., 2011, 47(41), 11480-11482.
[21]
Yang, S.H.; Lee, T.; Seo, E.; Ko, E.H.; Choi, I.S.; Kim, B-S. Interfacing living yeast cells with graphene oxide nanosheaths. Macromol. Biosci., 2012, 12(1), 61-66.
[22]
Valentini, L.; Bittolo Bon, S.; Signetti, S.; Pugno, N.M. Graphene-based bionic composites with multifunctional and repairing properties. ACS Appl. Mater. Interfaces, 2016, 8(12), 7607-7612.
[23]
Seabra, A.B.; Paula, A.J.; de Lima, R.; Alves, O.L.; Duran, N. Nanotoxicity of graphene and graphene oxide. Chem. Res. Toxicol., 2014, 27(2), 159-168.
[24]
Tanveer, A.T.; Md Zahidul, I.P.; Hasan, H.; Alma, A.M.R.; Trefa, M.A.; Jacqueline, L.W.; Shaowei, Z. In vitro toxic effects of reduced graphene oxide nanosheets on lung cancer cells. Nanotechnology, 2017, 28(50), 504001.
[25]
Luo, L.; Xu, L.N.; Zhao, H.B. Biosynthesis of reduced graphene oxide and its in-vitro cytotoxicity against cervical cancer (HeLa) cell lines. Mater. Sci. Eng. C Mater. Biol. Appl, 2017, 78, 198-202.
[26]
Liu, J-H.; Wang, T.; Wang, H.; Gu, Y.; Xu, Y.; Tang, H.; Jia, G.; Liu, Y. Biocompatibility of graphene oxide intravenously administrated in mice-effects of dose, size and exposure protocols. Toxicol. Res., 2015, 4(1), 83-91.
[27]
Radunovic, M.; De Colli, M.; De Marco, P.; Di Nisio, C.; Fontana, A.; Piattelli, A.; Cataldi, A.; Zara, S. Graphene oxide enrichment of collagen membranes improves DPSCs differentiation and controls inflammation occurrence. J. Biomed. Mater. Res. Part A, 2017, 105(8), 2312-2320.
[28]
Wang, K.; Ruan, J.; Song, H.; Zhang, J.L.; Wo, Y.; Guo, S.W.; Cui, D.X. Biocompatibility of graphene oxide. Nanoscale Res. Lett., 2011, 6, 8.
[29]
Zhao, Y.; Gong, J.; Niu, C.; Wei, Z.; Shi, J.; Li, G.; Yang, Y.; Wang, H. A new electrospun graphene-silk fibroin composite scaffolds for guiding Schwann cells. J. Biomater. Sci. Polym. Ed., 2017, 28(18), 2171-2185.
[30]
Ding, Z.J.; Zhang, Z.J.; Ma, H.W.; Chen, Y.Y. In vitro hemocompatibility and toxic mechanism of graphene oxide on human peripheral blood t lymphocytes and serum albumin. ACS Appl. Mater. Interfaces, 2014, 6(22), 19797-19807.
[31]
Das, S.; Singh, S.; Singh, V.; Joung, D.; Dowding, J.M.; Reid, D.; Anderson, J.; Zhai, L.; Khondaker, S.I.; Self, W.T.; Seal, S. Oxygenated functional group density on graphene oxide: its effect on cell toxicity. Part. Part. Syst. Charact., 2013, 30(2), 148-157.