Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Electron Beam Dose and PMMA Thickness Dependent Circularity and Diameter Analysis of Au Nanodots

Author(s): Furkan Kuruoğlu*, Özgür Yavuzçetin and Ayşe Erol

Volume 15, Issue 5, 2019

Page: [486 - 491] Pages: 6

DOI: 10.2174/1573413714666181114104255

Price: $65

Abstract

Background: The electrical and optical properties of nanoparticle-based devices depend on the shape, dimension and uniformity of these particles.

Methods: In this work, we fabricated ordered Au nanodots using electron beam lithography and thermal evaporation. Au nanodot diameter and circularity varied with a changed exposure dose and resist thickness. Electron beam dose ranged from 5 fC to 200 fC for single dot patterns. Commonly used PMMA thin films of thicknesses 60 nm and 100 nm coated samples were used for investigating the resist thickness dependency with varying dose exposure.

Results: The analyses of patterns show that the diameter and circularity of the Au nanodots ranged from smaller to larger diameters and from lower to higher circularities with increasing dose and resist thickness.

Conclusion: The distributions of the nanodot diameter began to show Gaussian behavior at larger electron doses. Besides, single circularity value became dominant up to the medium doses and then a homogeneous distribution was observed with the increasing dose.

Keywords: Dose, circularity, resist thickness, nanodot diameter, Au, electron beam lithography.

Graphical Abstract

[1]
Ho, W.J.; Lee, Y.Y.; Lin, C.H.; Yeh, C.W. Performance enhancement of plasmonics silicon solar cells using Al2O3/In NPs/TiO2 antireflective surface coating. Appl. Surf. Sci., 2015, 354, 100-105.
[2]
Wheeler, D.C.; Shen, Y.; Soljacic, M. Using Near IR Scattering Nanoparticles to Improve Transparent Solar Cell Efficiency. In: Frontiers in Optics 2016; Optical Society of America: New York, 2016.
[3]
Goswami, A.; Aravindan, S.; Rao, P.V. Fabrication of substrate supported bimetallic nanoparticles and their optical characterization through reflection spectra. Superlattices Microstruct., 2016, 91, 252-258.
[4]
Lin, Y.; Zou, Y.; Mo, Y.; Guo, J.; Lindquist, R.G. E-beam patterned gold nanodot arrays on optical fiber tips for localized surface plasmon resonance biochemical sensing. Sensors (Switzerland), 2010, 10, 9397-9406.
[5]
Subramania, G.; Lin, S.Y. Fabrication of three-dimensional photonic crystal with alignment based on electron beam lithography. Appl. Phys. Lett., 2004, 85, 5037-5039.
[6]
Pang, J.; Theodorou, I.G.; Centeno, A.; Petrov, P.K.; Alford, N.M.; Ryan, M.P.; Xie, F. Gold nanodisc arrays as near infrared metal-enhanced fluorescence platforms with tuneable enhancement factors. J. Mater. Chem. C , 2017, 5, 917-925.
[7]
Battista, E.; Coluccio, M.L.; Alabastri, A.; Barberio, M.; Causa, F.; Netti, P.A.; Di Fabrizio, E.; Gentile, F. Metal enhanced fluorescence on super-hydrophobic clusters of gold nanoparticles. Microelectron. Eng., 2017, 175, 7-11.
[8]
Vicentini, F.C.; Garcia, L.L.C.C.; Figueiredo-Filho, L.C.S.S.; Janegitz, B.C.; Fatibello-Filho, O. A biosensor based on gold nanoparticles, dihexadecylphosphate, and tyrosinase for the determination of catechol in natural water. Enzyme Microb. Technol., 2016, 84, 17-23.
[9]
Bollella, P.; Schulz, C.; Favero, G.; Mazzei, F.; Ludwig, R.; Gorton, L.; Antiochia, R. Green synthesis and characterization of gold and silver nanoparticles and their application for development of a third generation lactose biosensor. Electroanalysis, 2017, 29, 77-86.
[10]
Kumari, V.; Dey, K.; Giri, S.; Bhaumik, A. Magnetic memory effect in self-assembled nickel ferrite nanoparticles having mesoscopic void spaces. RSC Advances, 2016, 6, 45701-45707.
[11]
Padmanabhan, R.; Eyal, O.; Meyler, B.; Yofis, S.; Atiya, G.; Kaplan, W.D.; Mikhelashvili, V.; Eisenstein, G. Dynamical properties of optically sensitive metal-insulator-semiconductor nonvolatile memories based on Pt nanoparticles. IEEE Trans. NanoTechnol., 2016, 15, 492-498.
[12]
Ng, S.A.; Razak, K.A.; Cheong, K.Y.; Aw, K.C. Memory properties of Au nanoparticles prepared by tuning HAuCl4 concentration using low-temperature hydrothermal reaction. Thin Solid Films, 2016, 615, 84-90.
[13]
Ho, J.A.A.; Chang, H.C.; Shih, N.Y.; Wu, L.C.; Chang, Y.F.; Chen, C.C.; Chou, C. Diagnostic detection of human lung cancer-associated antigen using a gold nanoparticle-based electrochemical immunosensor. Anal. Chem., 2010, 82(14), 5944-5950.
[14]
He, F.; Shen, Q.; Jiang, H.; Zhou, J.; Cheng, J.; Guo, D.; Li, Q.; Wang, X.; Fu, D.; Chen, B. Rapid identification and high sensitive detection of cancer cells on the gold nanoparticle interface by combined contact angle and electrochemical measurements. Talanta, 2009, 77, 1009-1014.
[15]
Rahman, M.; Abd-El-Barr, M.; Mac, K.V.; Tkaczyk, T.; Sokolov, K.; Richards-Kortum, R.; Descour, M. Optical imaging of cervical pre-cancers with structured illumination: An integrated approach. Gynecol. Oncol., 2005, 99, 112-115.
[16]
Kah, J.C.Y.; Kho, K.W.; Lee, C.G.L.; James, C.; Sheppard, R.; Shen, Z.X.; Soo, K.C.; Olivo, M.C. Early diagnosis of oral cancer based on the surface plasmon resonance of gold nanoparticles. Int. J. Nanomedicine, 2007, 2, 785-798.
[17]
Notarianni, M.; Vernon, K.; Chou, A.; Aljada, M.; Liu, J.; Motta, N. Plasmonic effect of gold nanoparticles in organic solar cells. Sol. Energy, 2014, 106, 23-37.
[18]
Mayumi, S.; Ikeguchi, Y.; Nakane, D.; Ishikawa, Y.; Uraoka, Y.; Ikeguchi, M. Effect of gold nanoparticle distribution in TiO2 on the optical and electrical characteristics of dye-sensitized solar cells. Nanoscale Res. Lett., 2017, 12, 513.
[19]
Fauzia, V.; Umar, A.A.; Salleh, M.M.; Yahaya, M. Effect of gold nanoparticles density grown directly on the surface on the performance of organic solar cell. Curr. Nanosci., 2013, 9, 187-191.
[20]
Yoshizawa, M.; Kikuchi, A.; Mori, M.; Fujita, N.; Kishino, K. Growth of self-organized GaN nanostructures on Al2O3(0001) by RF-radical source molecular beam epitaxy. Jpn. J. Appl. Phys. Part 2 Lett, 1997, 36, 459-462.
[21]
Sudheer; Mondal, P.; Rai, V.N.; Srivastava, A.K. A study of growth and thermal dewetting behavior of ultra-thin gold films using transmission electron microscopy. AIP Adv., 2017, 7075303
[22]
Lin, L.; Huang, H.; Sivayoganathan, M.; Liu, L.; Zou, G.; Duley, W.W.; Zhou, Y. Assembly of silver nanoparticles on nanowires into ordered nanostructures with femtosecond laser radiation. Appl. Opt., 2015, 54, 2524-2531.
[23]
Fu, M.; Li, Y.; Wu, S.; Lu, P.; Liu, J.; Dong, F. Sol-gel preparation and enhanced photocatalytic performance of Cu-doped ZnO nanoparticles. Appl. Surf. Sci., 2011, 258, 1587-1591.
[24]
Zhao, P.; Li, N.; Astruc, D. State of the art in gold nanoparticle synthesis. Coord. Chem. Rev., 2013, 257, 638-665.
[25]
Li, C.; Li, D.; Wan, G.; Xu, J.; Hou, W. Facile synthesis of concentrated gold nanoparticles with low size-distribution in water: Temperature and pH controls. Nanoscale Res. Lett., 2011, 6, 440.
[26]
Song, Y.Z.; Li, X.; Song, Y.Z.; Cheng, Z.P.; Zhong, H.; Xu, J.M.; Lu, J.S.; Wei, C.G.; Zhu, A.F.; Wu, F.Y.; Xu, J.M. Electrochemical synthesis of gold nanoparticles on the surface of multi-walled carbon nanotubes with glassy carbon electrode and their application. Russ. J. Phys. Chem. A, 2013, 87, 74-79.
[27]
Sujitha, M.V.; Kannan, S. Green synthesis of gold nanoparticles using Citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) aqueous extract and its characterization. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2013, 102, 15-23.
[28]
Mohan Kumar, K.; Mandal, B.K.; Sinha, M.; Krishnakumar, V. Terminalia chebula mediated green and rapid synthesis of gold nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2012, 86, 490-494.
[29]
Kumar, A.; Mazinder Boruah, B.; Liang, X.J. Gold nanoparticles: Promising nanomaterials for the diagnosis of cancer and HIV/AIDS. J. Nanomater., 2011, 2011Article ID 202187
[30]
Taylor, A.B.; Michaux, P.; Mohsin, A.S.M.; Chon, J.W.M. Electron-beam lithography of plasmonic nanorod arrays for multilayered optical storage. Opt. Express, 2014, 22, 13234-1343.
[31]
Kern, W.; Soc, J.E. The evolution of silicon wafer cleaning technology. J. Electrochem. Soc., 1990, 137, 1887-1892.
[32]
Gad, K.M.; Vössing, D.; Balamou, P.; Hiller, D.; Stegemann, B.; Angermann, H.; Kasemann, M. Improved Si/SiOx interface passivation by ultra-thin tunneling oxide layers prepared by rapid thermal oxidation. Appl. Surf. Sci., 2015, 353, 1269-1276.
[33]
Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods, 2012, 9, 671-675.
[34]
Chen, A.; Chua, S.J.; Chen, P.; Chen, X.Y.; Jian, L.K. Fabrication of sub-100 nm patterns in SiO2 templates by electron-beam lithography for the growth of periodic III-V semiconductor nanostructures. Nanotechnology, 2006, 17, 3903-3908.
[35]
Saito, M.; Taniguchi, J. Electron beam direct writing of nanodot patterns on roll mold surfaces by electron beam on-off chopping control. Microelectron. Eng., 2014, 123, 89-93.
[36]
Singh, L.; Matthew, I.; Pawloski, A.; Minvielle, A. Effect of top coat and resist thickness on line edge roughness. Proc. SPIE 6153. Advances in Resist Technology and Processing, XXIII61530W(29 March 2006);.
[http://dx.doi.org/10.1117/12.655925]
[37]
Zhao, X.; Lee, S-Y. Choi, J.; Lee, S.-H.; Shin, I.-K.; Jeon, C.-U.; Kim, B.-G.; Cho, H.-K. Dependency analysis of line edge roughness in electron-beam lithography. Microelectron. Eng., 2015, 133, 78-87.
[38]
Rio, D.; Constancias, C.; Saied, M.; Icard, B.; Pain, L. Study on line edge roughness for electron beam acceleration voltages from 50 to 5 kV. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct., 2009, 27, 2512.
[39]
Kotera, M.; Yagura, K.; Niu, H. Dependence of linewidth and its edge roughness on electron beam exposure dose. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct., 2005, 23, 2775.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy