[1]
Ho, W.J.; Lee, Y.Y.; Lin, C.H.; Yeh, C.W. Performance enhancement of plasmonics silicon solar cells using Al2O3/In NPs/TiO2 antireflective surface coating. Appl. Surf. Sci., 2015, 354, 100-105.
[2]
Wheeler, D.C.; Shen, Y.; Soljacic, M. Using Near IR Scattering Nanoparticles to Improve Transparent Solar Cell Efficiency. In: Frontiers in Optics 2016; Optical Society of America: New York, 2016.
[3]
Goswami, A.; Aravindan, S.; Rao, P.V. Fabrication of substrate supported bimetallic nanoparticles and their optical characterization through reflection spectra. Superlattices Microstruct., 2016, 91, 252-258.
[4]
Lin, Y.; Zou, Y.; Mo, Y.; Guo, J.; Lindquist, R.G. E-beam patterned gold nanodot arrays on optical fiber tips for localized surface plasmon resonance biochemical sensing. Sensors (Switzerland), 2010, 10, 9397-9406.
[5]
Subramania, G.; Lin, S.Y. Fabrication of three-dimensional photonic crystal with alignment based on electron beam lithography. Appl. Phys. Lett., 2004, 85, 5037-5039.
[6]
Pang, J.; Theodorou, I.G.; Centeno, A.; Petrov, P.K.; Alford, N.M.; Ryan, M.P.; Xie, F. Gold nanodisc arrays as near infrared metal-enhanced fluorescence platforms with tuneable enhancement factors. J. Mater. Chem. C , 2017, 5, 917-925.
[7]
Battista, E.; Coluccio, M.L.; Alabastri, A.; Barberio, M.; Causa, F.; Netti, P.A.; Di Fabrizio, E.; Gentile, F. Metal enhanced fluorescence on super-hydrophobic clusters of gold nanoparticles. Microelectron. Eng., 2017, 175, 7-11.
[8]
Vicentini, F.C.; Garcia, L.L.C.C.; Figueiredo-Filho, L.C.S.S.; Janegitz, B.C.; Fatibello-Filho, O. A biosensor based on gold nanoparticles, dihexadecylphosphate, and tyrosinase for the determination of catechol in natural water. Enzyme Microb. Technol., 2016, 84, 17-23.
[9]
Bollella, P.; Schulz, C.; Favero, G.; Mazzei, F.; Ludwig, R.; Gorton, L.; Antiochia, R. Green synthesis and characterization of gold and silver nanoparticles and their application for development of a third generation lactose biosensor. Electroanalysis, 2017, 29, 77-86.
[10]
Kumari, V.; Dey, K.; Giri, S.; Bhaumik, A. Magnetic memory effect in self-assembled nickel ferrite nanoparticles having mesoscopic void spaces. RSC Advances, 2016, 6, 45701-45707.
[11]
Padmanabhan, R.; Eyal, O.; Meyler, B.; Yofis, S.; Atiya, G.; Kaplan, W.D.; Mikhelashvili, V.; Eisenstein, G. Dynamical properties of optically sensitive metal-insulator-semiconductor nonvolatile memories based on Pt nanoparticles. IEEE Trans. NanoTechnol., 2016, 15, 492-498.
[12]
Ng, S.A.; Razak, K.A.; Cheong, K.Y.; Aw, K.C. Memory properties of Au nanoparticles prepared by tuning HAuCl4 concentration using low-temperature hydrothermal reaction. Thin Solid Films, 2016, 615, 84-90.
[13]
Ho, J.A.A.; Chang, H.C.; Shih, N.Y.; Wu, L.C.; Chang, Y.F.; Chen, C.C.; Chou, C. Diagnostic detection of human lung cancer-associated antigen using a gold nanoparticle-based electrochemical immunosensor. Anal. Chem., 2010, 82(14), 5944-5950.
[14]
He, F.; Shen, Q.; Jiang, H.; Zhou, J.; Cheng, J.; Guo, D.; Li, Q.; Wang, X.; Fu, D.; Chen, B. Rapid identification and high sensitive detection of cancer cells on the gold nanoparticle interface by combined contact angle and electrochemical measurements. Talanta, 2009, 77, 1009-1014.
[15]
Rahman, M.; Abd-El-Barr, M.; Mac, K.V.; Tkaczyk, T.; Sokolov, K.; Richards-Kortum, R.; Descour, M. Optical imaging of cervical pre-cancers with structured illumination: An integrated approach. Gynecol. Oncol., 2005, 99, 112-115.
[16]
Kah, J.C.Y.; Kho, K.W.; Lee, C.G.L.; James, C.; Sheppard, R.; Shen, Z.X.; Soo, K.C.; Olivo, M.C. Early diagnosis of oral cancer based on the surface plasmon resonance of gold nanoparticles. Int. J. Nanomedicine, 2007, 2, 785-798.
[17]
Notarianni, M.; Vernon, K.; Chou, A.; Aljada, M.; Liu, J.; Motta, N. Plasmonic effect of gold nanoparticles in organic solar cells. Sol. Energy, 2014, 106, 23-37.
[18]
Mayumi, S.; Ikeguchi, Y.; Nakane, D.; Ishikawa, Y.; Uraoka, Y.; Ikeguchi, M. Effect of gold nanoparticle distribution in TiO2 on the optical and electrical characteristics of dye-sensitized solar cells. Nanoscale Res. Lett., 2017, 12, 513.
[19]
Fauzia, V.; Umar, A.A.; Salleh, M.M.; Yahaya, M. Effect of gold nanoparticles density grown directly on the surface on the performance of organic solar cell. Curr. Nanosci., 2013, 9, 187-191.
[20]
Yoshizawa, M.; Kikuchi, A.; Mori, M.; Fujita, N.; Kishino, K. Growth of self-organized GaN nanostructures on Al2O3(0001) by RF-radical source molecular beam epitaxy. Jpn. J. Appl. Phys. Part 2 Lett, 1997, 36, 459-462.
[21]
Sudheer; Mondal, P.; Rai, V.N.; Srivastava, A.K. A study of growth and thermal dewetting behavior of ultra-thin gold films using transmission electron microscopy. AIP Adv., 2017, 7075303
[22]
Lin, L.; Huang, H.; Sivayoganathan, M.; Liu, L.; Zou, G.; Duley, W.W.; Zhou, Y. Assembly of silver nanoparticles on nanowires into ordered nanostructures with femtosecond laser radiation. Appl. Opt., 2015, 54, 2524-2531.
[23]
Fu, M.; Li, Y.; Wu, S.; Lu, P.; Liu, J.; Dong, F. Sol-gel preparation and enhanced photocatalytic performance of Cu-doped ZnO nanoparticles. Appl. Surf. Sci., 2011, 258, 1587-1591.
[24]
Zhao, P.; Li, N.; Astruc, D. State of the art in gold nanoparticle synthesis. Coord. Chem. Rev., 2013, 257, 638-665.
[25]
Li, C.; Li, D.; Wan, G.; Xu, J.; Hou, W. Facile synthesis of concentrated gold nanoparticles with low size-distribution in water: Temperature and pH controls. Nanoscale Res. Lett., 2011, 6, 440.
[26]
Song, Y.Z.; Li, X.; Song, Y.Z.; Cheng, Z.P.; Zhong, H.; Xu, J.M.; Lu, J.S.; Wei, C.G.; Zhu, A.F.; Wu, F.Y.; Xu, J.M. Electrochemical synthesis of gold nanoparticles on the surface of multi-walled carbon nanotubes with glassy carbon electrode and their application. Russ. J. Phys. Chem. A, 2013, 87, 74-79.
[27]
Sujitha, M.V.; Kannan, S. Green synthesis of gold nanoparticles using Citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) aqueous extract and its characterization. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2013, 102, 15-23.
[28]
Mohan Kumar, K.; Mandal, B.K.; Sinha, M.; Krishnakumar, V. Terminalia chebula mediated green and rapid synthesis of gold nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2012, 86, 490-494.
[29]
Kumar, A.; Mazinder Boruah, B.; Liang, X.J. Gold nanoparticles: Promising nanomaterials for the diagnosis of cancer and HIV/AIDS. J. Nanomater., 2011, 2011Article ID 202187
[30]
Taylor, A.B.; Michaux, P.; Mohsin, A.S.M.; Chon, J.W.M. Electron-beam lithography of plasmonic nanorod arrays for multilayered optical storage. Opt. Express, 2014, 22, 13234-1343.
[31]
Kern, W.; Soc, J.E. The evolution of silicon wafer cleaning technology. J. Electrochem. Soc., 1990, 137, 1887-1892.
[32]
Gad, K.M.; Vössing, D.; Balamou, P.; Hiller, D.; Stegemann, B.; Angermann, H.; Kasemann, M. Improved Si/SiOx interface passivation by ultra-thin tunneling oxide layers prepared by rapid thermal oxidation. Appl. Surf. Sci., 2015, 353, 1269-1276.
[33]
Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods, 2012, 9, 671-675.
[34]
Chen, A.; Chua, S.J.; Chen, P.; Chen, X.Y.; Jian, L.K. Fabrication of sub-100 nm patterns in SiO2 templates by electron-beam lithography for the growth of periodic III-V semiconductor nanostructures. Nanotechnology, 2006, 17, 3903-3908.
[35]
Saito, M.; Taniguchi, J. Electron beam direct writing of nanodot patterns on roll mold surfaces by electron beam on-off chopping control. Microelectron. Eng., 2014, 123, 89-93.
[37]
Zhao, X.; Lee, S-Y. Choi, J.; Lee, S.-H.; Shin, I.-K.; Jeon, C.-U.; Kim, B.-G.; Cho, H.-K. Dependency analysis of line edge roughness in electron-beam lithography. Microelectron. Eng., 2015, 133, 78-87.
[38]
Rio, D.; Constancias, C.; Saied, M.; Icard, B.; Pain, L. Study on line edge roughness for electron beam acceleration voltages from 50 to 5 kV. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct., 2009, 27, 2512.
[39]
Kotera, M.; Yagura, K.; Niu, H. Dependence of linewidth and its edge roughness on electron beam exposure dose. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct., 2005, 23, 2775.