[1]
Sambandam, S.N.; Bhansali, S.; Bhethanabotla, V.R. Synthesis and characterization of amorphous metallic alloy thin films for MEMS applications. Proc. Mater. Res. Soc. Symp. , 2004, 806, MM8.
[2]
Saotome, Y.; Noguchi, Y.; Zhang, T.; Inoue, A. Characteristic behavior of Pt-based metallic glass under rapid heating and its application to microforming. Mater. Sci. Eng. A, 2004, 375-377, 389-393.
[3]
Ning, S.R.; Gao, J.; Wang, Y.G. Review on applications of low loss amorphous metals in motors. Adv. Mat. Res., 2010, 129-131, 1366-1371.
[4]
Schroers, J. Processing of bulk metallic glass. Adv. Mater., 2010, 22, 1566-1597.
[5]
Singer, J.P.; Gopinadhan, M.; Shao, Z.; Taylor, A.D.; Schroers, J.; Osuji, C.O. Nanoimprinting sub-100 nm features in a photovoltaic nanocomposite using durable bulk metallic glass molds. ACS Appl. Mater. Interfaces, 2015, 7, 3456-3461.
[6]
Wu, C.D.; Fang, T.H.; Lin, M.H.; Su, J.K. Mechanics and pattern transfer of imprinted NiAl amorphous films investigated using atomistic simulation. Curr. Nanosci., 2017, 13(2), 215-220.
[7]
Telford, M. The case for bulk metallic glass. Mater. Today, 2004, 7, 36-43.
[8]
Salimon, A.I.; Ashby, M.F.; Brechet, Y.; Greer, A.L. Bulk metallic glasses: What are they good for? Mater. Sci. Eng. A, 2004, 375, 385-388.
[9]
Peker, A.; Johnson, W.L. A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22. 5. Appl. Phys. Lett., 1993, 63, 2342-2344.
[10]
Liu, Y.; Hata, S.; Wada, K.; Shimokohbe, A. Thermal, mechanical and electrical properties of Pd-based thin-film metallic glass. Jpn. J. Appl. Phys., 2001, 40, 5382-5388.
[11]
Zhang, Y.; Mendelev, M.I.; Wang, C.Z.; Ott, R.; Zhang, F.; Besser, M.F.; Ho, K.M.; Kramer, M.J. Impact of deformation on the atomic structures and dynamics of a Cu-Zr metallic glass: A molecular dynamics study. Phys. Rev. B , 2014, 90174101
[12]
Johnson, W.L. Bulk amorphous metal - an emerging engineering material. J. Miner. Met. Mater. Soc., 2002, 54, 40-43.
[13]
Chen, Y.Q.; Cao, A.J.; Ma, E. Correlation between the elastic modulus and the intrinsic plastic behavior of metallic glasses: The roles of atomic configuration and alloy composition. Acta Mater., 2009, 57, 3253-3267.
[14]
Cao, A.J.; Cheng, Y.Q.; Ma, E. Structural processes that initiate shear localization in metallic glass. Acta Mater., 2009, 57, 5146-5155.
[15]
Xu, J.; Ma, E. Damage-tolerant Zr–Cu–Al-based bulk metallic glasses with record-breaking fracture toughness. J. Mater. Res., 2014, 29(14), 1489-1499.
[16]
Cheng, Y.Q.; Sheng, H.W.; Ma, E. Relationship between structure, dynamics, and mechanical properties in metallic glass-forming alloys. Phys. Rev. , 2008, 78014207
[17]
Li, Q.K.; Li, M. Molecular dynamics simulation of intrinsic and extrinsic mechanical properties of metallic glasses. Intermetallics, 2006, 14, 1005-1010.
[18]
Wu, C.D. Atomistic simulation of nanoformed metallic glass. Appl. Surf. Sci., 2015, 343, 153-159.
[19]
Murali, P.; Guo, T.F.; Zhang, Y.W.; Narasimhan, R.; Li, Y.; Gao, H.J. Atomic scale fluctuations govern brittle fracture and cavitation behavior in metallic glasses. Phys. Rev. Lett., 2011, 107215501
[20]
Haile, J.M. Molecular Dynamics Simulation: Elementary Methods; New York: Wiley, 1992.
[21]
Li, F.; Liu, X.J.; Lu, Z.P. Atomic structural evolution during glass formation of a Cu–Zr binary metallic glass. Comput. Mater. Sci., 2014, 85, 147-153.
[22]
Dalgic, S.S.; Celtek, M. Molecular dynamics study of the ternary Cu50Ti25Zr25 bulk glass forming alloy. EPJ Web Conf., 2011.15, 03008..
[23]
Delogu, F. Molecular dynamics study of size effects in the compression of metallic glass nanowires. Phys. Rev. B , 2009, 79184109
[24]
Tian, L.; Cheng, Y.Q.; Shan, Z.W.; Li, J.; Wang, C.C.; Han, X.D.; Sun, J.; Ma, E. Approaching the ideal elastic limit of metallic glasses. Nat. Commun., 2012, 3, 609.
[25]
Greer, J.R.; De Hosson, J.T.M. Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater. Sci., 2011, 56, 654-724.
[26]
Volkert, C.A.; Donohue, A.; Spaepen, F. Effect of sample size on deformation in amorphous metals. J. Appl. Phys., 2008, 103083539
[27]
Ghidelli, M.; Gravier, S.; Blandin, J.J.; Djemia, P.; Mompiou, F.; Abadias, G.; Raskin, J.P.; Pardoen, T. Extrinsic mechanical size effects in thin ZrNi metallic glass films. Acta Mater., 2015, 90, 232-241.
[28]
Ghidelli, M.; Gravier, S.; Blandin, J.J.; Raskin, J.P.; Lani, F.; Pardoen, T. Size-dependent failure mechanisms in ZrNi thin metallic glass films. Scr. Mater., 2014, 89, 9-12.
[29]
Chen, C.Q.; Pei, Y.T.; De Hosson, J.T.M. Effects of size on the mechanical response of metallic glasses investigated through in situ TEM bending and compression experiments. Acta Mater., 2010, 58, 189-200.
[30]
Fang, T.H.; Wu, C.D.; Chang, W.J.; Chi, S.S. Effect of thermal annealing on nanoimprinted Cu-Ni alloys using molecular dynamics simulation. Appl. Surf. Sci., 2009, 255, 6043-6047.
[31]
Greer, A.L.; Cheng, Y.Q.; Ma, E. Shear bands in metallic glasses. Mater. Sci. Eng. Rep., 2013, 74, 71-132.
[32]
Cheng, Y.Q.; Ma, E. Atomic-level structure and structure–property relationship in metallic glasses. Prog. Mater. Sci., 2011, 56, 379-473.
[33]
Imran, M.; Hussain, F.; Rashid, M.; Cai, Y.; Ahmad, S.A. Mechanical behavior of Cu–Zr bulk metallic glasses (BMGs): A molecular dynamics approach. Chin. Phys. B, 2013, 22(9)096101
[34]
Park, K.W.; Jang, J.; Wakeda, M.; Shibutani, Y.; Lee, J.C. Atomic packing density and its influence on the properties of Cu–Zr amorphous alloys. Scr. Mater., 2007, 57, 805-808.
[35]
Lee, J.C.; Park, K.W.; Kim, K.H.; Fleury, E.; Lee, B.J.; Wakeda, M.; Shibutani, Y. Origin of the plasticity in bulk amorphous alloys. J. Mater. Res., 2007, 22, 3087-3097.