[1]
Cohen JE, Wang R, Shen RF, Wu WW, Keller JE. Comparative pathogenomics of Clostridium tetani. PLoS One 2017; 12(8)e0182909
[2]
Parte AC. LPSN--list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014; 42(Database issue): D613-6.
[3]
Brüggemann H. Genomics of clostridial pathogens: implication of extrachromosomal elements in pathogenicity. Curr Opin Microbiol 2005; 8(5): 601-5.
[5]
Hallit RR, Afridi M, Sison R, Salem E, Boghossian J, Slim J. Clostridium tetani bacteraemia. J Med Microbiol 2013; 62(Pt 1): 155-6.
[6]
Todar K. Pathogenic clostridia Ken Todar’s Microbial World. University of Wisconsin-Madison 2005.
[7]
Reddy P, Bleck TP. Clostridium tetani (tetanus) Principles and Practice in Infectious Diseases. 7th Eds. Philadelphia: Churchill Livingstone 2010; pp. 3091-6.
[8]
Thwaites CL, Farrar JJ. Preventing and treating tetanus. BMJ 2003; 326(7381): 117-8.
[9]
Blencowe H, Lawn J, Vandelaer J, Roper M, Cousens S. Tetanus toxoid immunization to reduce mortality from neonatal tetanus. Int J Epidemiol 2010; 39(Suppl. 1): i102-9.
[10]
Schiavo G, Benfenati F, Poulain B, et al. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 1992; 359(6398): 832-5.
[11]
Brüggemann H, Bäumer S, Fricke WF, et al. The genome sequence of Clostridium tetani, the causative agent of tetanus disease. Proc Natl Acad Sci USA 2003; 100(3): 1316-21.
[12]
Hassel B. Tetanus: Pathophysiology, treatment, and the possibility of using botulinum toxin against tetanus-induced rigidity and spasms. Toxins (Basel) 2013; 5(1): 73-83.
[13]
Neema M, Karunasagar I, Karunasagar I. In silico identification and characterization of novel drug targets and outer membrane proteins in the fish pathogen Edwardsiella tarda. Open Access Bioinformatics 2011; 3: 37-42.
[14]
Sakharkar KR, Sakharkar MK, Chow VT. A novel genomics approach for the identification of drug targets in pathogens, with special reference to Pseudomonas aeruginosa. In Silico Biol 2008; 4(3): 320-8.
[15]
Dutta A, Singh SK, Ghosh P, Mukherjee R, Mitter S, Bandyopadhyay D. In silico identification of potential therapeutic
targets in the human pathogen Helicobacter pylori. In Silico Biol
2002; 6(1, 2): 45-50.
[16]
Rathi B, Sarangi AN, Trivedi N. Genome subtraction for novel target definition in Salmonella typhi. Bioinformation 2009; 4(4): 143-50.
[17]
Sarangi AN, Aggarwal R, Rahman Q, Trivedi N. Subtractive genomics approach for in silico identification and characterization of novel drug targets in Neisseria Meningitides Serogroup B. J Comput Sci Syst Biol 2009; 2(5): 255-8.
[18]
Amineni U, Pradhan D, Marisetty H. In silico identification of common putative drug targets in Leptospira interrogans. J Chem Biol 2010; 3(4): 165-73.
[19]
Wu CH, Apweiler R, Bairoch A, et al. The Universal Protein Resource (UniProt): an expanding universe of protein information. Nucleic Acids Res 2006; 34(Suppl. 1): D187-91.
[20]
Huang Y, Niu B, Gao Y, Fu L, Li W. CD-HIT Suite: A web server for clustering and comparing biological sequences. Bioinformatics 2010; 26(5): 680-2.
[21]
Zhang R, Ou HY, Zhang CT. DEG: a database of essential genes. Nucleic Acids Res 2004; 32(Suppl. 1): D271-2.
[22]
Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 2007; 35(Suppl. 2).W182-5
[23]
Gardy JL, Laird MR, Chen F, et al. PSORTb v.2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinformatics 2005; 21(5): 617-23.
[24]
Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL workspace: A web-based environment for protein structure homology modelling. Bioinformatics 2006; 22(2): 195-201.
[25]
Bagos PG, Liakopoulos TD, Spyropoulos IC, Hamodrakas SJ. PRED-TMBB: A web server for predicting the topology of β-barrel outer membrane proteins. Nucleic Acids Res 2004; 32(Suppl. 2).W400-4
[26]
Laskowski RA, Watson JD, Thornton JM. ProFunc: A server for predicting protein function from 3D structure. Nucleic Acids Res 2005; 33(Suppl. 2).W89-93
[27]
Attwood TK, Kell DB, McDermott P, Marsh J, Pettifer SR, Thorne D. Utopia documents: Linking scholarly literature with research data. Bioinformatics 2010; 26(18): i568-74.
[28]
Bakheet TM, Doig AJ. Properties and identification of human protein drug targets. Bioinformatics 2009; 25(4): 451-7.
[29]
Sakharkar KR, Sakharkar MK, Chow VT. A novel genomics approach for the identification of drug targets in pathogens, with special reference to Pseudomonas aeruginosa. In Silico Biol 2004; 4(3): 355-60.
[30]
Dutta A, Singh SK, Ghosh P, Mukherjee R, Mitter S, Bandyopadhyay D. In silico identification of potential therapeutic targets in the human pathogen Helicobacter pylori. In Silico Biol 2006; 6: 43-7.
[31]
Chong CE, Lim BS, Nathan S, Mohamed R. In silico analysis of Burkholderia pseudomallei genome sequence for potential drug targets. In Silico Biol 2006; 6(4): 341-6.
[32]
Munikumar M, Priyadarshini IV, Pradhan D, Sandeep S, Umamaheswari A, Vengamma B. In silico identification of common putative drug targets among the pathogens of bacterial meningitis. Biochem Anal Biochem 2012; 1(8): 123.
[33]
Johnson JE, Cornell RB. Amphitropic proteins: Regulation by reversible membrane interactions (review). Mol Membr Biol 1999; 16(3): 217-35.
[34]
Alenghat FJ, Golan DE. Membrane protein dynamics and functional implications in mammalian cells. Curr Top Membr 2013; 72: 89-120.
[35]
Overington JP, Al-Lazikani B, Hopkins AL. How many drug targets are there? Nat Rev Drug Discov 2006; 5(12): 993-6.
[36]
Koebnik R, Locher KP, Van Gelder P. Structure and function of bacterial outer membrane proteins: Barrels in a nutshell. Mol Microbiol 2000; 37(2): 239-53.
[37]
Bakheet TM, Doig AJ. Properties and identification of antibiotic drug targets. BMC Bioinformatics 2010; 11(1): 195.
[38]
Hurdle JG, O’Neill AJ, Chopra I, Lee RE. Targeting bacterial membrane function: An underexploited mechanism for treating persistent infections. Nat Rev Microbiol 2011; 9(1): 62-75.