[1]
Zimmermann, S.; Sekula, P.; Venhoff, M.; Motschall, E.; Knaus, J.; Schumacher, M.; Mockenhaupt, M. Systemic immunomodulating therapies for Stevens-Johnson syndrome and toxic epidermal necrolysis: A systematic review and meta-analysis. JAMA Dermatol., 2017, 153(6), 514-522.
[2]
Ziaei, M.; Ziaei, F.; Manzouri, B. Systemic cyclosporine and corneal transplantation. Int. Ophthalmol., 2016, 36(1), 139-146.
[3]
Caires, A.; Fernandesm, G.S.; Leme, A.M.; Castino, B.; Pessoa, E.A.; Fernandes, S.M.; Fonseca, C.D.; Vattimo, M.F.; Schor, N.; Borges, F.T. Endothelin-1 receptor antagonists protect the kidney against the nephrotoxicity induced by cyclosporine-A in normotensive and hypertensive rats. Braz. J. Med. Biol. Res., 2018, 51(2), e6373.
[4]
Lai, Q.; Luo, Z.; Wu, C.; Lai, S.; Wei, H.; Li, T.; Wang, Q.; Yu, Y. Attenuation of cyclosporine A induced nephrotoxicity by schisandrin B through suppression of oxidative stress, apoptosis and autophagy. Int. Immunopharmacol., 2017, 52, 15-23.
[5]
Damiano, S.; Ciarcia, R.; Montagnaro, S.; Pagnini, U.; Garofano, T.; Capasso, G.; Florio, S.; Giordano, A. Prevention of nephrotoxicity induced by cyclosporine-A: role of antioxidants. J. Cell. Biochem., 2015, 116(3), 364-369.
[6]
Simeoni, C.; Dinicola, S.; Cucina, A.; Mascia, C.; Bizzarri, M. Systems biology approach and mathematical modeling for analyzing phase-space switch during epithelial-mesenchymal transition. Methods Mol. Biol., 2018, 1702, 95-123.
[7]
Pallet, N.; Rabant, M.; Xu-Dubois, Y.C.; Lecorre, D.; Mucchielli, M.H.; Imbeaud, S.; Agier, N.; Hertig, A.; Thervet, E.; Legendre, C.; Beaune, P.; Anglicheau, D. Response of human renal tubular cells to cyclosporine and sirolimus, a toxicogenomic study. Toxicol. Appl. Pharmacol., 2008, 229(2), 184-196.
[8]
Pallet, N.; Bouvier, N.; Bendjallabah, A.; Rabant, M.; Flinois, J.P.; Hertig, A.; Legendre, C.; Beaune, P.; Thervet, E.; Anglicheau, D. Cyclosporine-induced endoplasmic reticulum stress triggers tubular phenotypic changes and death. Am. J. Transplant., 2008, 8(11), 2283-2296.
[9]
Pallet, N.; Bouvier, N.; Legendre, C.; Gilleron, J.; Codogno, P.; Beaune, P.; Thervet, E.; Anglicheau, D. Autophagy protects renal tubular cells against cyclosporine toxicity. Autophagy, 2008, 4(6), 783-791.
[10]
Wirestam, L.; Frodlund, M.; Enocsson, H.; Skogh, T.; Wetterö, J.; Sjöwall, C. Osteopontin is associated with disease severity and antiphospholipid syndrome in well characterised Swedish cases of SLE. Lupus Sci. Med., 2017, 4(1), e000225.
[11]
Marchetti, P.; Navalesit, R. The metabolic effects of cyclosporin and tacrolimus. J. Endocrinol. Invest., 2000, 23, 482-490.
[12]
Fabre, G.; Bertault-Peres, P.; Fabre, I.; Maurel, P.; Just, S.; Cano, J.P. Metabolism of cyclosporin A. I. Study in freshly isolated rabbit hepatocytes. Drug Metab. Dispos., 1987, 15(3), 384-390.
[13]
Bertault-Peres, P.; Bonfils, C.; Fabre, G.; Just, S.; Cano, J.P.; Maurel, P. Metabolism of cyclosporin A. II. Implication of the macrolide antibiotic inducible cytochrome P-450 3c from rabbit liver microsomes. Drug Metab. Dispos., 1987, 15(3), 391-398.
[14]
Kolars, J.C.; Awni, W.M.; Merion, R.M.; Watkins, P.B. First-pass metabolism of cyclosporin by the gut. Lancet, 1991, 338(8781), 1488-1490.
[15]
Webber, I.R.; Back, D.J. Effect of etretinate on cyclosporin metabolism in vitro. Br. J. Dermatol., 1993, 128(1), 42-44.
[16]
Brunner, L.J.; Pai, K.S.; Munar, M.Y.; Lande, M.B.; Olyaei, A.J.; Mowry, J.A. Effect of grapefruit juice on cyclosporin A pharmacokinetics in pediatric renal transplant patients. Pediatr. Transplant., 2000, 4(4), 313-321.
[17]
Hollander, A.A.; van Rooij, J.; Lentjes, G.W.; Arbouw, F.; van Bree, J.B.; Schoemaker, R.C.; van Es, L.A.; van der Woude, F.J.; Cohen, A.F. The effect of grapefruit juice on cyclosporine and prednisone metabolism in transplant patients. Clin. Pharmacol. Ther., 1995, 57(3), 318-324.
[18]
Christians, U.; Sewing, K.F. Cyclosporin metabolism in transplant patients. Pharmacol. Ther., 1993, 57(2-3), 291-345.
[19]
Zheng, S.; Tasnif, Y.; Hebert, M.F.; Davis, C.L.; Shitara, Y.; Calamia, J.C.; Lin, Y.S.; Shen, D.D.; Thummel, K.E. CYP3A5 gene variation influences cyclosporine A metabolite formation and renal cyclosporine disposition. Transplantation, 2013, 95(6), 821-827.
[20]
Pham-Huy, C.; Sadeg, N.; Becue, T.; Martin, C.; Mahuzier, G.; Warnet, J.M.; Hamon, M.; Claude, J.R. In vitro metabolism of cyclosporin A with rabbit renal or hepatic microsomes: analysis by HPLC-FPIA and HPLC-MS. Arch. Toxicol., 1995, 69(5), 346-349.
[21]
Kelly, P.A.; Wang, H.; Napoli, K.L.; Kahan, B.D.; Strobel, H.W. Metabolism of cyclosporine by cytochromes P450 3A9 and 3A4. Eur. J. Drug Metab. Pharmacokinet., 1999, 24(4), 321-328.
[22]
Wong, S.; Wong, H.T.; Wacher, V.J. Minimal effect of ketoconazole on cyclosporine (SangCyA) oral absorption and first-pass metabolism in rats: evidence of a significant vehicle effect on SangCyA absorption. Biopharm. Drug Dispos., 2002, 23(2), 53-57.
[23]
Hoppu, K.; Koskimies, O.; Holmberg, C.; Hirvisalo, E.L. Evidence for pre-hepatic metabolism of oral cyclosporine in children. Br. J. Clin. Pharmacol., 1991, 32(4), 477-481.
[24]
Vickers, A.E.; Fisher, R.L.; Brendel, K.; Guertler, J.; Dannecker, R.; Keller, B.; Fischer, V. Sites of biotransformation for the cyclosporin derivative SDZ IMM 125 using human liver and kidney slices and intestine. Comparison with rat liver slices and cyclosporin A metabolism. Drug Metab. Dispos., 1995, 23(3), 327-333.
[25]
Hegazy, S.K.; Adam, A.G.; Hamdy, N.A.; Khalafallah, N.M. Effect of active infection on cytochrome P450-mediated metabolism of cyclosporine in renal transplant patients. Transpl. Infect. Dis., 2015, 17, 350-360.
[26]
Shedlofsky, S.I.; Israel, B.C.; McClain, C.J.; Hill, D.B.; Blouin, R.A. Endotoxin administration to humans inhibits hepatic cytochrome P450-mediated drug metabolism. J. Clin. Invest., 1994, 94, 2209-2214.
[27]
Ma, N.; Guo, P.; Zhang, J.; He, T.; Kim, S.W.; Zhang, G.; Ma, X. Nutrients mediate intestinal bacteria mucosal immune crosstalk. Front. Immunol., 2018, 9, 5.
[28]
Fan, P.; Song, P.; Li, L.; Huang, C.; Chen, J.; Yang, W.; Qiao, S.; Wu, G.; Zhang, G.; Ma, X. Roles of Biogenic amines in intestinal signaling. Curr. Protein Pept. Sci., 2017, 18, 532-540.
[29]
Edwards, D.J.; Fitzsimmons, M.E.; Schuetz, E.G.; Yasuda, K.; Ducharme, M.P.; Warbasse, L.H.; Woster, P.M.; Schuetz, J.D.; Watkins, P. 6′,7′-Dihydroxybergamottin in grapefruit juice and Seville orange juice: effects on cyclosporine disposition, enterocyte CYP3A4, and P-glycoprotein. Clin. Pharmacol. Ther., 1999, 65(3), 237-244.
[30]
Lilja, J.J.; Kivisto, K.T.; Neuvonen, P.J. Duration of effect of grapefruit juice on the pharmacokinetics of the CYP3A4 substrate simvastatin. Clin. Pharmacol. Ther., 2000, 68(4), 384-390.
[31]
Fanta, S.; Jönsson, S.; Karlsson, M.O.; Niemi, M.; Holmberg, C.; Hoppu, K.; Backman, J.T. Long-term changes in cyclosporine pharmacokinetics after renal transplantation in children: Evidence for saturable presystemic metabolism and effect of NR1I2 polymorphism. J. Clin. Pharmacol., 2010, 50(5), 581-597.
[32]
Ahmed, S.S.; Strobel, H.W.; Napoli, K.L.; Grevel, J. Adrenochrome reaction implicates oxygen radicals in metabolism of cyclosporine A and FK-506 in rat and human liver microsomes. J. Pharmacol. Exp. Ther., 1993, 265(3), 1047-1054.
[33]
Vickers, A.E.; Biggi, W.A.; Dannecker, R.; Fischer, V. Uptake and metabolism of cyclosporin A and SDZ IMM 125 in the human in vitro skin2 dermal and barrier function models. Life Sci., 1995, 57(3), 215-224.
[34]
Choi, C.W.; Kim, B.R.; Ohn, J.; Youn, S.W. The Advantage of cyclosporine A and methotrexate rotational therapy in long-term systemic treatment for chronic plaque psoriasis in a real world practice. Ann. Dermatol., 2017, 29(1), 55-60.
[35]
Wu, Q.; Dohnal, V.; Kuca, K.; Yuan, Z. Trichothecenes: Structure-toxic activity relationships. Curr. Drug Metab., 2013, 14(6), 641-660.
[36]
Ozbay, A.; Karamperis, N.; Jørgensen, K.A. A review of the immunosuppressive activity of cyclosporine metabolites: New insights into an old issue. Curr. Clin. Pharmacol., 2007, 2(3), 244-248.
[37]
Watkins, P.B. The role of cytochromes P-450 in cyclosporine metabolism. J. Am. Acad. Dermatol., 1990, 23(6 Pt 2), 1301-1309.
[38]
Combalbert, J.; Fabre, I.; Fabre, G.; Dalet, I.; Derancourt, J.; Cano, J.P.; Maurel, P. Metabolism of cyclosporin A. IV. Purification and identification of the rifampicin-inducible human liver cytochrome P-450 (cyclosporin A oxidase) as a product of P450IIIA gene subfamily. Drug Metab. Dispos., 1989, 17(2), 197-207.
[39]
Jäger, W.; Correia, M.A.; Bornheim, L.M.; Mahnke, A.; Hanstein, W.G.; Xue, L.; Benet, L.Z. Ethynylestradiol-mediated induction of hepatic CYP3A9 in female rats: implication for cyclosporine metabolism. Drug Metab. Dispos., 1999, 27(12), 1505-1511.
[40]
Prueksaritanont, T.; Correia, M.A.; Rettie, A.E.; Swinney, D.C.; Thomas, P.E.; Benet, L.Z. Cyclosporine metabolism by rat liver microsomes. Evidence for involvement of enzyme(s) other than cytochromes P-450 3A. Drug Metab. Dispos., 1993, 21(4), 730-737.
[41]
Hermann, M.; Kase, E.T.; Molden, E.; Christensen, H. Evaluation of microsomal incubation conditions on CYP3A4-mediated metabolism of cyclosporine A by a statistical experimental design. Curr. Drug Metab., 2006, 7(3), 265-271.
[42]
Dai, Y.; Iwanaga, K.; Lin, Y.S.; Hebert, M.F.; Davis, C.L.; Huang, W.; Kharasch, E.D.; Thummel, K.E. In vitro metabolism of cyclosporine A by human kidney CYP3A5. Biochem. Pharmacol., 2004, 68(9), 1889-1902.
[43]
Sun, B.; Guo, Y.; Gao, J.; Shi, W.F.; Fan, G.R.; Li, X.Y.; Qiu, J.X.; Qin, Y.; Liu, G.L. Influence of CYP3A and ABCB1 polymorphisms on cyclosporine concentrations in renal transplant recipients. Pharmacogenomics, 2017, 18(16), 1503-1513.
[44]
Kempkes-Koch, M.; Fobker, M.; Erren, M.; August, C.; Gerhardt, U.; Suwelack, B.; Hohage, H. Cyclosporine A metabolite AM19 as a potential biomarker in urine for CSA nephropathy. Transplant. Proc., 2001, 33(3), 2167-2169.
[45]
Sienkiewicz, B.; Hurkacz, M.; Kuriata-Kordek, M.; Augustyniak-Bartosik, H.; Wiela-Hojeńska, A.; Klinger, M. The impact of CYP3A5 on the metabolism of cyclosporine A and tacrolimus in the evaluation of efficiency and safety of immunosuppressive treatment in patients after kidney transplantation. Pharmazie, 2016, 71, 562-565.
[46]
Ikemura, K.; Urano, K.; Matsuda, H.; Mizutani, H.; Iwamoto, T.; Okuda, M. Decreased oral absorption of cyclosporine A after liver ischemia-reperfusion injury in rats, the contribution of CYP3A and P-glycoprotein to the first-pass metabolism in intestinal epithelial cells. J. Pharmacol. Exp. Ther., 2009, 328(1), 249-255.
[47]
Mazzaferro, V.; Porter, K.A.; Scotti-Foglieni, C.L.; Venkataramanan, R.; Makowka, L.; Rossaro, L.; Francavilla, A.; Todo, S.; Van Thiel, D.H.; Starzl, T.E. The hepatotropic influence of cyclosporine. Surgery, 1990, 107(5), 533-539.
[48]
Provencher, S.J.; Demers, C.; Bastien, M.C.; Villeneuve, J.P.; Gascon-Barré, M. Effect of cyclosporine A on cytochrome P-450-mediated drug metabolism in the partially hepatectomized rat. Drug Metab. Dispos., 1999, 27(4), 449-455.
[49]
Bai, S.; Brunner, L.J.; Stepkowski, S.M.; Napoli, K.L.; Kahan, B.D. Effect of low dose cyclosporine and sirolimus on hepatic drug metabolism in the rat. Transplantation, 2001, 71(11), 1585-1592.
[50]
Kim, T.; Lu, S.K.; Brunner, L.J. The effect of lipoprotein-associated cyclosporine on drug metabolism and toxicity in rats. PDA J. Pharm. Sci. Technol., 2003, 57(6), 410-424.
[51]
Cooper, M.; Lindholm, P.; Pieper, G.; Seibel, R.; Moore, G.; Nakanishi, A.; Dembny, K.; Komorowski, R.; Johnson, C.; Adams, M.; Roza, A. Myocardial nuclear factor-kappaB activity and nitric oxide production in rejecting cardiac allografts. Transplantation, 1998, 66(7), 838-844.
[52]
Luan, F.L.; Zhang, H.; Schaubel, D.E.; Miles, C.D.; Cibrik, D.; Norman, S.; Ojo, A.O. Comparative risk of impaired glucose metabolism associated with cyclosporine versus tacrolimus in the late posttransplant period. Am. J. Transplant., 2008, 8(9), 1871-1877.
[53]
Cruz, F.; Wolf, A. Effects of the novel cyclosporine derivative PSC833 on glucose metabolism in rat primary cultures of neuronal and glial cells. Biochem. Pharmacol., 2001, 62(1), 129-139.
[54]
Qiu, J.; Tu, Z.; Shi, Y.; Zhang, L.; Li, Q.; Wang, W.; Ye, F.; Wang, J.; Bu, H. Interference of cyclosporine on glucose metabolism: Potential role in chronic transplantation kidney fibrosis. Transplant. Proc., 2006, 38(7), 2065-2068.
[55]
Delgado, T.C.; Barosa, C.; Nunes, P.M.; Scott, D.K.; O’Doherty, R.M.; Cerdán, S.; Geraldes, C.F.; Jones, J.G. Effect of cyclosporine A on hepatic carbohydrate metabolism and hepatic gene expression in rat. Expert Opin. Drug Metab. Toxicol., 2012, 8(10), 1223-1230.
[56]
Lopes, P.C.; Fuhrmann, A.; Sereno, J.; Espinoza, D.O.; Pereira, M.J.; Eriksson, J.W.; Reis, F.; Carvalho, E. Short and long term in vivo effects of Cyclosporine A and sirolimus on genes and proteins involved in lipid metabolism in Wistar rats. Metabolism, 2014, 63(5), 702-715.
[57]
Havrdova, T.; Jedinakova, T.; Lipar, K.; Skibova, J.; Saudek, F. Effect of tacrolimus versus cyclosporine on glucose metabolism of pancreas and kidney recipients in the late (> 8 years) posttransplant period. Transplant. Proc., 2011, 43(9), 3270-3272.
[58]
Serkova, N.; Klawitter, J.; Niemann, C.U. Organ-specific response to inhibition of mitochondrial metabolism by cyclosporine in the rat. Transpl. Int., 2003, 16(10), 748-755.
[59]
Niemann, C.U.; Saeed, M.; Akbari, H.; Jacobsen, W.; Benet, L.Z.; Christians, U.; Serkova, N. Close association between the reduction in myocardial energy metabolism and infarct size: Dose-response assessment of cyclosporine. J. Pharmacol. Exp. Ther., 2002, 302(3), 1123-1128.
[60]
Lee, C.T.; Ng, H.Y.; Lien, Y.H.; Lai, L.W.; Wu, M.S.; Lin, C.R.; Chen, H.C. Effects of cyclosporine, tacrolimus and rapamycin on renal calcium transport and vitamin D metabolism. Am. J. Nephrol., 2011, 34(1), 87-94.
[61]
Gottschalk, S.; Cummins, C.L.; Leibfritz, D.; Christians, U.; Benet, L.Z.; Serkova, N.J. Age and sex differences in the effects of the immunosuppressants cyclosporine, sirolimus and everolimus on rat brain metabolism. Neurotoxicology, 2011, 32(1), 50-57.
[62]
Wu, Q.; Wang, X.; Nepovimova, E.; Wang, Y.; Yang, H.; Kuca, K. Mechanism of cyclosporine A nephrotoxicity: Oxidative stress, autophagy, and signalings. Food Chem. Toxicol., 2018, 118, 889-907.
[63]
Ma, X.; Zhang, S.; He, L.; Rong, Y.; Briver, L.; Sun, Q.; Liu, R.; Fan, W.; Chen, S.; Yue, Z.; Kim, J.; Guan, K.; Li, D.; Zhong, Q. MTORC1- mediated NRBF2 phosphorylation functions as a switch for the class III PtdIns3K and autophagy. Autophagy, 2017, 13, 592-607.
[64]
He, L.; Zhang, J.; Zhao, J.; Ma, N.; Kim, S.W.; Qiao, S.; Ma, X. Autophagy: The last defense against cellular nutritional stress. Adv. Nutr., 2018, 9(4), 493-504.