[1]
Backhed, F.; Ley, R.E.; Sonnenburg, J.L.; Peterson, D.A.; Gordon, J.I. Host-bacterial mutualism in the human intestine. Science, 2005, 307(5717), 1915-1920.
[2]
Choi, M.S.; Yu, J.S.; Yoo, H.H.; Kim, D.H. The role of gut microbiota in the pharmacokinetics of antihypertensive drugs. Pharmacol. Res., 2018, 130, 164-171.
[3]
Sommer, F.; Backhed, F. The gut microbiota--masters of host development and physiology. Nat. Rev. Microbiol., 2013, 11(4), 227-238.
[4]
Liang, D.; Leung, R.K.; Guan, W.; Au, W.W. Involvement of gut microbiome in human health and disease: brief overview, knowledge gaps and research opportunities. Gut Pathog., 2018, 10, 3.
[5]
Walsh, J.; Griffin, B.T.; Clarke, G.; Hyland, N.P. Drug-gut microbiota interactions: Implications for neuropharmacology. Br. J. Pharmacol., 2018, 175(24), 4415-4429.
[6]
Goldin, B.R. Intestinal microflora: Metabolism of drugs and carcinogens. Ann. Med., 1990, 22(1), 43-48.
[7]
Sousa, T.; Paterson, R.; Moore, V.; Carlsson, A.; Abrahamsson, B.; Basit, A.W. The gastrointestinal microbiota as a site for the biotransformation of drugs. Int. J. Pharm., 2008, 363(1-2), 1-25.
[8]
Koppel, N.; Maini Rekdal, V.; Balskus, E.P. Chemical transformation of xenobiotics by the human gut microbiota. Science, 2017, 356(6344), 1246-1257.
[9]
Scarpellini, E.; Ianiro, G.; Attili, F.; Bassanelli, C.; De Santis, A.; Gasbarrini, A. The human gut microbiota and virome: Potential therapeutic implications. Dig. Liver Dis., 2015, 47(12), 1007-1012.
[10]
Voigt, R.M.; Forsyth, C.B.; Green, S.J.; Mutlu, E.; Engen, P.; Vitaterna, M.H.; Turek, F.W.; Keshavarzian, A. Circadian disorganization alters intestinal microbiota. PLoS One, 2014, 9(5), e97500.
[11]
Enright, E.F.; Gahan, C.G.; Joyce, S.A.; Griffin, B.T. The impact of the gut microbiota on drug metabolism and clinical outcome. Yale J. Biol. Med., 2016, 89(3), 375-382.
[12]
Yang, W.H.; Zhang, F.X. Changes of intestinal flora microecology in model rats of radical plateau. Chin. J. Gastroenterol. Hepatol., 2010, 19(6), 543-545.
[13]
Jia, W.; Xie, G.; Jia, W. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat. Rev. Gastroenterol. Hepatol., 2018, 15(2), 111-128.
[14]
Zhang, J.; Chen, Y.; Sun, Y.; Wang, R.; Zhang, J.; Jia, Z. Plateau hypoxia attenuates the metabolic activity of intestinal flora to enhance the bioavailability of nifedipine. Drug Deliv., 2018, 25(1), 1175-1181.
[15]
Basit, A.W.; Lacey, L.F. Colonic metabolism of ranitidine: Implications for its delivery and absorption. Int. J. Pharm., 2001, 227(1-2), 157-165.
[16]
Swanson, H.I. Drug metabolism by the host and gut microbiota: a partnership or rivalry? Drug Metab. Dispos., 2015, 43(10), 1499-1504.
[17]
Dogra, S.; Sakwinska, O.; Soh, S.E.; Ngom-Bru, C.; Bruck, W.M.; Berger, B.; Brussow, H.; Lee, Y.S.; Yap, F.; Chong, Y.S.; Godfrey, K.M.; Holbrook, J.D.; Group, G.S. Dynamics of infant gut microbiota are influenced by delivery mode and gestational duration and are associated with subsequent adiposity. MBio, 2015, 6(1), 312-314.
[18]
Yatsunenko, T.; Rey, F.E.; Manary, M.J.; Trehan, I.; Dominguez-Bello, M.G.; Contreras, M.; Magris, M.; Hidalgo, G.; Baldassano, R.N.; Anokhin, A.P.; Heath, A.C.; Warner, B.; Reeder, J.; Kuczynski, J.; Caporaso, J.G.; Lozupone, C.A.; Lauber, C.; Clemente, J.C.; Knights, D.; Knight, R.; Gordon, J.I. Human gut microbiome viewed across age and geography. Nature, 2012, 486(7402), 222-227.
[19]
Franzosa, E.A.; Huang, K.; Meadow, J.F.; Gevers, D.; Lemon, K.P.; Bohannan, B.J.M.; Huttenhower, C. Identifying personal microbiomes using metagenomic codes. Proc. Natl. Acad. Sci. USA, 2015, 112(22), E2930-E2938.
[20]
Conlon, M.A.; Bird, A.R. The impact of diet and lifestyle on gut microbiota and human health. Nutrients, 2015, 7(1), 17-44.
[21]
Shen, W.; Gaskins, H.R.; McIntosh, M.K. Influence of dietary fat on intestinal microbes, inflammation, barrier function and metabolic outcomes. J. Nutr. Biochem., 2014, 25(3), 270-280.
[22]
Jiang, J.K.; Hang, X.M.; Zhang, M.; Liu, X.L.; Li, D.T.; Yang, H. Diversity of bile salt hydrolase activities in different lactobacilli toward human bile salts. Ann. Microbiol., 2010, 60(1), 81-88.
[23]
Hill, M.J.; Drasar, B.S. Degradation of bile salts by human intestinal bacteria. Gut, 1968, 9(1), 22-27.
[24]
Aries, V.; Crowther, J.S.; Drasar, B.S.; Hill, M.J. Degradation of bile salts by human intestinal bacteria. Gut, 1969, 10(7), 575-576.
[25]
Tremaroli, V.; Backhed, F. Functional interactions between the gut microbiota and host metabolism. Nature, 2012, 489(7415), 242-249.
[26]
El Aidy, S.; van den Bogert, B.; Kleerebezem, M. The small intestine microbiota, nutritional modulation and relevance for health. Curr. Opin. Biotechnol., 2015, 32, 14-20.
[27]
Zhang, J.; Zhang, J.; Wang, R. Gut microbiota modulates drug pharmacokinetics. Drug Metab. Rev., 2018, 50(3), 357-368.
[28]
Holt, R. The bacterial degradation of chloramphenicol. Lancet, 1967, 1(7502), 1259-1260.
[29]
Goldin, B.R.; Peppercorn, M.A.; Goldman, P. Contributions of host and intestinal microflora in the metabolism of L-dopa by the rat. J. Pharmacol. Exp. Ther., 1973, 186(1), 160-166.
[30]
Caldwell, J.; Hawksworth, G.M. The demethylation of methamphetamine by intestinal microflora. J. Pharm. Pharmacol., 1973, 25(5), 422-424.
[31]
Smith, G.E.; Griffiths, L.A. Metabolism of N-acylated and O-alkylated drugs by the intestinal microflora during anaerobic incubation in vitro. Xenobiotica, 1974, 4(8), 477-487.
[32]
Walsh, C.T.; Levine, R.R. Studies of the enterohepatic circulation of morphine in the rat. J. Pharmacol. Exp. Ther., 1975, 195(2), 303-310.
[33]
Gingell, R.; Bridges, J.W.; Williams, R.T. The role of the gut flora in the metabolism of prontosil and neoprontosil in the rat. Xenobiotica, 1971, 1(2), 143-156.
[34]
Peppercorn, M.A.; Goldman, P. The role of intestinal bacteria in the metabolism of salicylazosulfapyridine. J. Pharmacol. Exp. Ther., 1972, 181(3), 555-562.
[35]
Chan, R.P.; Pope, D.J.; Gilbert, A.P.; Sacra, P.J.; Baron, J.H.; Lennard-Jones, J.E. Studies of two novel sulfasalazine analogs, ipsalazide and balsalazide. Dig. Dis. Sci., 1983, 28(7), 609-615.
[36]
Wadworth, A.N.; Fitton, A. Olsalazine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in inflammatory bowel disease. Drugs, 1991, 41(4), 647-664.
[37]
Koch, R.L.; Chrystal, E.J.; Beaulieu, B.B., Jr; Goldman, P. Acetamide-a metabolite of metronidazole formed by the intestinal flora. Biochem. Pharmacol., 1979, 28(24), 3611-3615.
[38]
Volp, R.F.; Lage, G.L. The fate of a major biliary metabolite of digitoxin in the rat intestine. Drug Metab. Dispos., 1978, 6(4), 418-424.
[39]
Koch, R.L.; Beaulieu, B.B., Jr; Goldman, P. Role of the intestinal flora in the metabolism of misonidazole. Biochem. Pharmacol., 1980, 29(24), 3281-3284.
[40]
Sahota, S.S.; Bramley, P.M.; Menzies, I.S. The fermentation of lactulose by colonic bacteria. J. Gen. Microbiol., 1982, 128(2), 319-325.
[41]
Elmer, G.W.; Remmel, R.P. Role of the intestinal microflora in clonazepam metabolism in the rat. Xenobiotica, 1984, 14(11), 829-840.
[42]
Strong, H.A.; Renwick, A.G.; George, C.F.; Liu, Y.F.; Hill, M.J. The reduction of sulphinpyrazone and sulindac by intestinal bacteria. Xenobiotica, 1987, 17(6), 685-696.
[43]
Shu, Y.Z.; Kingston, D.G.; Van Tassell, R.L.; Wilkins, T.D. Metabolism of levamisole, an anti-colon cancer drug, by human intestinal bacteria. Xenobiotica, 1991, 21(6), 737-750.
[44]
Watanabe, K.; Yamashita, S.; Furuno, K.; Kawasaki, H.; Gomita, Y. Metabolism of omeprazole by gut flora in rats. J. Pharm. Sci., 1995, 84(4), 516-517.
[45]
Delomenie, C.; Fouix, S.; Longuemaux, S.; Brahimi, N.; Bizet, C.; Picard, B.; Denamur, E.; Dupret, J.M. Identification and functional characterization of arylamine N-acetyltransferases in eubacteria: evidence for highly selective acetylation of 5-aminosalicylic acid. J. Bacteriol., 2001, 183(11), 3417-3427.
[46]
Rafii, F.; Sutherland, J.B.; Hansen, E.B., Jr; Cerniglia, C.E. Reduction of nitrazepam by Clostridium leptum, a nitroreductase-producing bacterium isolated from the human intestinal tract. Clin. Infect. Dis., 1997, 25(Suppl. 2), S121-S122.
[47]
Haiser, H.J.; Turnbaugh, P.J. Developing a metagenomic view of xenobiotic metabolism. Pharmacol. Res., 2013, 69(1), 21-31.
[48]
Meuldermans, W.; Hendrickx, J.; Mannens, G.; Lavrijsen, K.; Janssen, C.; Bracke, J.; Le Jeune, L.; Lauwers, W.; Heykants, J. The metabolism and excretion of risperidone after oral administration in rats and dogs. Drug Metab. Dispos., 1994, 22(1), 129-138.
[49]
Kitamura, S.; Sugihara, K.; Kuwasako, M.; Tatsumi, K. The role of mammalian intestinal bacteria in the reductive metabolism of zonisamide. J. Pharm. Pharmacol., 1997, 49(3), 253-256.
[50]
Tozaki, H.; Emi, Y.; Horisaka, E.; Fujita, T.; Yamamoto, A.; Muranishi, S. Degradation of insulin and calcitonin and their protection by various protease inhibitors in rat caecal contents: Implications in peptide delivery to the colon. J. Pharm. Pharmacol., 1997, 49(2), 164-168.
[51]
Okuda, H.; Ogura, K.; Kato, A.; Takubo, H.; Watabe, T. A possible mechanism of eighteen patient deaths caused by interactions of sorivudine, a new antiviral drug, with oral 5-fluorouracil prodrugs. J. Pharmacol. Exp. Ther., 1998, 287(2), 791-799.
[52]
Clayton, T.A.; Baker, D.; Lindon, J.C.; Everett, J.R.; Nicholson, J.K. Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism. Proc. Natl. Acad. Sci. USA, 2009, 106(34), 14728-14733.
[53]
Roberts, A.B.; Wallace, B.D.; Venkatesh, M.K.; Mani, S.; Redinbo, M.R. Molecular insights into microbial beta-glucuronidase inhibition to abrogate CPT-11 toxicity. Mol. Pharmacol., 2013, 84(2), 208-217.
[54]
Curro, D. The role of gut microbiota in the modulation of drug action: a focus on some clinically significant issues. Expert Rev. Clin. Pharmacol., 2018, 11(2), 171-183.
[55]
Saitta, K.S.; Zhang, C.; Lee, K.K.; Fujimoto, K.; Redinbo, M.R.; Boelsterli, U.A. Bacterial beta-glucuronidase inhibition protects mice against enteropathy induced by indomethacin, ketoprofen or diclofenac: mode of action and pharmacokinetics. Xenobiotica, 2014, 44(1), 28-35.
[56]
Basit, A.W.; Newton, J.M.; Lacey, L.F. Susceptibility of the H2-receptor antagonists cimetidine, famotidine and nizatidine, to metabolism by the gastrointestinal microflora. Int. J. Pharm., 2002, 237(1-2), 23-33.
[57]
Kaddurah-Daouk, R.; Baillie, R.A.; Zhu, H.; Zeng, Z.B.; Wiest, M.M.; Nguyen, U.T.; Wojnoonski, K.; Watkins, S.M.; Trupp, M.; Krauss, R.M. Enteric microbiome metabolites correlate with response to simvastatin treatment. PLoS One, 2011, 6(10), e25482.
[58]
Kim, I.; Yoo, D.; Jung, I.; Lim, S.; Jeong, J.; Kim, K.; Bae, O.; Yoo, H.; Kim, D. Reduced metabolic activity of gut microbiota by antibiotics can potentiate the antithrombotic effect of aspirin. Biochem. Pharmacol., 2016, 122, 72-79.
[59]
Yoo, H.H.; Kim, I.S.; Yoo, D.H.; Kim, D.H. Effects of orally administered antibiotics on the bioavailability of amlodipine: Gut microbiota-mediated drug interaction. J. Hypertens., 2016, 34(1), 156-162.
[60]
Yoo, D.H.; Kim, I.S.; Le, T.K.V.; Jung, I.H.; Yoo, H.H.; Kim, D.H. Gut microbiota-mediated drug interactions between lovastatin and antibiotics. Drug Metab. Dispos., 2014, 42(9), 1508-1513.
[61]
Braune, A.; Blaut, M. Deglycosylation of puerarin and other aromatic C-glucosides by a newly isolated human intestinal bacterium. Environ. Microbiol., 2011, 13(2), 482-494.
[62]
Kim, D.H.; Yu, K.U.; Bae, E.A.; Han, M.J. Metabolism of puerarin and daidzin by human intestinal bacteria and their relation to in vitro cytotoxicity. Biol. Pharm. Bull., 1998, 21(6), 628-630.
[63]
Noh, K.; Kang, Y.; Nepal, M.R.; Jeong, K.S.; Oh, D.G.; Kang, M.J.; Lee, S.; Kang, W.; Jeong, H.G.; Jeong, T.C. Role of intestinal microbiota in baicalin-induced drug interaction and its pharmacokinetics. Molecules, 2016, 21(3), 337.
[64]
Jaganath, I.B.; Mullen, W.; Edwards, C.A.; Crozier, A. The relative contribution of the small and large intestine to the absorption and metabolism of rutin in man. Free Radic. Res., 2006, 40(10), 1035-1046.
[65]
Silvestro, L.; Tarcomnicu, I.; Dulea, C.; Attili, N.R.B.N.; Ciuca, V.; Peru, D.; Savu, S.R. Confirmation of diosmetin 3-O-glucuronide as major metabolite of diosmin in humans, using micro-liquid-chromatography-mass spectrometry and ion mobility mass spectrometry. Anal. Bioanal. Chem., 2013, 405(25), 8295-8310.
[66]
Spanogiannopoulos, P.; Bess, E.N.; Carmody, R.N.; Turnbaugh, P.J. The microbial pharmacists within us: A metagenomic view of xenobiotic metabolism. Nat. Rev. Microbiol., 2016, 14(5), 273-287.
[67]
Wallace, B.D.; Wang, H.W.; Lane, K.T.; Scott, J.E.; Orans, J.; Koo, J.S.; Venkatesh, M.; Jobin, C.; Yeh, L.A.; Mani, S.; Redinbo, M.R. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science, 2010, 330(6005), 831-835.
[68]
Takeno, S.; Hirano, Y.; Kitamura, A.; Sakai, T. Comparative developmental toxicity and metabolism of nitrazepam in rats and mice. Toxicol. Appl. Pharmacol., 1993, 121(2), 233-238.
[69]
Okuda, H.; Nishiyama, T.; Ogura, K.; Nagayama, S.; Ikeda, K.; Yamaguchi, S.; Nakamura, Y.; Kawaguchi, Y.; Watabe, T. Lethal drug interactions of sorivudine, a new antiviral drug, with oral 5-fluorouracil prodrugs. Drug Metab. Dispos., 1997, 25(5), 270-273.
[70]
Vetizou, M.; Pitt, J.M.; Daillere, R.; Lepage, P.; Waldschmitt, N.; Flament, C.; Rusakiewicz, S.; Routy, B.; Roberti, M.P.; Duong, C.P.; Poirier-Colame, V.; Roux, A.; Becharef, S.; Formenti, S.; Golden, E.; Cording, S.; Eberl, G.; Schlitzer, A.; Ginhoux, F.; Mani, S.; Yamazaki, T.; Jacquelot, N.; Enot, D.P.; Berard, M.; Nigou, J.; Opolon, P.; Eggermont, A.; Woerther, P.L.; Chachaty, E.; Chaput, N.; Robert, C.; Mateus, C.; Kroemer, G.; Raoult, D.; Boneca, I.G.; Carbonnel, F.; Chamaillard, M.; Zitvogel, L. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science, 2015, 350(6264), 1079-1084.
[71]
Shin, N.R.; Lee, J.C.; Lee, H.Y.; Kim, M.S.; Whon, T.W.; Lee, M.S.; Bae, J.W. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut, 2014, 63(5), 727-735.
[72]
Noh, K.; Kang, Y.R.; Nepal, M.R.; Shakya, R.; Kang, M.J.; Kang, W.; Lee, S.; Jeong, H.G.; Jeong, T.C. Impact of gut microbiota on drug metabolism: an update for safe and effective use of drugs. Arch. Pharm. Res., 2017, 40(12), 1345-1355.
[73]
de Lannoy, I.A.; Silverman, M. The MDR1 gene product, P-glycoprotein, mediates the transport of the cardiac glycoside, digoxin. Biochem. Biophys. Res. Commun., 1992, 189(1), 551-557.
[74]
Dobkin, J.F.; Saha, J.R.; Butler, V.P.; Neu, H.C.; Lindenbaum, J. Digoxin-inactivating bacteria - identification in human gut flora. Science, 1983, 220(4594), 325-327.
[75]
Lindenbaum, J.; Rund, D.G.; Butler, V.P.; Tseeng, D.; Saha, J.R. Inactivation of digoxin by the gut flora - reversal by antibiotic-therapy. N. Engl. J. Med., 1981, 305(14), 789-794.
[76]
Haiser, H.J.; Gootenberg, D.B.; Chatman, K.; Sirasani, G.; Balskus, E.P.; Turnbaugh, P.J. Predicting and manipulating cardiac drug inactivation by the human gut bacterium eggerthella lenta. Science, 2013, 341(6143), 295-298.
[77]
Kumar, K.; Jaiswal, S.K.; Dhoke, G.V.; Srivastava, G.N.; Sharma, A.K.; Sharma, V.K. Mechanistic and structural insight into promiscuity based metabolism of cardiac drug digoxin by gut microbial enzyme. J. Cell. Biochem., 2018, 119(7), 5287-5296.
[78]
Pollet, R.M.; D’Agostino, E.H.; Walton, W.G.; Xu, Y.M.; Little, M.S.; Biernat, K.A.; Pellock, S.J.; Patterson, L.M.; Creekmore, B.C.; Isenberg, H.N.; Bahethi, R.R.; Bhatt, A.P.; Liu, J.; Gharaibeh, R.Z.; Redinbo, M.R. An atlas of beta-glucuronidases in the human intestinal microbiome. Structure, 2017, 25(7), 967.
[79]
Stringer, A.M.; Gibson, R.J.; Logan, R.M.; Bowen, J.M.; Yeoh, A.S.; Keefe, D.M. Faecal microflora and beta-glucuronidase expression are altered in an irinotecan-induced diarrhea model in rats. Cancer Biol. Ther., 2008, 7(12), 1919-1925.
[80]
Wallace, B.D.; Wang, H.; Lane, K.T.; Scott, J.E.; Orans, J.; Koo, J.S.; Venkatesh, M.; Jobin, C.; Yeh, L.A.; Mani, S.; Redinbo, M.R. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science, 2010, 330(6005), 831-835.
[81]
Hurwitz, H.; Fehrenbacher, L.; Novotny, W.; Cartwright, T.; Hainsworth, J.; Heim, W.; Berlin, J.; Baron, A.; Griffing, S.; Holmgren, E.; Ferrara, N.; Fyfe, G.; Rogers, B.; Ross, R.; Kabbinavar, F. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med., 2004, 350(23), 2335-2342.
[82]
Wallace, B.D.; Roberts, A.B.; Pollet, R.M.; Ingle, J.D.; Biernat, K.A.; Pellock, S.J.; Venkatesh, M.K.; Guthrie, L.; O’Neal, S.K.; Robinson, S.J.; Dollinger, M.; Figueroa, E.; McShane, S.R.; Cohen, R.D.; Jin, J.; Frye, S.V.; Zamboni, W.C.; Pepe-Ranney, C.; Mani, S.; Kelly, L.; Redinbo, M.R. Structure and inhibition of microbiome beta-glucuronidases essential to the alleviation of cancer drug toxicity. Chem. Biol., 2015, 22(9), 1238-1249.
[83]
Koch, R.L.; Goldman, P. The anaerobic metabolism of metronidazole forms N-(2-hydroxyethyl)-oxamic acid. J. Pharmacol. Exp. Ther., 1979, 208(3), 406-410.
[84]
Basit, A.W.; Newton, J.M.; Lacey, L.F. Susceptibility of the H-2-receptor antagonists cimetidine, famotidine and nizatidine, to metabolism by the gastrointestinal microflora. Int. J. Pharm., 2002, 237(1-2), 23-33.
[85]
Cummings, A.J.; King, M.L.; Martin, B.K. A kinetic study of drug elimination: The excretion of paracetamol and its metabolites in man. Br. J. Pharmacol. Chemother., 1967, 29(2), 150-157.
[86]
Clements, J.A.; Heading, R.C.; Nimmo, W.S.; Prescott, L.F. Kinetics of acetaminophen absorption and gastric emptying in man. Clin. Pharmacol. Ther., 1978, 24(4), 420-431.
[87]
Claus, S.P.; Guillou, H.; Ellero-Simatos, S. The gut microbiota: a major player in the toxicity of environmental pollutants? NPJ Biofilms Microbiomes, 2016, 2, 16003.
[88]
Kumano, T.; Fujiki, E.; Hashimoto, Y.; Kobayashi, M. Discovery of a sesamin-metabolizing microorganism and a new enzyme. Proc. Natl. Acad. Sci. USA, 2016, 113(32), 9087-9092.
[89]
Ticak, T.; Kountz, D.J.; Girosky, K.E.; Krzycki, J.A.; Ferguson, D.J., Jr A nonpyrrolysine member of the widely distributed trimethylamine methyltransferase family is a glycine betaine methyltransferase. Proc. Natl. Acad. Sci. USA, 2014, 111(43), E4668-E4676.
[90]
Carter, J.H.; McLafferty, M.A.; Goldman, P. Role of the gastrointestinal microflora in amygdalin (laetrile)-induced cyanide toxicity. Biochem. Pharmacol., 1980, 29(3), 301-304.
[91]
LoGuidice, A.; Wallace, B.D.; Bendel, L.; Redinbo, M.R.; Boelsterli, U.A. Pharmacologic targeting of bacterial beta-glucuronidase alleviates nonsteroidal anti-inflammatory drug-induced enteropathy in mice. J. Pharmacol. Exp. Ther., 2012, 341(2), 447-454.
[92]
Klatt, N.R.; Cheu, R.; Birse, K.; Zevin, A.S.; Perner, M.; Noel-Romas, L.; Grobler, A.; Westmacott, G.; Xie, I.Y.; Butler, J.; Mansoor, L.; McKinnon, L.R.; Passmore, J.A.S.; Karim, Q.A.; Karim, S.S.A.; Burgener, A.D. Vaginal bacteria modify HIV tenofovir microbicide efficacy in African women. Science, 2017, 356(6341), 938-944.
[93]
Lavrijsen, K.; van Dyck, D.; van Houdt, J.; Hendrickx, J.; Monbaliu, J.; Woestenborghs, R.; Meuldermans, W.; Heykants, J. Reduction of the prodrug loperamide oxide to its active drug loperamide in the gut of rats, dogs, and humans. Drug Metab. Dispos., 1995, 23(3), 354-362.
[94]
Maurice, C.F.; Haiser, H.J.; Turnbaugh, P.J. Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell, 2013, 152(1-2), 39-50.
[95]
Perez-Cobas, A.E.; Gosalbes, M.J.; Friedrichs, A.; Knecht, H.; Artacho, A.; Eismann, K.; Otto, W.; Rojo, D.; Bargiela, R.; von Bergen, M.; Neulinger, S.C.; Daumer, C.; Heinsen, F.A.; Latorre, A.; Barbas, C.; Seifert, J.; dos Santos, V.M.; Ott, S.J.; Ferrer, M.; Moya, A. Gut microbiota disturbance during antibiotic therapy: a multi-omic approach. Gut, 2013, 62(11), 1591-1601.
[96]
Jernberg, C.; Lofmark, S.; Edlund, C.; Jansson, J.K. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J., 2007, 1(1), 56-66.
[97]
Dethlefsen, L.; Relman, D.A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl. Acad. Sci. USA, 2011, 108(Suppl. 1), 4554-4561.
[98]
De La Cochetiere, M.F.; Durand, T.; Lepage, P.; Bourreille, A.; Galmiche, J.P.; Dore, J. Resilience of the dominant human fecal microbiota upon short-course antibiotic challenge. J. Clin. Microbiol., 2005, 43(11), 5588-5592.
[99]
Lu, K.; Abo, R.P.; Schlieper, K.A.; Graffam, M.E.; Levine, S.; Wishnok, J.S.; Swenberg, J.A.; Tannenbaum, S.R.; Fox, J.G. Arsenic exposure perturbs the gut Microbiome and its metabolic profile in mice: An integrated metagenomics and metabolomics analysis. Environ. Health Perspect., 2014, 122(3), 284-291.
[100]
Kim, D.H. Gut microbiota-mediated drug-drug interactions. Drug Metab. Pharm., 2017, 32(1), S18-S19.
[101]
Machavaram, K.K.; Gundu, J.; Yamsani, M.R. Effect of ketoconazole and rifampicin on the pharmacokinetics of ranitidine in healthy human volunteers: a possible role of P-glycoprotein. Drug Metabol. Drug Interact., 2006, 22(1), 47-65.
[102]
Prieto, I.; Hidalgo, M.; Segarra, A.B.; Martinez-Rodriguez, A.M.; Cobo, A.; Ramirez, M.; Abriouel, H.; Galvez, A.; Martinez-Canamero, M. Influence of a diet enriched with virgin olive oil or butter on mouse gut microbiota and its correlation to physiological and biochemical parameters related to metabolic syndrome. PLoS One, 2018, 13(1), e0190368.
[103]
Scott, K.P.; Gratz, S.W.; Sheridan, P.O.; Flint, H.J.; Duncan, S.H. The influence of diet on the gut microbiota. Pharmacol. Res., 2013, 69(1), 52-60.
[104]
Luo, B.F.; Wang, R.; Li, W.B.; Yang, T.; Wang, C.; Lu, H.; Zhao, A.P.; Zhang, J.H.; Jia, Z.P. Pharmacokinetic changes of norfloxacin based on expression of MRP2 after acute exposure to high altitude at 4300 m. Biomed. Pharmacother., 2017, 89, 1078-1085.
[105]
Ritschel, W.A.; Paulos, C.; Arancibia, A.; Agrawal, M.A.; Wetzelsberger, K.M.; Lucker, P.W. Pharmacokinetics of acetazolamide in healthy volunteers after short- and long-term exposure to high altitude. J. Clin. Pharmacol., 1998, 38(6), 533-539.
[106]
Arancibia, A.; Nella Gai, M.; Paulos, C.; Chavez, J.; Pinilla, E.; Angel, N.; Ritschel, W.A. Effects of high altitude exposure on the pharmacokinetics of furosemide in healthy volunteers. Int. J. Clin. Pharmacol. Ther., 2004, 42(6), 314-320.
[107]
Li, X.Y.; Gao, F.; Li, Z.Q.; Guan, W.; Feng, W.L.; Ge, R.L. Comparison of the pharmacokinetics of sulfamethoxazole in male chinese volunteers at low altitude and acute exposure to high altitude versus subjects living chronically at high altitude: An open-label, controlled, prospective study. Clin. Ther., 2009, 31(11), 2744-2754.
[108]
Li, X.Y.; Liu, Y.N.; Wang, X.J.; Zhu, J.B.; Yuan, M.; Li, Y.P.; Li, Y.F. Comparison of the pharmacokinetics of sulfamethoxazole in native Han and Tibetan male Chinese volunteers living at high altitude. Eur. J. Drug Metab. Ph., 2012, 37(4), 263-269.
[109]
Gola, S.; Gupta, A.; Keshri, G.K.; Nath, M.; Velpandian, T. Evaluation of hepatic metabolism and pharmacokinetics of ibuprofen in rats under chronic hypobaric hypoxia for targeted therapy at high altitude. J. Pharmaceut. Biomed., 2016, 121, 114-122.
[110]
Zhang, J.; Wang, R.; Xie, H.; Yin, Q.; Jia, Z.; Li, W. Effect of acute exposure to high altitude on pharmacokinetics of propranolol and metoprolol in rats. Nan Fang Yi Ke Da Xue Xue Bao, 2014, 34(11), 1616-1620.
[111]
Li, W.; Jia, Z.; Xie, H.; Zhang, J.; Wang, Y.; Hao, Y.; Wang, R. Effect of acute exposure to high altitude on the pharmacokinetics of propranolol. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2013, 38(9), 909-914.
[112]
Li, W.B.; Wang, R.; Xie, H.; Zhang, J.; Xie, X.; Wu, X.; Jia, Z. Effects on the pharmacokinetics of furosemide after acute exposure to high altitude at 4010 meters in rats. Yao Xue Xue Bao, 2012, 47(12), 1718-1721.
[113]
Xiong, J.; Lu, H.; Wang, R.; Jia, Z. Efficacy of ibuprofen on prevention of high altitude headache: A systematic review and meta-analysis. PLoS One, 2017, 12(6), e0179788.
[114]
Wang, R.; Sun, Y.; Yin, Q.; Xie, H.; Li, W.; Wang, C.; Guo, J.; Hao, Y.; Tao, R.; Jia, Z. The effects of metronidazole on Cytochrome P450 Activity and Expression in rats after acute exposure to high altitude of 4300m. Biomed. Pharmacother., 2017, 85, 296-302.
[115]
Wang, C.; Wang, R.; Xie, H.; Sun, Y.; Tao, R.; Liu, W.; Li, W.; Lu, H.; Jia, Z. Effect of acetazolamide on cytokines in rats exposed to high altitude. Cytokine, 2016, 83, 110-117.
[116]
Xie, H.; Hao, Y.; Yin, Q.; Li, W.; Lu, H.; Jia, Z.; Wang, R. Expression of plateau adaptation gene of rat tissues after plain acute exposure to high altitude. Zhejiang Da Xue Xue Bao Yi Xue Ban, 2015, 44(5), 571-577.
[117]
Wang, C.; Wang, R.; Xie, H.; Yin, Q.; Jia, Z.; Li, W.; Wang, Y.; Lu, H.; Tao, R. Effect of aminophylline on physiological and pathological changes in acute exposure to high altitude in rats. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2015, 40(1), 39-45.
[118]
Li, W.; Jia, Z.; Xie, H.; Zhang, J.; Wang, Y.; Hao, Y.; Wang, R. Effects of acute exposure to high altitude on hepatic function and CYP1A2 and CYP3A4 activities in rats. Nan Fang Yi Ke Da Xue Xue Bao, 2014, 34(8), 1203-1206.
[119]
Ishii, M.; Toda, T.; Ikarashi, N.; Ochiai, W.; Sugiyama, K. Effects of intestinal flora on the expression of cytochrome P450 3A in the liver. Yakugaku Zasshi, 2012, 132(3), 301-310.
[120]
Arancibia, A.; Paulos, C.; Chavez, J.; Ritschel, W.A. Pharmacokinetics of lithium in healthy volunteers after exposure to high altitude. Int. J. Clin. Pharmacol. Ther., 2003, 41(5), 200-206.
[121]
Ritschel, W.A.; Paulos, C.; Arancibia, A.; Pezzani, M.; Agrawal, M.; Wetzelsberger, K.; Lucker, P.W. Urinary excretion of meperidine and normeperidine in man upon acute and chronic exposure to high altitude. Method Find Exp. Clin., 1996, 18(1), 49-53.
[122]
Jurgens, G.; Christensen, H.R.; Brosen, K.; Sonne, J.; Loft, S.; Olsen, N.V. Acute hypoxia and cytochrome P450-mediated hepatic drug metabolism in humans. Clin. Pharmacol. Ther., 2002, 71(4), 214-220.
[123]
Arancibia, A.; Gai, M.N.; Chavez, J.; Paulos, C.; Pinilla, E.; Gonzalez, C.; Villanueva, S.; Ritschel, W.A. Pharmacokinetics of prednisolone in man during acute and chronic exposure to high altitude. Int. J. Clin. Pharmacol. Ther., 2005, 43(2), 85-91.
[124]
Streit, M.; Goggelmann, C.; Dehnert, C.; Burhenne, J.; Riedel, K.D.; Menold, E.; Mikus, G.; Bartsch, P.; Haefeli, W.E. Cytochrome P-450 enzyme-mediated drug metabolism at exposure to acute hypoxia (corresponding to an altitude of 4,500 m). Eur. J. Clin. Pharmacol., 2005, 61(1), 39-46.
[125]
Kamimori, G.H.; Eddington, N.D.; Hoyt, R.W.; Fulco, C.S.; Lugo, S.; Durkot, M.J.; Brunhart, A.E.; Cymerman, A. Effects of altitude (4300 m) on the pharmacokinetics of caffeine and cardio-green in humans. Eur. J. Clin. Pharmacol., 1995, 48(2), 167-170.
[126]
Lu, H.; Wang, R.; Jia, Z.; Xiong, J.; Xie, H. Effects of high altitude exposure on physiology and pharmacokinetics. Curr. Drug Metab., 2016, 17(6), 559-565.
[127]
Xiong, J.; Ying, Y.; Mao, C.; Liu, Y.; Wang, T.; Zhao, Q.; Zhang, X.; Yan, F.; Zhang, H. Hypoxia induces senescence of bone marrow mesenchymal stem cells via altered gut microbiota. Nat. Commun., 2018, 9(1), 2020.
[128]
Li, W.; Li, J.; Wang, R.; Xie, H.; Jia, Z. MDR1 will play a key role in pharmacokinetic changes under hypoxia at high altitude and its potential regulatory networks. Drug Metab. Rev., 2015, 47(2), 191-198.