Review Article

用于癌症局部给药的离子液体

卷 26, 期 41, 2019

页: [7520 - 7532] 页: 13

弟呕挨: 10.2174/0929867325666181026110227

价格: $65

摘要

离子液体的独特性能使它们在从“绿色”溶剂(第一代离子液体)到微调材料(第二代离子液体)的各种应用中颇具吸引力。 十年前,出现了第三代离子液体,其专注于其潜在的临床应用,无论是药物本身还是药物制剂中的佐剂。 近年来,专注于使用离子液体进行局部药物输送的研究不断增加,并有望在临床上对抗皮肤癌。 本文重点介绍了离子液体在药物化学和制药技术中的重要性与日俱增,这为机会开辟了新的窗口。

关键词: 吸收,药物活性成分,癌症,递送,离子液体,渗透,皮肤,溶解度,局部使用。

« Previous
[1]
(a)Grech, G.; Zhan, X.; Yoo, B.C.; Bubnov, R.; Hagan, S.; Danesi, R.; Vittadini, G.; Desiderio, D.M. EPMA position paper in cancer: current overview and future perspectives. EPMA J., 2015, 6(1), 9-39.
[http://dx.doi.org/10.1186/s13167-015-0030-6] [PMID: 25908947]
(b)Organization, W.H. IARC Biennial Report 2016-2017,, 2018.
[2]
Hare, J.I.; Lammers, T.; Ashford, M.B.; Puri, S.; Storm, G.; Barry, S.T. Challenges and strategies in anti-cancer nanomedicine development: An industry perspective. Adv. Drug Deliv. Rev., 2017, 108, 25-38.
[http://dx.doi.org/10.1016/j.addr.2016.04.025] [PMID: 27137110]
[3]
Egorova, K.S.; Gordeev, E.G.; Ananikov, V.P. Biological activity of ionic liquids and their application in pharmaceutics and medicine. Chem. Rev., 2017, 117(10), 7132-7189.
[http://dx.doi.org/10.1021/acs.chemrev.6b00562] [PMID: 28125212]
[4]
Dias, A.R.; Costa-Rodrigues, J.; Fernandes, M.H.; Ferraz, R.; Prudêncio, C. The anticancer potential of ionic liquids. ChemMedChem, 2017, 12(1), 11-18.
[http://dx.doi.org/10.1002/cmdc.201600480] [PMID: 27911045]
[5]
Ferraz, R.; Branco, L.C.; Prudêncio, C.; Noronha, J.P.; Petrovski, Z. Ionic liquids as active pharmaceutical ingredients. ChemMedChem, 2011, 6(6), 975-985.
[http://dx.doi.org/10.1002/cmdc.201100082] [PMID: 21557480]
[6]
Marrucho, I.M.; Branco, L.C.; Rebelo, L.P. Ionic liquids in pharmaceutical applications. Annu. Rev. Chem. Biomol. Eng., 2014, 5, 527-546.
[http://dx.doi.org/10.1146/annurev-chembioeng-060713-040024] [PMID: 24910920]
[7]
Shamshina, J.L.; Rogers, R.D. Overcoming the problems of solid state drug formulations with ionic liquids. Ther. Deliv., 2014, 5(5), 489-491.
[http://dx.doi.org/10.4155/tde.14.28] [PMID: 24998266]
[8]
Agatemor, C.; Ibsen, K.N.; Tanner, E.E.L.; Mitragotri, S. Ionic liquids for addressing unmet needs in healthcare. Bioeng. Transl. Med., 2018, 3(1), 7-25.
[http://dx.doi.org/10.1002/btm2.10083] [PMID: 29376130]
[9]
Laus, G.; Bentivoglio, G.; Schottenberger, H.; Kahlenberg, V.; Kopacka, H.; Röder, T.; Sixta, H. Ionic liquids: Current developments, potential and drawbacks for industrial applications. Lenzinger Ber., 2005, 84, 71-85.
[10]
Angell, C.A.; Ansari, Y.; Zhao, Z. Ionic liquids: past, present and future. Faraday Discuss., 2012, 154, 9-27.
[http://dx.doi.org/10.1039/C1FD00112D] [PMID: 22455011]
[11]
Welton, T. Ionic liquids: a brief history. Biophys. Rev., 2018, 10(3), 691-706.
[http://dx.doi.org/10.1007/s12551-018-0419-2] [PMID: 29700779]
[12]
Walden, P. Ueber die Molekulargrösse und elektrische Leitfähigkeit einiger geschmolzenen Salze. Bull. Sci. Acad. Imp. Sci. St. Petersb., 1914, 8(6), 405-422.
[13]
Ferraz, R.; Teixeira, C.; Gomes, P.; Prudencio, C. Bioactivity of ionic liquids In: Ionic Liquid Devices; Eftekhari, A. Ed.; The royal society of chemistry,, 2018; p. 404-422.
[http://dx.doi.org/10.1039/9781788011839]
[14]
Shamshina, J.L.; Berton, P.; Wang, H.; Zhou, X.; Gurau, G.; Rogers, R. Ionic liquids in the pharmaceutical industry In: Green Techniques for Organic Synthesis and Medicinal Chemistry 2nd Edition; Zhang, W.; Cue, B.W., Eds.; John Wiley & Sons, Ltd., 2018; p. 541-577.
[http://dx.doi.org/10.1002/9781119288152.ch20]
[15]
Pacholec, F.; Butler, H.T.; Poole, C.F. Molten organic salt phase for gas-liquid-chromatography. Anal. Chem., 1982, 54(12), 1938-1941.
[http://dx.doi.org/10.1021/ac00249a006]
[16]
Poole, S.K.; Shetty, P.H.; Poole, C.F. Chromatographic and spectroscopic studies of the solvent properties of a new series of room-temperature liquid tetraalkylammonium sulfonates. Anal. Chim. Acta, 1989, 218(2), 241-264.
[http://dx.doi.org/10.1016/S0003-2670(00)80302-5]
[17]
Ho, T.D.; Zhang, C.; Hantao, L.W.; Anderson, J.L. Ionic liquids in analytical chemistry: fundamentals, advances, and perspectives. Anal. Chem., 2014, 86(1), 262-285.
[http://dx.doi.org/10.1021/ac4035554] [PMID: 24205989]
[18]
Anderson, J.L.; Armstrong, D.W.; Wei, G.T. Ionic liquids in analytical chemistry. Anal. Chem., 2006, 78(9), 2892-2902.
[http://dx.doi.org/10.1021/ac069394o] [PMID: 16802464]
[19]
Smith, G.P.; Dworkin, A.S.; Pagni, R.M.; Zingg, S.P. Broensted superacidity of hydrochloric acid in a liquid chloroaluminate. Aluminum chloride - 1-ethyl-3-methyl-1H-imidazolium chloride (55.O m/o AlCl3). J. Am. Chem. Soc., 1989, 111(2), 525-530.
[http://dx.doi.org/10.1021/ja00184a020]
[20]
Pernak, J.; Czepukowicz, A.; Pozniak, R. New ionic liquids and their antielectrostatic properties. Ind. Eng. Chem. Res., 2001, 40(11), 2379-2383.
[http://dx.doi.org/10.1021/ie000689g]
[21]
Boon, J.A.; Levisky, J.A.; Pflug, J.L.; Wilkes, J.S. Friedel crafts reactions in ambient-temperature molten-salts. J. Org. Chem., 1986, 51(4), 480-483.
[http://dx.doi.org/10.1021/jo00354a013]
[22]
Hussey, C.L. Room-temperature haloaluminate ionic liquids - novel solvents for transition-metal solution chemistry. Pure Appl. Chem., 1988, 60(12), 1763-1772.
[http://dx.doi.org/10.1351/pac198860121763]
[23]
Wilkes, J.S. A short history of ionic liquids-from molten salts to neoteric. Green Chem., 2002, 4(2), 73-80.
[http://dx.doi.org/10.1039/b110838g]
[24]
Wilkes, J.S.; Zaworotko, M.J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J. Chem. Soc. Chem. Commun., 1992, (13), 965-967.
[http://dx.doi.org/10.1039/c39920000965]
[25]
Jaeger, D.A.; Tucker, C.E. Diels-Alder reactions in ethylammonium nitrate, a low-melting fused salt. Tetrahedron Lett., 1989, 30(14), 1785-1788.
[http://dx.doi.org/10.1016/S0040-4039(00)99579-0]
[26]
Fischer, T.; Sethi, A.; Welton, T.; Woolf, J. Diels-Alder reactions in room-temperature ionic liquids. Tetrahedron Lett., 1999, 40(4), 793-796.
[http://dx.doi.org/10.1016/S0040-4039(98)02415-0]
[27]
Earle, M.J.; McCormac, P.B.; Seddon, K.R. Diels-Alder reactions in ionic liquids - A safe recyclable alternative to lithium perchlorate-diethyl ether mixtures. Green Chem., 1999, 1(1), 23-25.
[http://dx.doi.org/10.1039/a808052f]
[28]
(a)Freemantle, M. Designer solvents - Ionic liquids may boost clean technology development. Chem. Eng. News, 1998, 76(13), 32-37.
[http://dx.doi.org/10.1021/cen-v076n013.p032]
(b)Badri, M.; Brunet, J.J. Ionic liquids as solvents for the regioselective o-alkylation of C/O ambident nucleophiles. Tetrahedron Lett., 1992, 33(31), 4435-4438.
[http://dx.doi.org/10.1016/S0040-4039(00)60103-X]
[29]
Visser, A.E.; Swatloski, R.P.; Reichert, W.M.; Mayton, R.; Sheff, S.; Wierzbicki, A.; Davis, J.H.; Rogers, R.D. Task-specific ionic liquids for the extraction of metal ions from aqueous solutions. Chem. Commun., 2001, 1(1), 135-136.
[http://dx.doi.org/10.1039/b008041l]
[30]
Pernak, J.; Sobaszkiewicz, K.; Mirska, I. Anti-microbial activities of ionic liquids. Green Chem., 2003, 5(1), 52-56.
[http://dx.doi.org/10.1039/b207543c]
[31]
Pernak, J.; Chwała, P. Synthesis and anti-microbial activities of choline-like quaternary ammonium chlorides. Eur. J. Med. Chem., 2003, 38(11-12), 1035-1042.
[http://dx.doi.org/10.1016/j.ejmech.2003.09.004] [PMID: 14642336]
[32]
Pernak, J.; Kalewska, J.; Ksycińska, H.; Cybulski, J. Synthesis and anti-microbial activities of some pyridinium salts with alkoxymethyl hydrophobic group. Eur. J. Med. Chem., 2001, 36(11-12), 899-907.
[http://dx.doi.org/10.1016/S0223-5234(01)01280-6] [PMID: 11755232]
[33]
Pernak, J.; Rogoza, J.; Mirska, I. Synthesis and antimicrobial activities of new pyridinium and benzimidazolium chlorides. Eur. J. Med. Chem., 2001, 36(4), 313-320.
[http://dx.doi.org/10.1016/S0223-5234(01)01226-0] [PMID: 11461756]
[34]
Carter, E.B.; Culver, S.L.; Fox, P.A.; Goode, R.D.; Ntai, I.; Tickell, M.D.; Traylor, R.K.; Hoffman, N.W.; Davis, J.H. Sweet success: ionic liquids derived from non-nutritive sweeteners. Chem. Commun., 2004, 6, 630-631.
[http://dx.doi.org/10.1039/b313068a] [PMID: 15010753]
[35]
Pretti, C.; Chiappe, C.; Pieraccini, D.; Gregori, M.; Abramo, F.; Monni, G.; Intorre, L. Acute toxicity of ionic liquids to the zebrafish (Danio rerio). Green Chem., 2006, 8(3), 238-240.
[http://dx.doi.org/10.1039/B511554J]
[36]
Azevedo, A.M.O.; Costa, S.P.F.; Dias, A.F.V.; Marques, A.H.O.; Pinto, P.; Bica, K.; Ressmann, A.K.; Passos, M.L.C.; Araujo, A.; Reis, S.; Saraiva, M. Anti-inflammatory choline based ionic liquids: Insights into their lipophilicity, solubility and toxicity parameters. J. Mol. Liq., 2017, 232, 20-26.
[http://dx.doi.org/10.1016/j.molliq.2017.02.027]
[37]
Freidig, A.P.; Dekkers, S.; Verwei, M.; Zvinavashe, E.; Bessems, J.G.M.; van de Sandt, J.J.M. Development of a QSAR for worst case estimates of acute toxicity of chemically reactive compounds. Toxicol. Lett., 2007, 170(3), 214-222.
[http://dx.doi.org/10.1016/j.toxlet.2007.03.008] [PMID: 17462838]
[38]
Pernak, J.; Smiglak, M.; Griffin, S.T.; Hough, W.L.; Wilson, T.B.; Pernak, A.; Zabielska-Matejuk, J.; Fojutowski, A.; Kita, K.; Rogers, R.D. Long alkyl chain quaternary ammonium-based ionic liquids and potential applications. Green Chem., 2006, 8(9), 798-806.
[http://dx.doi.org/10.1039/b604353d]
[39]
Swatloski, R.P.; Holbrey, J.D.; Rogers, R.D. Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate. Green Chem., 2003, 5(4), 361-363.
[http://dx.doi.org/10.1039/b304400a]
[40]
Demberelnyamba, D.; Kim, K.S.; Choi, S.; Park, S.Y.; Lee, H.; Kim, C.J.; Yoo, I.D. Synthesis and antimicrobial properties of imidazolium and pyrrolidinonium salts. Bioorg. Med. Chem., 2004, 12(5), 853-857.
[http://dx.doi.org/10.1016/j.bmc.2004.01.003] [PMID: 14980596]
[41]
Pernak, J.; Skrzypczak, A.; Lota, G.; Frackowiak, E. Synthesis and properties of trigeminal tricationic ionic liquids. Chemistry, 2007, 13(11), 3106-3112.
[http://dx.doi.org/10.1002/chem.200601243] [PMID: 17212367]
[42]
Kathiravan, M.K.; Salake, A.B.; Chothe, A.S.; Dudhe, P.B.; Watode, R.P.; Mukta, M.S.; Gadhwe, S. The biology and chemistry of antifungal agents: a review. Bioorg. Med. Chem., 2012, 20(19), 5678-5698.
[http://dx.doi.org/10.1016/j.bmc.2012.04.045] [PMID: 22902032]
[43]
Petkovic, M.; Ferguson, J.; Bohn, A.; Trindade, J.; Martins, I.; Carvalho, M.B.; Leitao, M.C.; Rodrigues, C.; Garcia, H.; Ferreira, R.; Seddon, K.R.; Rebelo, L.P.N.; Pereira, C.S. Exploring fungal activity in the presence of ionic liquids. Green Chem., 2009, 11(6), 889-894.
[http://dx.doi.org/10.1039/b823225c]
[44]
Ferraz, R.; Costa-Rodrigues, J.; Fernandes, M.H.; Santos, M.M.; Marrucho, I.M.; Rebelo, L.P.N.; Prudêncio, C.; Noronha, J.P.; Petrovski, Ž.; Branco, L.C. Antitumor activity of ionic liquids based on ampicillin. ChemMedChem, 2015, 10(9), 1480-1483.
[http://dx.doi.org/10.1002/cmdc.201500142] [PMID: 26190053]
[45]
Kumar, V.; Malhotra, S.V. Study on the potential anti-cancer activity of phosphonium and ammonium-based ionic liquids. Bioorg. Med. Chem. Lett., 2009, 19(16), 4643-4646.
[http://dx.doi.org/10.1016/j.bmcl.2009.06.086] [PMID: 19615902]
[46]
Hough, W.L.; Smiglak, M.; Rodriguez, H.; Swatloski, R.P.; Spear, S.K.; Daly, D.T.; Pernak, J.; Grisel, J.E.; Carliss, R.D.; Soutullo, M.D.; Davis, J.H.; Rogers, R.D. The third evolution of ionic liquids: active pharmaceutical ingredients. New J. Chem., 2007, 31, 1429-1436.
[http://dx.doi.org/10.1039/b706677p]
[47]
Bica, K.; Rogers, R.D. Confused ionic liquid ions--a “liquification” and dosage strategy for pharmaceutically active salts. Chem. Commun. (Camb.), 2010, 46(8), 1215-1217.
[http://dx.doi.org/10.1039/b925147b] [PMID: 20449254]
[48]
Chatel, G.; Pereira, J.F.B.; Debbeti, V.; Wang, H.; Rogers, R.D. Mixing ionic liquids -“simple mixtures” or “double salts”? Green Chem., 2014, 16, 2051-2083.
[http://dx.doi.org/10.1039/c3gc41389f]
[49]
Kore, R.; Kelley, S.P.; Aduri, P.; Rogers, R.D. Mixed metal double salt ionic liquids comprised of [HN222]2[ZnCl4] and AlCl3 provide tunable Lewis acid catalysts related to the ionic environment. Dalton Trans., 2018, 47(23), 7795-7803.
[http://dx.doi.org/10.1039/C8DT00976G] [PMID: 29850701]
[50]
Huang, H.; Gurau, G.; Shamshina, J.; Cojocaru, O.A.; Janikowski, J.; MacFarlane, D.R.; Davis, J.H. Jr.; Rogers, R.D. Simultaneous membrane transport of two active pharmaceutical ingredients by charge assisted hydrogen bond complex formation. Chem. Sci. (Camb.), 2014, 5, 3449-3456.
[http://dx.doi.org/10.1039/C4SC01036A]
[51]
Shamshina, J.L.; Kelley, S.P.; Gurau, G.; Rogers, R.D. Chemistry: Develop ionic liquid drugs. Nature, 2015, 528(7581), 188-189.
[http://dx.doi.org/10.1038/528188a] [PMID: 26659168]
[52]
Kumar, V.; Malhotra Sanjay, V. Ionic liquids as pharmaceutical salts: a historical perspective in: Ionic Liquid Applications: Pharmaceuticals, Therapeutics, and Biotechnology; Malhotra, S.W., Ed.; American Chemical Society: Washington, DC, 2010, pp. 1-12.
[http://dx.doi.org/10.1021/bk-2010-1038.ch001]
[53]
Earle, M.J.; Seddon, K.R. Ionic liquids. Green solvents for the future. Pure Appl. Chem., 2000, 72(7), 1391-1398.
[http://dx.doi.org/10.1351/pac200072071391]
[54]
Carson, L.; Chau, P.K.W.; Earle, M.J.; Gilea, M.A.; Gilmore, B.F.; Gorman, S.P.; McCann, M.T.; Seddon, K.R. Antibiofilm activities of 1-alkyl-3-methylimidazolium chloride ionic liquids. Green Chem., 2009, 11(4), 492-497.
[http://dx.doi.org/10.1039/b821842k]
[55]
Ferraz, R.; Noronha, J.; Murtinheira, F.; Nogueira, F.; Machado, M.; Prudencio, M.; Parapini, S.; D’Alessandro, S.; Teixeira, C.; Gomes, A.; Prudencio, C.; Gomes, P. Primaquine-based ionic liquids as a novel class of antimalarial hits. RSC Advances, 2016, 6(61), 56134-56138.
[http://dx.doi.org/10.1039/C6RA10759A]
[56]
Ferraz, R.; Branco, L.C.; Marrucho, I.M.; Araujo, J.M.M.; Rebelo, L.P.N.; da Ponte, M.N.; Prudencio, C.; Noronha, J.P.; Petrovski, Z. Development of novel ionic liquids based on ampicillin. MedChemComm, 2012, 3(4), 494-497.
[http://dx.doi.org/10.1039/c2md00269h]
[57]
Bica, K.; Rijksen, C.; Nieuwenhuyzen, M.; Rogers, R.D. In search of pure liquid salt forms of aspirin: ionic liquid approaches with acetylsalicylic acid and salicylic acid. Phys. Chem. Chem. Phys., 2010, 12(8), 2011-2017.
[http://dx.doi.org/10.1039/b923855g] [PMID: 20145871]
[58]
Zavgorodnya, O.; Shamshina, J.L.; Mittenthal, M.; McCrary, P.D.; Rachiero, G.P.; Titi, H.M.; Rogers, R.D. Polyethylene glycol derivatization of the non-active ion in active pharmaceutical ingredient ionic liquids enhances transdermal delivery. New J. Chem., 2017, 41(4), 1499-1508.
[http://dx.doi.org/10.1039/C6NJ03709G]
[59]
Cojocaru, O.A.; Bica, K.; Gurau, G.; Narita, A.; McCrary, P.D.; Shamshina, J.L.; Barber, P.S.; Rogers, R.D. Prodrug ionic liquids: functionalizing neutral active pharmaceutical ingredients to take advantage of the ionic liquid form. MedChemComm, 2013, 4(3), 559-563.
[http://dx.doi.org/10.1039/c3md20359j]
[60]
McCrary, P.D.; Beasley, P.A.; Gurau, G.; Narita, A.; Barber, P.S.; Cojocaru, O.A.; Rogers, R.D. Drug specific, tuning of an ionic liquid’s hydrophilic-lipophilic balance to improve water solubility of poorly soluble active pharmaceutical ingredients. New J. Chem., 2013, 37(7), 2196-2202.
[http://dx.doi.org/10.1039/c3nj00454f]
[61]
Malhotra, S.V.; Kumar, V. A profile of the in vitro anti-tumor activity of imidazolium-based ionic liquids. Bioorg. Med. Chem. Lett., 2010, 20(2), 581-585.
[http://dx.doi.org/10.1016/j.bmcl.2009.11.085] [PMID: 20006501]
[62]
Frade, R.F.M.; Matias, A.; Branco, L.C.; Afonso, C.A.M.; Duarte, C.M.M. Effect of ionic liquids on human colon carcinoma HT-29 and CaCo-2 cell lines. Green Chem., 2007, 9(8), 873-877.
[http://dx.doi.org/10.1039/b617526k]
[63]
Frade, R.F.M.; Matias, A.; Branco, L.C.; Lourenco, N.M.T.; Rosa, J.N.; Afonso, C.A.M.; Duarte, C.M.M. Toxicological evaluation of ionic liquids effect of ionic liquids on human colon carcinoma HT-29 and CaCo-2 cell lines in: Ionic Liquid Applications: Pharmaceuticals, Therapeutics, and Biotechnology; Malhotra, S.V., Ed.; American Chemical Society, 2010, pp. 135-144.
[http://dx.doi.org/10.1021/bk-2010-1038.ch011]
[64]
Frade, R.F.M.; Rosatella, A.A.; Marques, C.S.; Branco, L.C.; Kulkarni, P.S.; Mateus, N.M.M.; Afonso, C.A.M.; Duarte, C.M.M. Toxicological evaluation on human colon carcinoma cell line (CaCo-2) of ionic liquids based on imidazolium, guanidinium, ammonium, phosphonium, pyridinium and pyrrolidinium cations. Green Chem., 2009, 11(10), 1660-1665.
[http://dx.doi.org/10.1039/b914284n]
[65]
Kumar, R.A.; Papaïconomou, N.; Lee, J.M.; Salminen, J.; Clark, D.S.; Prausnitz, J.M. In vitro cytotoxicities of ionic liquids: effect of cation rings, functional groups, and anions. Environ. Toxicol., 2009, 24(4), 388-395.
[http://dx.doi.org/10.1002/tox.20443] [PMID: 18825729]
[66]
Fister, S.; Mester, P.; Sommer, J.; Witte, A.K.; Kalb, R.; Wagner, M.; Rossmanith, P. Virucidal influence of ionic liquids on phages P100 and MS2. Front. Microbiol., 2017, 8, 1608.
[http://dx.doi.org/10.3389/fmicb.2017.01608] [PMID: 28883814]
[67]
Duarte, A.R.C.; Ferreira, A.S.D.; Barreiros, S.; Cabrita, E.; Reis, R.L.; Paiva, A. A comparison between pure active pharmaceutical ingredients and therapeutic deep eutectic solvents: Solubility and permeability studies. Eur. J. Pharm. Biopharm., 2017, 114, 296-304.
[http://dx.doi.org/10.1016/j.ejpb.2017.02.003] [PMID: 28189620]
[68]
Cole, M.R.; Hobden, J.A.; Warner, I.M. Recycling antibiotics into GUMBOS: a new combination strategy to combat multi-drug-resistant bacteria. Molecules, 2015, 20(4), 6466-6487.
[http://dx.doi.org/10.3390/molecules20046466] [PMID: 25867831]
[69]
Goindi, S.; Arora, P.; Kumar, N.; Puri, A. Development of novel ionic liquid-based microemulsion formulation for dermal delivery of 5-Fluorouracil. AAPS PharmSciTech, 2014, 15(4), 810-821.
[http://dx.doi.org/10.1208/s12249-014-0103-1] [PMID: 24668136]
[70]
Ferraz, R.; Teixeira, V.; Rodrigues, D.; Fernandes, R.; Prudencio, C.; Noronha, J.P.; Petrovski, Z.; Branco, L.C. Antibacterial activity of ionic liquids based on ampicillin against resistant bacteria. RSC Advances, 2014, 4(9), 4301-4307.
[http://dx.doi.org/10.1039/C3RA44286A]
[71]
Egorova, K.S.; Seitkalieva, M.M.; Posvyatenko, A.V.; Khrustalev, V.N.; Ananikov, V.P. Cytotoxic activity of salicylic acid-containing drug models with ionic and covalent binding. ACS Med. Chem. Lett., 2015, 6(11), 1099-1104.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00258] [PMID: 26617961]
[72]
Rao, V.K.; Tiwari, R.; Chhikara, B.S.; Shirazi, A.N.; Parang, K.; Kumar, A. Copper triflate-mediated synthesis of 1,3,5-triarylpyrazoles in [bmim][PF6] ionic liquid and evaluation of their anticancer activities. RSC Advances, 2013, 3(35), 15396-15403.
[http://dx.doi.org/10.1039/c3ra41830h] [PMID: 24163734]
[73]
Chowdhury, M.R.; Moshikur, R.M.; Wakabayashi, R.; Tahara, Y.; Kamiya, N.; Moniruzzaman, M.; Goto, M. Ionic-liquid-based paclitaxel preparation: a new potential formulation for cancer treatment. Mol. Pharm., 2018, 15(6), 2484-2488.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00305] [PMID: 29762034]
[74]
Wang, X.F.; Ohlin, C.A.; Lu, Q.H.; Fei, Z.F.; Hu, J.; Dyson, P.J. Cytotoxicity of ionic liquids and precursor compounds towards human cell line HeLa. Green Chem., 2007, 9(11), 1191-1197.
[http://dx.doi.org/10.1039/b704503d]
[75]
Kaushik, N.K.; Attri, P.; Kaushik, N.; Choi, E.H. Synthesis and antiproliferative activity of ammonium and imidazolium ionic liquids against T98G brain cancer cells. Molecules, 2012, 17(12), 13727-13739.
[http://dx.doi.org/10.3390/molecules171213727] [PMID: 23174892]
[76]
Jing, C.; Li, X.; Zhang, J.; Wang, J. Responses of the antioxidant system in QGY-7701 cells to the cytotoxicity and apoptosis induced by 1-octyl-3-methylimidazolium chloride. J. Biochem. Mol. Toxicol., 2013, 27(6), 330-336.
[http://dx.doi.org/10.1002/jbt.21495] [PMID: 23696008]
[77]
Li, X.; Ma, J.; Wang, J. Cytotoxicity, oxidative stress, and apoptosis in HepG2 cells induced by ionic liquid 1-methyl-3-octylimidazolium bromide. Ecotoxicol. Environ. Saf., 2015, 120, 342-348.
[http://dx.doi.org/10.1016/j.ecoenv.2015.06.018] [PMID: 26099465]
[78]
Yu, L.X.; Amidon, G.L.; Polli, J.E.; Zhao, H.; Mehta, M.U.; Conner, D.P.; Shah, V.P.; Lesko, L.J.; Chen, M.L.; Lee, V.H.L.; Hussain, A.S. Biopharmaceutics classification system: the scientific basis for biowaiver extensions. Pharm. Res., 2002, 19(7), 921-925.
[http://dx.doi.org/10.1023/A:1016473601633] [PMID: 12180542]
[79]
Löbenberg, R.; Amidon, G.L. Modern bioavailability, bioequivalence and biopharmaceutics classification system. New scientific approaches to international regulatory standards. Eur. J. Pharm. Biopharm., 2000, 50(1), 3-12.
[http://dx.doi.org/10.1016/S0939-6411(00)00091-6] [PMID: 10840189]
[80]
Kuchlyan, J.; Kundu, N.; Sarkar, N. Ionic liquids in microemulsions: Formulation and characterization. Curr. Opin. Colloid Interface Sci., 2016, 25, 27-38.
[http://dx.doi.org/10.1016/j.cocis.2016.05.011]
[81]
Moniruzzaman, M.; Goto, M. Ionic liquids: future solvents and reagents for pharmaceuticals. J. Chem. Eng. of Jpn, 2011, 44(6), 370-381.
[http://dx.doi.org/10.1252/jcej.11we015]
[82]
Santos, D. Micelle formation of protic ionic liquids in aqueous solution. J. Chem. Eng. Data, 2018, 63(5), 1480-1487.
[http://dx.doi.org/10.1021/acs.jced.7b01053]
[83]
Nakamura, R.; Tokuda, M.; Suzuki, T.; Minami, H. Preparation of poly(ionic liquid) hollow particles with switchable permeability. Langmuir, 2016, 32(10), 2331-2337.
[http://dx.doi.org/10.1021/acs.langmuir.6b00263] [PMID: 26908213]
[84]
Tian, T.T.; Qin, J.Q.; Gao, Y.A.; Yu, L. Experimental and DFT studies on aggregation behavior of dodecylsulfonate-based surface active ionic liquids in water and ethylammonium nitrate. J. Mol. Liq., 2016, 218, 457-464.
[http://dx.doi.org/10.1016/j.molliq.2016.02.074]
[85]
Shi, S.X.; Yin, T.X.; Tao, X.Y.; Shen, W.G. Light induced micelle to vesicle transition in an aqueous solution of a surface active ionic liquid. RSC Advances, 2015, 5(92), 75806-75809.
[http://dx.doi.org/10.1039/C5RA12047K]
[86]
Goindi, S.; Kaur, R.; Kaur, R. An ionic liquid-in-water microemulsion as a potential carrier for topical delivery of poorly water soluble drug: Development, ex-vivo and in-vivo evaluation. Int. J. Pharm., 2015, 495(2), 913-923.
[http://dx.doi.org/10.1016/j.ijpharm.2015.09.066] [PMID: 26456294]
[87]
Zakrewsky, M.; Lovejoy, K.S.; Kern, T.L.; Miller, T.E.; Le, V.; Nagy, A.; Goumas, A.M.; Iyer, R.S.; Del Sesto, R.E.; Koppisch, A.T.; Fox, D.T.; Mitragotri, S. Ionic liquids as a class of materials for transdermal delivery and pathogen neutralization. Proc. Natl. Acad. Sci. USA, 2014, 111(37), 13313-13318.
[http://dx.doi.org/10.1073/pnas.1403995111] [PMID: 25157174]
[88]
Suresh, C.; Zhao, H.; Gumbs, A.; Chetty, C.S.; Bose, H.S. New ionic derivatives of betulinic acid as highly potent anti-cancer agents. Bioorg. Med. Chem. Lett., 2012, 22(4), 1734-1738.
[http://dx.doi.org/10.1016/j.bmcl.2011.12.102] [PMID: 22264477]
[89]
Torin Huzil, J.; Sivaloganathan, S.; Kohandel, M.; Foldvari, M. Drug delivery through the skin: molecular simulations of barrier lipids to design more effective noninvasive dermal and transdermal delivery systems for small molecules, biologics, and cosmetics. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2011, 3(5), 449-462.
[http://dx.doi.org/10.1002/wnan.147] [PMID: 21595050]
[90]
Watkinson, H.A.E.B.C. Topical and transdermal drug delivery; Wiley Online Books, 2018.
[91]
Brown, M.B.; Martin, G.P.; Jones, S.A.; Akomeah, F.K. Dermal and transdermal drug delivery systems: current and future prospects. Drug Deliv., 2006, 13(3), 175-187.
[http://dx.doi.org/10.1080/10717540500455975] [PMID: 16556569]
[92]
Singh Malik, D.; Mital, N.; Kaur, G. Topical drug delivery systems: a patent review. Expert Opin. Ther. Pat., 2016, 26(2), 213-228.
[http://dx.doi.org/10.1517/13543776.2016.1131267] [PMID: 26651499]
[93]
Adawiyah, N.; Moniruzzaman, M.; Hawatulaila, S.; Goto, M. Ionic liquids as a potential tool for drug delivery systems. MedChemComm, 2016, 7(10), 1881-1897.
[http://dx.doi.org/10.1039/C6MD00358C]
[94]
Berton, P.; Di Bona, K.R.; Yancey, D.; Rizvi, S.A.A.; Gray, M.; Gurau, G.; Shamshina, J.L.; Rasco, J.F.; Rogers, R.D. Transdermal bioavailability in rats of lidocaine in the forms of ionic liquids, salts, and deep eutectic. ACS Med. Chem. Lett., 2017, 8(5), 498-503.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00504] [PMID: 28523100]
[95]
Dobler, D.; Schmidts, T.; Klingenhöfer, I.; Runkel, F. Ionic liquids as ingredients in topical drug delivery systems. Int. J. Pharm., 2013, 441(1-2), 620-627.
[http://dx.doi.org/10.1016/j.ijpharm.2012.10.035] [PMID: 23123180]
[96]
Moniruzzaman, M.; Kamiya, N.; Goto, M. Ionic liquid based microemulsion with pharmaceutically accepted components: Formulation and potential applications. J. Colloid Interface Sci., 2010, 352(1), 136-142.
[http://dx.doi.org/10.1016/j.jcis.2010.08.035] [PMID: 20825949]
[97]
Moniruzzaman, M.; Tamura, M.; Tahara, Y.; Kamiya, N.; Goto, M. Ionic liquid-in-oil microemulsion as a potential carrier of sparingly soluble drug: characterization and cytotoxicity evaluation. Int. J. Pharm., 2010, 400(1-2), 243-250.
[http://dx.doi.org/10.1016/j.ijpharm.2010.08.034] [PMID: 20813174]
[98]
Dobler, D.; Schmidts, T.; Zinecker, C.; Schlupp, P.; Schäfer, J.; Runkel, F. Hydrophilic ionic liquids as ingredients of gel-based dermal formulations. AAPS PharmSciTech, 2016, 17(4), 923-931.
[http://dx.doi.org/10.1208/s12249-015-0421-y] [PMID: 27435197]
[99]
Santos de Almeida, T.; Júlio, A.; Saraiva, N.; Fernandes, A.S.; Araújo, M.E.M.; Baby, A.R.; Rosado, C.; Mota, J.P. Choline- versus imidazole-based ionic liquids as functional ingredients in topical delivery systems: cytotoxicity, solubility, and skin permeation studies. Drug Dev. Ind. Pharm., 2017, 43(11), 1858-1865.
[http://dx.doi.org/10.1080/03639045.2017.1349788] [PMID: 28665154]
[100]
Wang, C.; Zhu, J.; Zhang, D.; Yang, Y.; Zheng, L.; Qu, Y.; Yang, X.; Cui, X. Ionic liquid - microemulsions assisting in the transdermal delivery of Dencichine: Preparation, in-vitro and in-vivo evaluations, and investigation of the permeation mechanism. Int. J. Pharm., 2018, 535(1-2), 120-131.
[http://dx.doi.org/10.1016/j.ijpharm.2017.10.024] [PMID: 29104058]
[101]
Monti, D.; Egiziano, E.; Burgalassi, S.; Chetoni, P.; Chiappe, C.; Sanzone, A.; Tampucci, S. Ionic liquids as potential enhancers for transdermal drug delivery. Int. J. Pharm., 2017, 516(1-2), 45-51.
[http://dx.doi.org/10.1016/j.ijpharm.2016.11.020] [PMID: 27836753]
[102]
Miwa, Y.; Hamamoto, H.; Ishida, T. Lidocaine self-sacrificially improves the skin permeation of the acidic and poorly water-soluble drug etodolac via its transformation into an ionic liquid. Eur. J. Pharm. Biopharm., 2016, 102, 92-100.
[http://dx.doi.org/10.1016/j.ejpb.2016.03.003] [PMID: 26945484]
[103]
Martinho, N.; Damgé, C.; Reis, C.P. Recent advances in drug delivery systems. J. Biom. Nanobiotech., 2011, 2(5), 510-526.
[http://dx.doi.org/10.4236/jbnb.2011.225062]
[104]
Korting, H.C.; Schäfer-Korting, M. Carriers in the topical treatment of skin disease. Handb. Exp. Pharmacol., 2010, (197), 435-468.
[http://dx.doi.org/10.1007/978-3-642-00477-3_15] [PMID: 20217539]
[105]
Chinembiri, T.N.; Gerber, M.; du Plessis, L.; du Preez, J.; du Plessis, J. Topical delivery of 5-fluorouracil from Pheroid™ formulations and the in vitro efficacy against human melanoma. AAPS PharmSciTech, 2015, 16(6), 1390-1399.
[http://dx.doi.org/10.1208/s12249-015-0328-7] [PMID: 25956486]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy