[1]
Berg, J.M.; Stryer, L.; Tymoczko, J.L. Bioquímica. Reverté, 6th ed; W.H. Freeman and Company: Barcelona, Spain, 2007.
[2]
Rahman, M.M. Reusable and mediator-free cholesterol biosensor based on cholesterol oxidase immobilized onto TGA-SAM modified smart bio-chips. PLoS One, 2014, 9(6), e100327.
[3]
Brena, B.; González-Pombo, P.; Batista-Viera, F. Immobilization of Enzymes: A Literature Survey.In: Guisan, J.; (eds.) Immobilization of Enzymes and Cells. Methods in Molecular Biology (Methods and Protocols); vol. 1051. Humana Press Totowa, NJ, 2013, Vol. 1051, pp. 15-30.
[4]
Stryer, L. Metabolism: Basic Concepts And Design. In: Biochemistry, 4th ed; W.H. Freeman and Company: New York, 1995; pp. 444-460.
[5]
Creighton, T.E. Proteins: Structure and Molecular Principles, 2nd ed; Freeman W.H. and Company: New York, 1984.
[6]
Katchalski-Katzir, E. Immobilized enzymes-learning from past successes and failures. Trends Biotechnol., 1993, 11(11), 471-478.
[7]
Mori, T.; Sato, T.; Tosa, T.; Chibata, I. Studies on immobilized enzymes. X. Preparation and properties of aminoacylase entrapped into acrylamide gel-lattice. Enzymologia, 1972, 43(4), 213.
[8]
Tischer, W.; Wedekind, F. Immobilized Enzymes: Methods and Applications. In: Biocatalysis - From Discovery to Application. Topics in Current Chemistry; Fessner, W.D., Ed.; vol. 200. Springer, Berlin, Heidelberg, 1999; Vol. 200, pp. 95-126.
[9]
Dwevedi, A. Implication of Enzyme Immobilization in Therapeutics as Well as Diagnostics of Various Diseases. In: Enzyme Immobilization; Springer, Cham, 2016; pp. 65-86.
[10]
Swaisgood, H.E. Immobilization of Enzymes and Some Applications in the Food Industry. In: Laskin, A.I.; (ed.). Enzymes and Immobilized Cells in Biotechnology; Benjamin Cummings, Menlo Park, C.A. Woodhead Publishing Limited., 1985.
[11]
Guibault, G.G.; Kauffmann, J.M.; Patriarche, J. Immobilized Enzyme Electrodes as Biosensors. In: Protein Immobilization. Fundamentals and Applications; Taylor, R.F., Ed.; Marcel Dekker, New York, NT, 1991; pp. 209-262.
[12]
Taylor, R.F.; Marenchic, I.G.; Spencer, R.H. Antibody and receptor based biosensors for detection and process control. Anal. Chim. Acta, 1991, 249(1), 67-70.
[13]
Chang, T.M. Therapeutic applications of immobilized proteins and cells. Bioprocess Technol., 1991, 14, 305-318.
[14]
Bickerstaff, G.F. Impact of genetic technology on enzyme technology. Genet. Eng. Biotechnol., 1995, 15(1), 13-30.
[15]
Sowjanya, N.T.; Dhivya, R.; Meenakshi, K.; Vedhanayakisri, K.A. Potential applications of chitosan nanoparticles as novel support in enzyme immobilization. Res. J. Eng. Technol, 2013, 4(4), 288-294.
[16]
Guisan, J.M. Immobilization of enzymes as the 21st century begins. In: Immobilization of enzymes and cells; Humana Press, 2006; pp. 1-13.
[17]
Clark, D.S. Can immobilization be exploited to modify enzyme activity? Trends Biotechnol., 1994, 12(11), 439-443.
[18]
Wong, L.S.; Thirlway, J.; Micklefield, J. Direct site-selective covalent protein immobilization catalyzed by a phosphopantetheinyl transferase. J. Am. Chem. Soc., 2008, 130(37), 12456-12464.
[19]
Ghous, T.A. Analytical application of immobilised enzymes. J. Chem. Soc. Pak. Vol, 2001, 23(4), 228-234.
[20]
Chae, H.J.; In, M.J.; Kim, E.Y. Optimization of protease immobilization by covalent binding using glutaraldehyde. Appl. Biochem. Biotechnol., 1998, 73(2-3), 195-204.
[21]
Quirk, R.A.; Chan, W.C.; Davies, M.C.; Tendler, S.J.; Shakesheff, K.M. Poly (L-lysine)–GRGDS as a biomimetic surface modifier for poly (lactic acid). Biomaterials, 2001, 22(8), 865-872.
[22]
Bernfeld, P.; Wan, J. Antigens and enzymes made insoluble by entrapping them into lattices of synthetic. Polym. Sci, 1963, 142(3593), 678-679.
[23]
Riaz, A.; Qader, S.A.; Anwar, A.; Iqbal, S. Immobilization of A thermostable A-amylase on calcium alginate beads from Bacillus subtilis KIBGE-HAR. AJBAS, 2009, 3(3), 2883-2887.
[24]
Rosevear, A.; Kennedy, J.F.; Cabral, J. Immobilised Enzymes and Cells; Adam Hilger: Bristol, 1987.
[25]
Brady, D.; Jordaan, J. Advances in enzyme immobilisation. Biotechnol. Lett., 2009, 31(11), 1639.
[26]
Raja, D.S.; Liu, W.L.; Huang, H.Y.; Lin, C.H. Immobilization of protein on nanoporous metal-organic framework materials. Comments Inorg. Chem., 2015, 35(6), 331-349.
[27]
Porath, J. Immobilized metal ion affinity chromatography. Protein Expr. Purif., 1992, 3(4), 263-281.
[28]
Yücel, Y. Biodiesel production from pomace oil by using lipase immobilized onto olive pomace. Bioresour. Technol., 2011, 102(4), 3977-3980.
[29]
Sirisha, V.L.; Jain, A.; Jain, A. Enzyme immobilization: An overview on methods, support material, and applications of immobilized enzymes. Adv. Food Nutr. Res., 2016, 79, 179-211.
[30]
Feng, W.; Ji, P. Enzymes immobilized on carbon nanotubes. Biotechnol. Adv., 2011, 29(6), 889-895.
[31]
Gupta, M.N.; Kaloti, M.; Kapoor, M.; Solanki, K. Nanomaterials as matrices for enzyme immobilization. Artif. Cells Blood Substit. Immobil. Biotechnol., 2011, 39(2), 98-109.
[32]
Ansari, S.A.; Husain, Q. Potential applications of enzymes immobilized on/in nano materials: A review. Biotechnol. Adv., 2012, 30(3), 512-523.
[33]
Liu, C.G.; Chen, X.G.; Park, H.J. Self-assembled nanoparticles based on linoleic-acid modified chitosan: Stability and adsorption of trypsin. Carbohydr. Polym., 2005, 62(3), 293-298.
[34]
Liu, C.G.; Desai, K.G.; Chen, X.G.; Park, H.J. Preparation and characterization of nanoparticles containing trypsin based on hydrophobically modified chitosan. J. Agric. Food Chem., 2005, 53(5), 1728-1733.
[35]
Min, K.; Yoo, Y.J. Recent progress in nanobiocatalysis for enzyme immobilization and its application. Biotechnol. Bioprocess Eng., 2014, 19(4), 553-567.
[36]
Vertegel, A.A.; Siegel, R.W.; Dordick, J.S. Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir, 2004, 20(16), 6800-6807.
[37]
Lan, D.; Li, B.; Zhang, Z. Chemiluminescence flow biosensor for glucose based on gold nanoparticle-enhanced activities of glucose oxidase and horseradish peroxidase. Biosens. Bioelectron., 2008, 24(4), 934-938.
[38]
Wu, C.L.; Chen, Y.P.; Yang, J.C.; Lo, H.F.; Lin, L.L. Characterization of lysine-tagged bacillus stearothermophilus leucine aminopeptidase II immobilized onto carboxylated gold nanoparticles. J. Mol. Catal., B Enzym., 2008, 54(3-4), 83-89.
[39]
Keighron, J.D.; Keating, C.D. Enzyme: Nanoparticle bioconjugates with two sequential enzymes: Stoichiometry and activity of malate dehydrogenase and citrate synthase on Au nanoparticles. Langmuir, 2010, 26(24), 18992-19000.
[40]
Cruz, J.C.; Würges, K.; Kramer, M.; Pfromm, P.H.; Rezac, M.E.; Czermak, P. Immobilization of enzymes on fumed silica nanoparticles for applications in nonaqueous media. Methods Mol. Biol., 2011, 743, 147-160.
[41]
Won, Y.H.; Jang, H.S.; Kim, S.M.; Stach, E.; Ganesana, M.; Andreescu, S.; Stanciu, L.A. Biomagnetic glasses: Preparation, characterization, and biosensor applications. Langmuir, 2009, 26(6), 4320-4326.
[42]
Ganesana, M.; Istarnboulie, G.; Marty, J.L.; Noguer, T.; Andreescu, S. Site-specific immobilization of A (His) 6-tagged acetylcholinesterase on nickel nanoparticles for highly sensitive toxicity biosensors. Biosens. Bioelectron., 2011, 30(1), 43-48.
[43]
Khoshnevisan, K.; Bordbar, A.K.; Zare, D.; Davoodi, D.; Noruzi, M.; Barkhi, M.; Tabatabaei, M. Immobilization of cellulase enzyme on superparamagnetic nanoparticles and determination of its activity and stability. Chem. Eng. J., 2011, 171(2), 669-673.
[44]
Uygun, D.A.; Öztürk, N.; Akgöl, S.; Denizli, A. Novel magnetic nanoparticles for the hydrolysis of starch with Bacillus licheniformis A‐amylase. J. Appl. Polym. Sci., 2012, 123(5), 2574-2581.
[45]
Misson, M.; Zhang, H.; Jin, B. Nanobiocatalyst advancements and bioprocessing applications. J. R. Soc. Interface, 2015, 12(102), 20140891.
[46]
Lee, B.; Lopez‐Ferrer, D.; Kim, B.C.; Na, H.B.; Park, Y.I.; Weitz, K.K.; Warner, M.G.; Hyeon, T.; Lee, S.W.; Smith, R.D.; Kim, J. Rapid and efficient protein digestion using trypsin‐coated magnetic nanoparticles under pressure cycles. Proteomics, 2011, 11(2), 309-318.
[47]
Qiu, J.; Peng, H.; Liang, R. Ferrocene-modified Fe3O4@ SiO2 magnetic nanoparticles as building blocks for construction of reagentless enzyme-based biosensors. Electrochem. Commun., 2007, 9(11), 2734-2738.
[48]
Ahmad, R.; Sardar, M. Immobilization of cellulase on TiO2 nanoparticles by physical and covalent methods: A comparative study. Indian J. Biochem. Biophys., 2014, 51(4), 314-320.
[49]
Ahmad, R.; Sardar, M. Enzyme immobilization: An overview on nanoparticles as immobilization matrix. Biochem. Anal. Biochem., 2015, 4(2), 178.
[50]
Ahmad, R.; Khatoon, N.; Sardar, M. Biosynthesis, characterization and application of TiO2 nanoparticles in biocatalysis and protein folding. J. Proteins Proteom, 2013, 4(2), 115-121.
[51]
Ahmad, R.; Mishra, A.; Sardar, M. Peroxidase-TiO2 nanobioconjugates for the removal of phenols and dyes from aqueous solutions. Adv. Sci. Eng. Med., 2013, 5(10), 1020-1025.
[52]
Ahmad, R.; Mishra, A.; Sardar, M. Simultaneous immobilization and refolding of heat treated enzymes on TiO2 nanoparticles. Adv. Sci. Eng. Med., 2014, 6(12), 1264-1268.
[53]
Konwarh, R.; Karak, N.; Rai, S.K.; Mukherjee, A.K. Polymer-assisted iron oxide magnetic nanoparticle immobilized keratinase. Nanotechnology, 2009, 20(22), 225107.
[54]
Malmiri, H.J.; Jahanian, M.A.; Berenjian, A. Potential applications of chitosan nanoparticles as novel support in enzyme immobilization. Am. J. Biochem. Biotechnol., 2012, 8(4), 203-219.
[55]
Tan, Y.; Ma, S.; Liu, C.; Yu, W.; Han, F. Enhancing the stability and antibiofilm activity of DspB by immobilization on carboxymethyl chitosan nanoparticles. Microbiol. Res., 2015, 178, 35-41.
[56]
Wang, Z.G.; Wan, L.S.; Liu, Z.M.; Huang, X.J.; Xu, Z.K. Enzyme immobilization on electrospun polymer nanofibers: An overview. J. Mol. Catal., B Enzym., 2009, 56(4), 189-195.
[57]
Vazquez-Duhalt, R.; Tinoco, R.; D’Antonio, P.; Topoleski, L.T.; Payne, G.F. Enzyme conjugation to the polysaccharide chitosan: Smart biocatalysts and biocatalytic hydrogels. Bioconjug. Chem., 2001, 12(2), 301-306.
[58]
Ying, Q.Q.; Shi, L.E.; Zhang, X.Y.; Chen, W.; Yi, Y. Characterization of immobilized nuclease P1. Appl. Biochem. Biotechnol., 2007, 136(1), 119-126.
[59]
Yang, K.; Xu, N.S.; Su, W.W. Co-immobilized enzymes in magnetic chitosan beads for improved hydrolysis of macromolecular substrates under a time-varying magnetic field. J. Biotechnol., 2010, 148(2-3), 119-127.
[60]
Guo, Z.; Bai, S.; Sun, Y. Preparation and characterization of immobilized lipase on magnetic hydrophobic microspheres. Enzyme Microb. Technol., 2003, 32(7), 776-782.
[61]
Krajewska, B. Application of chitin and chitosan based materials for enzyme immobilizations: A review. Enzyme Microb. Technol., 2004, 35(2-3), 126-139.
[62]
Tang, Z.X.; Qian, J.Q.; Shi, L.E. Characterizations of immobilized neutral proteinase on chitosan nano-particles. Process Biochem., 2006, 41(5), 1193-1197.
[63]
Biró, E.; Németh, Á.S.; Sisak, C.; Feczkó, T.; Gyenis, J. Preparation of chitosan particles suitable for enzyme immobilization. J. Biochem. Biophys. Methods, 2008, 70(6), 1240-1246.
[64]
Nakorn, P.N. Chitin nanowhisker and chitosan nanoparticles in protein immobilization for biosensor applications. J. Metals Mater. Miner, 2017, 18(2), 73-77.
[65]
Pieters, R.; Hunger, S.P.; Boos, J.; Rizzari, C.; Silverman, L.; Baruchel, A.; Goekbuget, N.; Schrappe, M.; Pui, C.H. L‐asparaginase treatment in acute lymphoblastic leukemia: A focus on Erwinia asparaginase. Cancer, 2011, 117(2), 238-249.
[66]
Kalkan, N.A.; Aksoy, S.; Aksoy, E.A.; Hasirci, N. Preparation of chitosan‐coated magnetite nanoparticles and application for immobilization of laccase. J. Appl. Polym. Sci., 2012, 123, 707-716.
[67]
Jia, H.; Zhu, G.; Wang, P. Catalytic behaviors of enzymes attached to nanoparticles: The effect of particle mobility. Biotechnol. Bioeng., 2003, 84(4), 406-414.
[68]
Li, G.Y.; Huang, K.L.; Jiang, Y.R.; Yang, D.L.; Ding, P. Preparation and characterization of Saccharomyces cerevisiae alcohol dehydrogenase immobilized on magnetic nanoparticles. Int. J. Biol. Macromol., 2008, 42(5), 405-412.
[69]
Fang, H.; Huang, J.; Ding, L.; Li, M.; Chen, Z. Preparation of magnetic chitosan nanoparticles and immobilization of laccase. J. Wuhan Univ. Technol. Mat. Sci. Ed, 2009, 24(1), 42-47.
[70]
Kuo, C.H.; Liu, Y.C.; Chang, C.M.; Chen, J.H.; Chang, C.; Shieh, C.J. Optimum conditions for lipase immobilization on chitosan-coated Fe3O4 nanoparticles. Carbohydr. Polym., 2012, 87(4), 2538-2545.
[71]
Mahmoud, K.A.; Male, K.B.; Hrapovic, S.; Luong, J.H. Cellulose nanocrystal/gold nanoparticle composite as a matrix for enzyme immobilization. ACS Appl. Mater. Interfaces, 2009, 1(7), 1383-1386.
[72]
Talbert, J.N.; Goddard, J.M. Enzymes on material surfaces. Colloids Surf. B Biointerfaces, 2012, 93, 8-19.
[73]
Pieters, R.; Hunger, S.P.; Boos, J.; Rizzari, C.; Silverman, L.; Baruchel, A.; Goekbuget, N.; Schrappe, M.; Pui, C.H. L‐asparaginase treatment in acute lymphoblastic leukemia: A focus on Erwinia asparaginase. Cancer, 2011, 117(2), 238-249.
[74]
Feun, L.; You, M.; Wu, C.J.; Kuo, M.T.; Wangpaichitr, M.; Spector, S.; Savaraj, N. Arginine deprivation as a targeted therapy for cancer. Curr. Pharm. Des., 2008, 14(11), 1049-1057.
[75]
Danks, M.K.; Yoon, K.J.; Bush, R.A.; Remack, J.S.; Wierdl, M.; Tsurkan, L.; Kim, S.U.; Garcia, E.; Metz, M.Z.; Najbauer, J.; Potter, P.M. Tumor-targeted enzyme/prodrug therapy mediates long-term disease-free survival of mice bearing disseminated neuroblastoma. Cancer Res., 2007, 67(1), 22-25.
[76]
Bahreini, E.; Aghaiypour, K.; Abbasalipourkabir, R.; Mokarram, A.R.; Goodarzi, M.T.; Saidijam, M. Preparation and nanoencapsulation of L-asparaginase II in chitosan-tripolyphosphate nanoparticles and in vitro release study. Nanoscale Res. Lett., 2014, 9(1), 340.
[77]
Maiti, S. Nanometric Biopolymer Devices for Oral Delivery of Macromolecules with Clinical Significance. In: Grumezescu, A.; (ed.). Multifunctional Systems for Combined Delivery, Biosensing and Diagnostics; Elsevier: Amsterdam, 2017; pp. 109-138.
[78]
Meng, X.; Xu, G.; Zhou, Q.L.; Wu, J.P.; Yang, L.R. Highly efficient solvent-free synthesis of 1, 3-diacylglycerols by lipase immobilised on nano-sized magnetite particles. Food Chem., 2014, 143, 319-324.
[79]
Chen, Y.Z.; Yang, C.T.; Ching, C.B.; Xu, R. Immobilization of lipases on hydrophobilized zirconia nanoparticles: Highly enantioselective and reusable biocatalysts. Langmuir, 2008, 24(16), 8877-8884.
[80]
Yang, H.H.; Zhang, S.Q.; Chen, X.L.; Zhuang, Z.X.; Xu, J.G.; Wang, X.R. Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations. Anal. Chem., 2004, 76(5), 1316-1321.
[81]
Petkova, G.A.; Záruba, K.; Žvátora, P.; Král, V. Gold and silver nanoparticles for biomolecule immobilization and enzymatic catalysis. Nanoscale Res. Lett., 2012, 7(1), 287.
[82]
Jafary, F.; Panjehpour, M.; Varshosaz, J.; Yaghmaei, P. Stability improvement of immobilized alkaline phosphatase using chitosan nanoparticles. Braz. J. Chem. Eng., 2016, 33(2), 243-250.
[83]
Kouassi, G.K.; Irudayaraj, J.; McCarty, G. Examination of cholesterol oxidase attachment to magnetic nanoparticles. J. Nanobiotechnol, 2005, 3(1), 1.
[84]
Johnson, A.K.; Zawadzka, A.M.; Deobald, L.A.; Crawford, R.L.; Paszczynski, A.J. Novel method for immobilization of enzymes to magnetic nanoparticles. J. Nanopart. Res., 2008, 10(6), 1009-1025.
[85]
Namdeo, M.; Bajpai, S.K. Immobilization of α-amylase onto cellulose-coated magnetite (CCM) nanoparticles and preliminary starch degradation study. J. Mol. Catal., B Enzym., 2009, 59(1-3), 134-139.
[86]
Pandey, P.; Singh, S.P.; Arya, S.K.; Gupta, V.; Datta, M.; Singh, S.; Malhotra, B.D. Application of thiolated gold nanoparticles for the enhancement of glucose oxidase activity. Langmuir, 2007, 23(6), 3333-3337.
[87]
Miletić, N.; Abetz, V.; Ebert, K.; Loos, K. Immobilization of Candida antarctica lipase B on polystyrene nanoparticles. Macromol. Rapid Commun., 2010, 31(1), 71-74.
[88]
Prakasham, R.S.; Devi, G.S.; Laxmi, K.R.; Rao, C.S. Novel synthesis of ferric impregnated silica nanoparticles and their evaluation as a matrix for enzyme immobilization. J. Phys. Chem. C, 2007, 111(10), 3842-3847.
[89]
Mishra, A.; Ahmad, R.; Singh, V.; Gupta, M.N.; Sardar, M. Preparation, characterization and biocatalytic activity of a nanoconjugate of alpha amylase and silver nanoparticles. J. Nanosci. Nanotechnol., 2013, 13(7), 5028-5033.
[90]
Thandavan, K.; Gandhi, S.; Sethuraman, S.; Rayappan, J.B.; Krishnan, U.M. Development of electrochemical biosensor with nano-interface for xanthine sensing-A novel approach for fish freshness estimation. Food Chem., 2013, 139(1-4), 963-969.
[91]
Soleimani, M.; Khani, A.; Najafzadeh, K. α-Amylase immobilization on the silica nanoparticles for cleaning performance towards starch soils in laundry detergents. J. Mol. Catal., B Enzym., 2012, 74(1-2), 1-5.
[92]
Carrea, G.; Riva, S. Properties and synthetic applications of enzymes in organic solvents. Angew. Chem. Int. Ed., 2000, 39(13), 2226-2254.
[93]
Aubin-Tam, M.E.; Hamad-Schifferli, K. Structure and function of nanoparticle-protein conjugates. Biomed. Mater., 2008, 3(3), 034001.
[94]
Di Marco, M.; Shamsuddin, S.; Razak, K.A.; Aziz, A.A.; Devaux, C.; Borghi, E.; Levy, L.; Sadun, C. Overview of the main methods used to combine proteins with nanosystems: Absorption, bioconjugation, and encapsulation. Int. J. Nanomedicine, 2010, 5, 37.
[95]
Andreescu, S.; Njagi, J.; Ispas, C. Nanostructured Materials for Enzyme Immobilization and Biosensors. In: Erokhin, V.; Ram, M.K.; Yavuz, O. (eds.). The New Frontiers of Organic and Composite Nanotechnology. Elsevier: Oxford OX2 8DP; UK, 2008; pp. 355-394.
[96]
Geoghegan, W.D.; Ackerman, G.A. Adsorption of horseradish peroxidase, ovomucoid and anti-immunoglobulin to colloidal gold for the indirect detection of concanavalin a, wheat germ agglutinin and goat anti-human immunoglobulin G on cell surfaces at the electron microscopic level: A new method, theory and application. J. Histochem. Cytochem., 1977, 25(11), 1187-1200.
[97]
Bryjak, J.; Trochimczuk, A.W. Immobilization of lipase and penicillin acylase on hydrophobic acrylic carriers. Enzyme Microb. Technol., 2006, 39(4), 573-578.
[98]
Hudson, S.; Cooney, J.; Magner, E. Proteins in mesoporous silicates. Angew. Chem. Int. Ed., 2008, 47(45), 8582-8594.
[99]
Bryjak, J.; Trochimczuk, A.W. Immobilization of lipase and penicillin acylase on hydrophobic acrylic carriers. Enzyme Microb. Technol., 2006, 39(4), 573-578.
[100]
Vianello, F.; Zennaro, L.; Di Paolo, M.L.; Rigo, A.; Malacarne, C.; Scarpa, M. Preparation, morphological characterization, and activity of thin films of horseradish peroxidase. Biotechnol. Bioeng., 2000, 68(5), 488-495.