Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Efficient Ni(OH)2 Supported Ultra-Low Content of Pt Electrocatalyst for Ethanol Oxidation in Alkaline Solution

Author(s): Zhaoxiong Yan, Mengsha Lu, Qin Li, Liang An, Zhihua Xu* and Lihong Zhu*

Volume 15, Issue 3, 2019

Page: [242 - 247] Pages: 6

DOI: 10.2174/1573413714666180702110502

Price: $65

Abstract

Background: Direct ethanol fuel cells have gained considerable attention as promising sustainable green power sources for portable electronic devices and automotive propulsion systems. The electrocatalyst is one of the key parameters in DEFCs. However, the current electrocatalyst still suffers from high price due to a relatively large amount of noble metal used, or relatively low activity if non-noble metal was employed. Therefore, the design and fabrication of high-efficient electrocatalyst with low-content of noble metal is still of interest.

Methods: Ni(OH)2 nanoflakes supported ultra-low content of Pt (Pt/Ni(OH)2) electrocatalyst was obtained via microemulsion, impregnation and chemical reduction processes. The Pt/Ni(OH)2 electrocatalyst was characterized by SEM, TEM, XRD and FTIR, and its performance for ethanol electro- oxidation was evaluated by cyclic voltammetry, Tafel and current-time curves.

Results: TEM result showed that Pt NPs with sizes of ca. 4-6 nm were highly dispersed on the Ni(OH)2 nanoflakes, indicative of the successful preparation of Pt/Ni(OH)2. No peaks related to Pt NPs were observed in the XRD pattern of Pt/Ni(OH)2, revealing a low content and/or high dispersion of Pt NPs. The electrochemical investigation showed that the Pt/Ni(OH)2 electrode presented a superior catalytic performance and stability for ethanol electro-oxidation in alkaline solution.

Conclusion: The Pt/Ni(OH)2 electrode with nominal 0.62 wt.% of Pt was successfully synthesized and showed an excellent catalytic activity and stability toward ethanol electro-oxidation mainly due to its porous structure, high dispersion of Pt and formation of NiOOH facilitating oxidation of ethanol. The acetate species was the major product during ethanol electro-oxidation.

Keywords: Nanocomposites, Ni(OH)2 nanoflakes, direct ethanol fuel cells, ethanol electro-oxidation, electrocatalyst, supported Pt nanoparticles (NPs), Pt/Ni(OH)2 electrode.

Graphical Abstract

[1]
Sadhukhan, M.; Kundu, M.K.; Bhowmik, T.; Barman, S. Highly dispersed platinum nanoparticles on graphitic carbon nitride: A highly active and durable electrocatalyst for oxidation of methanol, formic acid and formaldehyde. Int. J. Hydrogen Energy, 2017, 42, 9371-9383.
[2]
Kwon, Y.; Lai, S.C.S.; Rodriguez, P.; Koper, M.T.M. Electrocatalytic oxidation of alcohols on gold in alkaline media: Base or gold catalysis? J. Am. Chem. Soc., 2011, 133, 6914-6917.
[3]
Garcia, A.C.; Birdja, Y.Y.; Tremiliosi-Filho, G.; Koper, M.T.M. Glycerol electro-oxidation on bismuth-modified platinum single crystals. J. Catal., 2017, 346, 117-124.
[4]
Zhu, C.; Guo, S.; Dong, S. PdM (M = Pt, Au) bimetallic alloy nanowires with enhanced electrocatalytic activity for electro-oxidation of small molecules. Adv. Mater., 2012, 24, 2326-2331.
[5]
Xu, Z.; Yu, J.; Liu, G. Enhancement of ethanol electrooxidation on plasmonic Au/TiO2 nanotube arrays. Electrochem. Commun., 2011, 13, 1260-1263.
[6]
Spinacé, E.V.; Linardi, M.; Neto, A.O. Co-catalytic effect of nickel in the electro-oxidation of ethanol on binary Pt–Sn electrocatalysts. Electrochem. Commun., 2005, 7, 365-369.
[7]
Xu, Z.; Hu, J.; Yan, Z.; Yang, S.; Zhou, J.; Lu, W. Potassium ferrate(VI) and decomposed K2FeO4 assisted methanol electro-oxidation in alkaline media. Electrochim. Acta, 2009, 54, 3548-3552.
[8]
Obradović, M.D.; Stančić, Z.M.; Lačnjevac, U.Č.; Radmilović, V.V.; Gavrilović-Wohlmuther, A.; Radmilović, V.R.; Gojković, S.L. Electrochemical oxidation of ethanol on palladium-nickel nanocatalyst in alkaline media. Appl. Catal. B, 2016, 189, 110-118.
[9]
Tsui, L.; Zafferoni, C.; Lavacchi, A.; Innocenti, M.; Vizza, F.; Zangari, G. Electrocatalytic activity and operational stability of electrodeposited Pd–Co films towards ethanol oxidation in alkaline electrolytes. J. Power Sources, 2015, 293, 815-822.
[10]
Tremiliosi-Filho, G.; Gonzalez, E.R.; Motheo, A.J.; Belgsir, E.M.; Léger, J.M.; Lamy, C. Electro-oxidation of ethanol on gold: Analysis of the reaction products and mechanism. J. Electroanal. Chem., 1998, 444, 31-39.
[11]
Guo, J.; Chen, R.; Zhu, F.; Sun, S.; Villullas, H.M. New understandings of ethanol oxidation reaction mechanism on Pd/C and Pd2Ru/C catalysts in alkaline direct ethanol fuel cells. Appl. Catal. B, 2018, 224, 602-611.
[12]
Tian, N.; Zhou, Z.; Sun, S.; Ding, Y.; Wang, Z.L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science, 2007, 316, 732-735.
[13]
Ma, L.; Chu, D.; Chen, R. Comparison of ethanol electro-oxidation on Pt/C and Pd/C catalysts in alkaline media. Int. J. Hydrogen Energy, 2012, 37, 11185-11194.
[14]
Feng, Y.; Liu, Z.; Xu, Y.; Wang, P.; Wang, W.; Kong, D. Highly active PdAu alloy catalysts for ethanol electro-oxidation. J. Power Sources, 2013, 232, 99-105.
[15]
Lima, F.H.B.; Gonzalez, E.R. Ethanol electro-oxidation on carbon-supported Pt–Ru, Pt–Rh and Pt–Ru–Rh nanoparticles. Electrochim. Acta, 2008, 53, 2963-2971.
[16]
Yu, C.; Yan, Z.; Zhu, L.; Wen, J.; Wang, H.; Xu, Z. Enhanced catalytic performance of bimetallic nickel–cobalt loaded low-content Au catalyst toward ethanol electro-oxidation. Electrocatalysis, 2016, 7, 193-200.
[17]
Zhang, L.; Wang, Y.; Liu, Z.; Yan, Z.; Zhu, L. Bimetallic nickel and copper supported Pt catalyst for ethanol electro-oxidation in alkaline solution. Int. J. Electrochem. Sci., 2018, 13, 2164-2174.
[18]
Bai, Y.; Wu, J.; Qiu, X.; Xi, J.; Wang, J.; Li, J.; Zhu, W.; Chen, L. Electrochemical characterization of Pt-CeO2/C and Pt-CexZr1−xO2/C catalysts for ethanol electro-oxidation. Appl. Catal. B, 2007, 73, 144-149.
[19]
Xu, Z.; Rao, L.; Song, H.; Yan, Z.; Zhang, L.; Yang, S. Enhanced ethanol electro–oxidation on CeO2–modified Pt/Ni catalysts in alkaline solution. Chin. J. Catal., 2017, 38, 305-312.
[20]
Comignani, V. ManuelSieben, J.; Brigante, E.M.; Duarte, M.M.E. Carbon supported Pt–NiO nanoparticles for ethanol electro-oxidation in acid media. J. Power Sources, 2015, 278, 119-127.
[21]
Chu, D.; Wang, J.; Wang, S.; Zha, L.; He, J.; Hou, Y.; Yan, Y.; Lin, H.; Tian, Z. High activity of Pd–In2O3/CNTs electrocatalyst for electro-oxidation of ethanol. Catal. Commun., 2009, 10, 955-958.
[22]
Mann, J.; Yao, N.; Bocarsly, A.B. Characterization and analysis of new catalysts for a direct ethanol fuel cell. Langmuir, 2006, 22, 10432-10436.
[23]
Lo, Y.L.; Hwang, B.J. Kinetics of ethanol oxidation on electroless Ni–P/SnO2/Ti electrodes in KOH solutions. J. Electrochem. Soc., 1995, 142, 445-450.
[24]
Barakat, N.A.M.; Abdelkareem, M.A.; Kim, H.Y. Ethanol electro-oxidation using cadmium-doped cobalt/carbon nanoparticles as novel non precious electrocatalyst. Appl. Catal. A, 2013, 455, 193-198.
[25]
Ran, J.R.; Yu, J.G.; Jaroniec, M. Ni(OH)2 modified CdS nanorods for highly efficient visible-light-driven photocatalytic H2 generation. Green Chem., 2011, 13, 2708-2713.
[26]
Xing, W.; Li, F.; Yan, Z.; Lu, G.Q. Synthesis and electrochemical properties of mesoporous nickel oxide. J. Power Sources, 2004, 134, 324-330.
[27]
Xu, Z.; Yu, J.; Liu, G.; Cheng, B.; Zhou, P.; Li, X. Microemulsion-assisted synthesis of hierarchical porous Ni(OH)2/SiO2 composites toward efficient removal of formaldehyde in air. Dalton Trans., 2013, 42, 10190-10197.
[28]
Abdel Rahim, M.A.; Abdel Hameed, R.M.; Khalil, M.W. Nickel as a catalyst for the electro-oxidation of methanol in alkaline medium. J. Power Sources, 2004, 134, 160-169.
[29]
Oliveira, V.L.; Morais, C.; Servat, K.; Napporn, T.W.; Tremiliosi-Filho, G.; Kokoh, K.B. Glycerol oxidation on nickel based nanocatalysts in alkaline medium–identification of the reaction products. J. Electroanal. Chem., 2013, 703, 56-62.
[30]
Barbosa, A.F.B.; Oliveira, V.L.; Drunen, J.; Tremiliosi-Filho, G. Ethanol electro-oxidation reaction using a polycrystalline nickel electrode in alkaline media: Temperature influence and reaction mechanism. J. Electroanal. Chem., 2015, 746, 31-38.
[31]
Hassaninejad-Darzi, S.K.; Gholami-Esfidvajani, M. Electrocatalytic oxidation of ethanol using modified nickel phosphate nanoparticles and multi-walled carbon nanotubes paste electrode in alkaline media for fuel cell. Int. J. Hydrogen Energy, 2016, 41, 20085-20099.
[32]
Drunen, J.; Napporn, T.W.; Kokoh, B.; Jerkiewicz, G. Electrochemical oxidation of isopropanol using a nickel foam electrode. J. Electroanal. Chem., 2014, 716, 120-128.
[33]
Anu Prathap, M.U.; Satpati, B.; Srivastava, R. Facile preparation of β-Ni(OH)2–NiCo2O4 hybrid nanostructure and its application in the electro-catalytic oxidation of methanol. Electrochim. Acta, 2014, 130, 368-380.
[34]
Yan, Z.; Xu, Z.; Yu, J.; Jaroniec, M. Effect of microstructure and surface hydroxyls on the catalytic activity of Au/AlOOH for formaldehyde removal at room temperature. J. Colloid Interface Sci., 2017, 501, 164-174.
[35]
Yan, Z.; Xu, Z.; Yu, J.; Jaroniec, M. Enhanced formaldehyde oxidation on CeO2/ AlOOH-supported Pt catalyst at room temperature. App. Catal. B, 2016, 199, 458-465.
[36]
Xu, C.; Hu, Y.; Rong, J.; Jiang, S.P.; Liu, Y. Ni hollow spheres as catalysts for methanol and ethanol electrooxidation. Electrochem. Commun., 2007, 9, 2009-2012.
[37]
Geyter, N.D.; Morent, R.; Leys, C. Surface characterization of plasma-modified polyethylene by contact angle experiments and ATR-FTIR spectroscopy. Surf. Interface Anal., 2008, 40, 608-611.
[38]
Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 2007, 86, 1781-1788.
[39]
Lai, S.C.S.; Kleijn, S.E.F.; Öztürk, F.T.Z.; Vellinga, V.C.R.; Koning, J.; Rodriguez, P.; Koper, M.T.M. Effects of electrolyte pH and composition on the ethanol electro-oxidation reaction. Catal. Today, 2010, 154, 92-104.
[40]
Yang, Y.Y.; Ren, J.; Li, Q.X.; Zhou, Z.Y.; Sun, S.G.; Cai, W.B. Electrocatalysis of ethanol on a Pd electrode in alkaline media: An in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy study. ACS Catal., 2014, 4, 798-803.
[41]
Chelaghmia, M.L.; Nacef, M.; Affoune, A.M. Ethanol electrooxidation on activated graphite supported platinum-nickel in alkaline medium. J. Appl. Electrochem., 2012, 42, 819-826.
[42]
Wang, Y.; Zhu, Q.; Zhang, H. Fabrication of β-Ni(OH)2 and NiO hollow spheres by a facile template-free process. Chem. Commun., 2005, 0, 5231-5233.
[43]
Yuan, Y.F.; Xia, X.H.; Wu, J.B.; Yang, J.L.; Chen, Y.B.; Guo, S.Y. Nickel foam-supported porous Ni(OH)2/NiOOH composite film as advanced pseudocapacitor material. Electrochim. Acta, 2011, 56, 2627-2632.
[44]
Soliman, A.B.; Abdel-Samad, H.S.; Rehim, S.S.A.; Ahmed, M.A.; Hassan, H.H. High performance nano-Ni/Graphite electrode for electro-oxidation in direct alkaline ethanol fuel cells. J. Power Sources, 2016, 325, 653-663.
[45]
Kazimirov, V.Y.; Smirnov, M.B.; Bourgeois, L.; Guerlou-Demourgues, L.; Servant, L.; Balagurov, A.M.; Natkaniec, I.; Khasanova, N.R.; Antipov, E.V. Atomic structure and lattice dynamics of Ni and Mg hydroxides. Solid State Ionics., 2010, 181, 1764-1770.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy