[2]
Hugon, F.B.; Bailly, C.; Golsteyn, R.M.; Pierré, A.; Léonce, S.; Hickman, J.; Pfeiffer, B.; Prudhomme, M. Synthesis and biological activities of isogranulatimide analogues. Bioorg. Med. Chem., 2007, 15(17), 5965-5980.
[3]
Marminon, C.; Pierre, A.; Pfeiffer, B.; Perez, V.; Leonce, S.; Joubert, A.; Bailly, C.; Renard, P.; Hickman, J.; Prudhomme, M. Syntheses and antiproliferative activities of 7-azarebec camycin analogues bearing one 7-azaindole moiety. J. Med. Chem., 2003, 46(4), 609-622.
[4]
Kelly, T.A.; McNeil, D.W.; Rose, J.M.; David, E.; Shih, C.K.; Grob, P.M. Novel non-nucleoside inhibitors of human immunodeficiency virus type 1 reverse transcriptase 2-Indol-3-yl- and 2-azaindol-3-yl-dipyridodiazepinones. J. Med. Chem., 1997, 40(15), 2430-2433.
[5]
Shu-Bin, Z.; Suning, W. Luminescence and reactivity of 7-azaindole derivatives and complexes. Chem. Soc. Rev., 2010, 39, 3142-3156.
[6]
Chi, S.M.; Choi, J.K.; Yum, E.K.; Chi, D.Y. Palladium-catalyzed functionalization of 5- and 7-azaindoles. Tetrahedron Lett., 2000, 41, 919-922.
[8]
Guillard, J.; Decrop, M.; Gallay, N.; Espanel, C.; Boissier, E.; Herault, O.; Viaud-Massuard, M.C. Synthesis and biological evaluation of 7-azaindole derivatives, synthetic cytokinin analogues. Bioorg. Med. Chem. Lett., 2007, 17(7), 1934-1937.
[9]
Song, J.J.; Reeves, J.T.; Gallou, F.; Tan, Z.; Yee, N.K.; Senanayake, C.H. Organometallic methods for the synthesis and functionalization of azaindoles. Chem. Soc. Rev., 2007, 36(7), 1120-1132.
[10]
Lebouvier, N.; Pagniez, F.; Duflos, M.; LePape, P.; Na, Y.M.; Le, B.G.; Le, B.M. Synthesis and antifungal activities of new fluconazole analogues with azaheterocycle moiety. Bioorg. Med. Chem. Lett., 2007, 17(13), 3686-3689.
[11]
Anurag.; Roy, R.K.; Sharma, P.P. Synthesis and antiangiogenic activity of some novel Analogues of combretastatin. Int. J. Pharm. Tech. Res., 2009, 1(4), 1462-1469.
[13]
Mérour, J-Y.; Buron, F.; Plé, K.; Bonnet, P.; Routier, S. The azaindole framework in the design of kinase inhibitors. Molecules, 2014, 19, 19935-19979.
[14]
Robinson, M.M.; Robison, B.L. 7-Azaindole. I. Synthesis and conversion to 7-azatryptophan and other derivatives. J. Am. Chem. Soc., 1955, 77, 457-460.
[15]
Shen, T.Y.; Ellis, R.L.; Windholz, T.B.; Matzuk, A.R.; Rosegay, A.; Lucas, S.; Holly, F.W.; Wilson, A.N. Non-Steroid Anti-Inflammatory Agents. J. Am. Chem. Soc., 1963, 85, 488-489.
[17]
Jean-Yves, M.; Benoît, J. Synthesis and Reactivity of 7-Azaindoles (1H-Pyrrolo(2,3-b)pyridine). Curr. Org. Chem., 2001, 5, 471-506.
[18]
Nemecek, C.; Metz, W.A.; Wentzler, S.; Ding, F.X.; Venot, C.; Souaille, C.; Dagallier, A.; Maignan, S.; Guilloteau, J.P.; Bernard, F. Design of potent IGF1-R inhibitors related to bis-azaindoles. Chem. Biol. Drug Des., 2010, 76, 100-106.
[19]
Lefoix, M.; Coudert, G.; Routier, S.; Pfeiffer, B.; Caignard, D-H.; Hickman, J.; Pierre, A.; Golsteyn, R.M.; Leonce, S.; Bossard, C.; Merour, J-Y. Novel 5-azaindolocarbazoles as cytotoxic agents and Chk1 inhibitors. Bioorg. Med. Chem., 2008, 16(9), 5303-5321.
[20]
Rekulapally, S.; Jarapula, R.; Gangarapu, K.; Manda, S.; Vaidya, J.R. Synthesis and anti-inflammatory activity of 2-substituted-((N, N-disubstituted)-1, 3-benzoxazole)-5-carboxamides. Med. Chem. Res., 2015, 24, 3412-3422.
[21]
Prudent, R.; Vassal-Stermann, E.; Nguyen, C.H.; Mollaret, M.; Viallet, J.; Desroches-Castan, A.; Martinez, A.; Barette, C.; Pillet, C.; Valdameri, G.; Soleilhac, E.; Di Pietro, A.; Feige, J.J.; Billaud, M.; Florent, J.C.; Lafanechère, L. Azaindole derivatives are inhibitors of microtubule dynamics, with anti-cancer and anti-angiogenic activities. Br. J. Pharmacol., 2013, 168(3), 673-685.
[22]
Sandham, D.A.; Adcock, C.; Bala, K.; Barker, L.; Brown, Z.; Dubois, G.; Budd, D. 7-Azaindole-3-acetic acid derivatives; potent and selective CRTh2 receptor antagonist. Bioorg. Med. Chem. Lett., 2009, 19, 4794-4798.
[23]
Murray, J.J.; Tonnel, A.B.; Brash, A.R.; Roberts, L.J.; Gosset, P.; Workman, R.; Capron, A.; Oates, J.A. Release of prostaglandin D2 into human airways during acute antigen challenge. N. Engl. J. Med., 1986, 315, 800-804.
[24]
Pettipher, R.; Hansel, T.T.; Armer, R. Antagonism of the prostaglandin D2 receptors DP1 and CRTH2 as an approach to treat allergic diseases. Nat. Rev. Drug Discov., 2007, 6, 313-325.
[25]
Lukacs, N.W.; Berlin, A.A.; Franz-Bacon, K.; Sasik, R.; Sprague, L.; Hardiman, G.; Boehme, S.; Bacon, A. CRTh2 antagonism significantly ameliorates airway hyperreactivity and downregulates inflammation-induced genes in a mouse model of airway inflammation. Am. J. Physiol., 2008, 295, 767-779.
[26]
Boehme, S.A.; Franz-Bacon, K.; Chen, E.P.; Sasik, R.; Sprague, L.J.; Ly, T.W.; Hardiman, G.; Bacon, K.B. A small molecule CRTH2 antagonist inhibits FITC-induced allergic cutaneous inflammation. Int. Immunol., 2009, 21(1), 81-93.
[27]
Pracharova, J.; Saltarella, T.; Muchova, T.R.; Scintilla, S. Novel antitumor cisplatin and transplatin derivatives containing 1-methyl-7-azaindole: Synthesis, characterization, and cellular responses. J. Med. Chem., 2015, 58(2), 847-859.
[28]
Page, J.D.; Husain, I.; Sancar, A.; Chaney, S.G. Effect of the diaminocyclohexane carrier ligand on platinum adduct formation,repair, and lethality. Biochemistry, 1990, 29, 1016-1024.
[29]
Kasparkova, J.; Marini, V.; Najajreh, Y.; Gibson, D.; Brabec, V. DNA binding mode of the cis and trans geometries of new antitumor nonclassical platinum complexes containing piperidine, piperazine or 4-picoline ligand in cell-free media Relations to their activity in cancer cell lines. Biochemistry, 2003, 42, 6321-6332.
[30]
Kasparkova, J.; Novakova, O.; Najajreh, Y.; Gibson, D.; Perez, J-M.; Brabec, V. Effects of a piperidine ligand on the mechanism of action of antitumor cisplatin. Chem. Res. Toxicol., 2003, 16, 1424-1432.
[31]
Wurtenberger, I.; Angermaier, B.; Kircher, B.; Gust, R. Synthesis and in vitro pharmacological behavior of platinum(II) complexes containing 1,2-diamino-1-(4-fluorophenyl)-2-alkanol ligands. J. Med. Chem., 2013, 56, 7951-7964.
[32]
Coluccia, M.; Natile, G. Trans-Platinum complexes in cancer therapy. Anticancer. Agents Med. Chem., 2007, 7, 111-123.
[33]
Aris, S.M.; Farrell, N.P. Towards antitumor active transplatinum compounds. Eur. J. Inorg. Chem., 2009, 10, 1293-1302.
[34]
Baltus, C.B.; Jorda, R.; Marot, C.; Berka, K.; Bazgier, V.; Krystof, V.; Pri, G.; Viaud-Massuard, M.C. Synthesis, biological evaluation and molecular modeling of a novel series of 7-azaindole based tri-heterocyclic compounds as potent CDK2/Cyclin E inhibitors. Eur. J. Med. Chem., 2016, 108, 701-719.
[35]
Malumbres, M.; Barbacid, M. Mammalian cyclin-dependent kinases. Trends Biochem. Sci., 2005, 30, 630-641.
[36]
Senderowicz, A.M. Small molecule modulators of cyclin-dependent kinases for cancer therapy. Oncogene, 2000, 19, 6600-6606.
[37]
Lim, S.; Kaldis, P. Cdks, cyclins and CKIs: Roles beyond cell cycle regulation. Development, 2013, 140, 3079-3093.
[38]
Deshpande, A.; Sicinski, P.; Hinds, P.W. Cyclins and Cdks in development and cancer: A perspective. Oncogene, 2005, 24, 2909-2915.
[39]
Cincinelli, R.; Musso, L.; Merlini, L.; Giannini, G.; Vesci, L.; Ferdinando, M.; Carenini, N. 7-Azaindole-1-carboxamides as a new class of PARP-1 inhibitors. Bioorg. Med. Chem., 2014, 22, 1089-1103.
[40]
Wahlberg, E.; Karlberg, T.; Kouznetsova, E.; Markova, N.; Macchiarulo, A.; Thorsell, A.G.; Pol, E.; Frostell, A.; Ekblad, T.; Oncu, D.; Kull, B.; Robertson, G.M.; Pellicciari, R.; Schuler, H.; Weigelt, J. Family wide chemical profiling and structural analysis of PARP and tankyrase inhibitors. Nat. Biotechnol., 2012, 30, 283.
[41]
Javle, M.; Curtin, N. The role of PARP in DNA repair and therapeutic exploitation. Br. J. Cancer, 2011, 105, 1114-1122.
[42]
De Vos, M.; Schreiber, V.; Dantzer, F. The diverse roles and clinical relevance of PARPs in DNA damage repair: Current state of the art. Biochem. Pharmacol., 2012, 84, 137-146.
[43]
Powell, C.; Mikropoulos, C.; Kaye, S.B.; Nutting, C.M.; Bhide, S.A.; Newbold, K.; Harrington, K. Pre-clinical and clinical evaluation of PARP inhibitors as tumour-specific radiosensitisers. J. Cancer Treat. Rev., 2010, 36, 566-575.
[44]
Helleday, T. The underlying mechanism for the PARP and BRCA synthetic lethality: Clearing up the misunderstandings. Mol. Oncol., 2011, 5, 387.
[45]
Ferraris, D.V. Increased PARP association with DNA alkylation damaged. J. Med. Chem., 2010, 53, 4561-4584.
[46]
Papeo, G.; Casale, E.; Montagnoli, A.; Cirla, A. PARP inhibitors in cancer therapy: An update. Expert Opin. Ther. Pat., 2013, 23, 503-514.
[47]
Jeanty, M.; Suzenet, F.; Delagrange, P.; Nosjean, O.; Boutin, J.A.; Caignard, D.H.; Guillaumet, G. Design and synthesis of 1-(2-alkanamidoethyl)-6-methoxy-7-azaindole derivatives as potent melatonin agonists. Bioorg. Med. Chem. Lett., 2011, 21, 2316-2319.
[48]
Reiter, R.J.; Tan, D.; Osuna, C.; Gitto, E. Actions of melatonin in the reduction of oxidative stress. Endocrinol. Rev, 2000, 7, 444-458.
[49]
Dubocovich, M.L.; Delagrange, P.; Krause, D.N.; Sugden Cardinali, D.; Olcese, D.P. Nomenclature, Classification, and Pharmacology of G Protein-Coupled melatonin receptors. J. Pharmacol. Rev, 2010, 62, 343-380.
[50]
Arendt, J. Melatonin: Characteristics, concerns, and prospects. J. Biol. Rhythms, 2005, 20, 291-303.
[51]
Barrenetxe, J.; Delagrange, P.; Martinez, J.A. Physiological and metabolic functions of melatonin. J. Physiol. Biochem., 2004, 60(1), 61-72.
[52]
Audinot, V.; Mailliet, F.; Lahaye-Brasseur, C.; Bonnaud, A.; Le Gall, A.; Amosse, C.; Dromaint, S.; Rodriguez, M.; Nagel, N.; Galizzi, J-P.; Malpaux, B.; Guillaumet, G.; Lesieur, D.; Lefoulon, F.; Renard, P.; Delagrange, P. Boutin. New selective ligands of human cloned melatonin MT1and MT2 receptors. Naunyn-Schmiedeberg’s J. A. Arch. Pharmacol, 2003, 367, 553-561.
[53]
Millan, M.J.; Gobert, A.; Lejeune, F.; Dekeyne, A.; Newman-Tancredi, A.; Pasteau, V.; Rivet, J-M.; Cussac, D. The novel melatonin agonist agomelatine (S20098) is an antagonist at 5-hydroxytryptamine2C receptors, blockade of which enhances the activity of frontocortical dopaminergic and adrenergic pathways. J. Pharmacol. Exp. Ther., 2003, 306, 954-964.
[54]
Reppert, S.M.; Weaver, D.R.; Ebisawa, T. Molecular dissection of two distinct actions of melatonin on the suprachiasmatic circadian clock. Neuron, 1994, 13, 1177-1185.
[55]
Dubocovich, M.L.; Delagrange, P.; Krause, D.N.; Sugden, D.; Cardinali, D.P.; Olcese, J. Melatonin changes the electrical spontaneous activity of hippocampal rat neurons at different ages. Pharmacol. Rev., 2010, 62, 343-380.
[56]
Esteve, C.; González, J.; Gual, S.; Vidal, L.; Alzina, S.; Sentellas, S.; Jover, I.; Horrillo, R.; De Alba, J. Discovery of 7-azaindole derivatives as potent orai inhibitors showing efficacy in a preclinical model of asthma. Bioorg. Med. Chem. Lett., 2015, 25, 1217-1222.
[57]
Oh-hora, M. Calcium signaling in the development and function of T‐lineage cells. Immunol. Rev., 2009, 231, 210.
[58]
Vig, M.; Peinelt, C.; Beck, A.; Koomoa, D.L.; Rabah, D.; Koblan-Huberson, M.; Kraft, S.; Turner, H.; Fleig, A.; Penner, R.; Kinet, J. CRACM1 Is a Plasma Membrane Protein Essential for Store-Operated Ca2+ Entry. Pac. Sci., 2006, 312, 1220-1223.
[59]
Vig, M.; De Haven, W.; Bird, G.S.; Billingsley, J.M.; Wang, H.; Rao, P.E.; Hutchings, A.B.; Jouvin, M-H.; Putney, J.W.; Kinet, J-P. Defective mast cell effector functions in mice lacking the CRACM1 pore subunit of store operated calcium release activated calcium channels. Nat. Immunol., 2008, 9(1), 89-96.
[60]
Parekh, A.B. Store-operated CRAC channels: Function in health and disease. Nat. Rev. Drug Discov., 2010, 9, 399-410.
[61]
Feske, S.; Ann, N.Y. Immunodeficiency due to defects in store‐operated calcium entry. Acad. Sci, 2011, 1238, 74-90.
[62]
Stoit, A.R.; Hartog, A.P.; Mons, H.; Schaik, S.V.; Barkhuijsen, N. 7-Azaindole derivatives as potential partial nicotinic agonists. Bioorg. Med. Chem. Lett., 2008, 18, 188-193.
[63]
Feneyrolles, C.; Guiet, L.; Singer, M.; Hijfte, N.V.; Cazals, B.D.; Fauvel, B.; Cheve, G.; Yasri, A. Discovering novel 7-azaindole-based series as potent AXL kinase inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(4), 862-866.
[64]
Corno, C.; Gatti, L.; Lanzi, C.; Zaffaroni, N.; Colombo, D.; Perego, P. Role of the receptor tyrosine kinase AXL and its targeting in cancer cells. Curr. Med. Chem., 2016, 23, 1496-1512.
[65]
Sreenivasacharya, N.; Krotha, H.; Benderittera, P.; Hamela, A.; Variscoa, Y.; Hickmana, D.T.; Froestla, W.; Pfeifera, A.; Muhsa, A. Discovery and characterization of novel indole and 7-azaindole derivatives as inhibitors of β-amyloid-42 aggregation for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. Lett., 2017, 27(6), 1405-1411.
[66]
Cazals, B.D.; Fauvel, B.; Singer, M.; Feneyrolles, C.; Bestgen, B.; Gassiot, F.; Spenlinhauer, A.; Warnault, P.; Hijfte, N.V.; Borjini, N.; Cheve, G.; Yasri, A. Rational design, synthesis, and biological evaluation of 7-azaindole derivatives as potent focused multi-targeted kinase inhibitors. J. Med. Chem., 2016, 59(8), 3886-3905.
[67]
Guillard, J.; Decrop, M.; Gallay, N.; Espanel, C.; Boissier, E.; Heraultb, O.; Massuard, M.C.V. Synthesis and biological evaluation of 7-azaindole derivatives, synthetic cytokinin analogues. Bioorg. Med. Chem. Lett., 2007, 17, 1934-1937.
[68]
Gummadi, V.R.; Rajagopalan, S.; Yeng, L.C.; Paydar, M.; Renukappa, G.A.; Ainan, B.R.; Krishnamurthy, N.R. Discovery of 7-azaindole based anaplastic lymphoma kinase (ALK) inhibitors: Wild type and mutant (L1196M) active compounds with unique binding mode. Bioorg. Med. Chem. Lett., 2013, 23, 4911-4918.
[69]
Choi, Y.L.; Takeuchi, K.; Soda, M.; Inamura, K.; Togashi, Y.; Hatano, S.; Enomoto, M.; Hamada, T.; Haruta, H.; Watanabe, H.; Kurashina, K.; Hatanaka, H.; Ueno, T.; Takada, S.; Yamashita, Y.; Sugiyama, Y.; Ishikawa, Y.; Mano, H. Identification of novel isoforms of the EML4-ALK transforming gene in non-small cell lung cancer. Cancer Res., 2008, 68(13), 4971-4976.
[70]
Chiba, T.; Ohwada, J.; Sakamoto, H.; Kobayashi, T.; Fukami, T.A.; Irie, M.; Miura, T.; Ohara, K.; Koyano, H. Design and evaluation of azaindole-substituted N-hydroxypyridones as glyoxalase I inhibitors. Bioorg. Med. Chem. Lett., 2012, 22, 7486-7489.
[71]
Xia, M.; Hou, C.; DeMong, D.; Pollack, S.; Pan, M.; Singer, M.; Matheis, M.; Murray, W.; Cavender, D.; Wachter, M. Synthesis and structure-activity relationship of 7-azaindole piperidine derivatives as CCR2 antagonists. Bioorg. Med. Chem. Lett., 2008, 18, 6468-6470.
[72]
Charo, I.F.; Myers, S.J.; Herman, A.; Franci, C.; Connolly, A.J.; Coughlin, S.R. Molecular cloning and functional expression of two monocyte chemoattractant protein 1 receptors reveals alternative splicing of the carboxyl-terminal tails. Proc. Natl. Acad. Sci., 1994, 91, 2752-2756.
[73]
Ruth, J.H.; Rottman, J.B.; Katschke, K.J.; Qin, S.; Wu, L.; LaRosa, G.; Ponath, P.; Pope, R.M.; Koch, A.E. Selective lymphocyte chemokine receptor expression in the rheumatoid joint. Arthritis Rheum., 2001, 44, 2750-2760.
[74]
Carulli, M.T.; Ponticos, V.H.; Xu, M.; Abraham, S.; Black, D.J.; Denton, C.M. Chemokine receptor CCR2 expression by systemic sclerosis fibroblasts: Evidence for autocrine regulation of myofibroblast differentiation. Arthritis Rheum., 2005, 52, 3772-3782.
[75]
Boring, L.; Gosling, J.; Cleary, M.; Charo, I. Decreased lesion formation in CCR2-/- mice reveals a role for chemokines in the initiation of atherosclerosis. Nature, 1998, 394, 894-897.
[76]
Dawson, T.C.; Kuziel, W.A.; Osahar, T.A.; Maeda, N. Absence of CC chemokine receptor-2 reduces atherosclerosis in apolipoprotein E-deficient mice. Atherosclerosis, 1999, 143, 205-211.
[77]
Weisberg, S.P.; Hunter, D.; Huber, R.; Lemieux, J.; Slaymaker, S.; Vaddi, K.; Charo, I.; Leibel, R.L.; Ferrante, A.W. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J. Clin. Invest., 2006, 116, 115-124.
[78]
Lloyd, C.M.; Minto, A.W.; Dorf, M.E.; Proudfoot, A.; Wells, T.N.; Salant, D.J.; Gutierrez-Ramos, J.C. Rantes and monocyte chemo attractant protein-1 (MCP-1) play an important role in the inflammatory phase of crescentic nephritis, but only MCP-1 is involved in crescent formation and interstitial fibrosis. J. Exp. Med., 1997, 185, 1371-1380.
[80]
Hugon, B.; Anizon, F.; Bailly, C.; Golsteyn, R.M.; Pierré, A.; Leonce, S.; Hickman, J.; Pfeiffer, B.; Prudhomme, M. Synthesis and biological activities of isogranulatimide analogues. Bioorg. Med. Chem., 2007, 15(17), 5965-5980.
[82]
Peng, Z.; Dayun, S.; Huali, X.; Weilun, S.; Xiaofeng, Y.; Shaochun, Q.; Jianbing, H.; Yi, W.; Yingshi, W. Synthesis and antitumor activity of a new 7-azaindole derivative. Chem. Res. Chin. Univ., 2014, 30, 3420-3424.