Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Surface Modification by Nanobiomaterials for Vascular Tissue Engineering Applications

Author(s): Huey-Shan Hung and Shan-hui Hsu*

Volume 27, Issue 10, 2020

Page: [1634 - 1646] Pages: 13

DOI: 10.2174/0929867325666180914104633

Price: $65

Abstract

Treatment of cardiovascular disease has achieved great success using artificial implants, particularly synthetic-polymer made grafts. However, thrombus formation and restenosis are the current clinical problems need to be conquered. New biomaterials, modifying the surface of synthetic vascular grafts, have been created to improve long-term patency for the better hemocompatibility. The vascular biomaterials can be fabricated from synthetic or natural polymers for vascular tissue engineering. Stem cells can be seeded by different techniques into tissue-engineered vascular grafts in vitro and implanted in vivo to repair the vascular tissues. To overcome the thrombogenesis and promote the endothelialization effect, vascular biomaterials employing nanotopography are more bio-mimic to the native tissue made and have been engineered by various approaches such as prepared as a simple surface coating on the vascular biomaterials. It has now become an important and interesting field to find novel approaches to better endothelization of vascular biomaterials. In this article, we focus to review the techniques with better potential improving endothelization and summarize for vascular biomaterial application. This review article will enable the development of biomaterials with a high degree of originality, innovative research on novel techniques for surface fabrication for vascular biomaterials application.

Keywords: Vasculr biomaterials, surface fabrication, endothelialization, surface modification, vascular tissue regeneration.

[1]
Wang, F.; Mohammed, A.; Li, C.; Ge, P.; Wang, L.; King, M.W. Degradable/non-degradable polymer composites for in-situ tissue engineering small diameter vascular prosthesis application. Biomed. Mater. Eng., 2014, 24(6), 2127-2133.
[http://dx.doi.org/10.3233/BME-141023] [PMID: 25226910]
[2]
Mancuso, L.; Gualerzi, A.; Boschetti, F.; Loy, F.; Cao, G. Decellularized ovine arteries as small-diameter vascular grafts. Biomed. Mater., 2014, 9(4), 045011
[http://dx.doi.org/10.1088/1748-6041/9/4/045011] [PMID: 25050540]
[3]
Yagi, H.; Amiya, E.; Ando, J.; Watanabe, M.; Yanaba, K.; Ikemura, M.; Fukayama, M.; Komuro, I. In-stent restenosis exacerbated by drug-induced severe eosinophilia after second-generation drug-eluting stent implantation. Am. J. Case Rep., 2014, 15, 397-400.
[http://dx.doi.org/10.12659/AJCR.891106] [PMID: 25227966]
[4]
Saxena, A.; Rauch, U.; Berg, K.E.; Andersson, L.; Hollender, L.; Carlsson, A-M.; Gomez, M.F.; Hultgårdh-Nilsson, A.; Nilsson, J.; Björkbacka, H. The vascular repair process after injury of the carotid artery is regulated by IL-1RI and MyD88 signalling. Cardiovasc. Res., 2011, 91(2), 350-357.
[http://dx.doi.org/10.1093/cvr/cvr075] [PMID: 21421554]
[5]
Orza, A.I.; Mihu, C.; Soritau, O.; Diudea, M.; Florea, A.; Matei, H.; Balici, S.; Mudalige, T.; Kanarpardy, G.K.; Biris, A.S. Multistructural biomimetic substrates for controlled cellular differentiation. Nanotechnology, 2014, 25(6), 065102
[http://dx.doi.org/10.1088/0957-4484/25/6/065102] [PMID: 24434767]
[6]
Kwon, S-M.; Lee, J-H.; Lee, S-H.; Jung, S-Y.; Kim, D-Y.; Kang, S-H.; Yoo, S-Y.; Hong, J-K.; Park, J-H.; Kim, J-H.; Kim, S.W.; Kim, Y.J.; Lee, S.J.; Kim, H.G.; Asahara, T. Cross talk with hematopoietic cells regulates the endothelial progenitor cell differentiation of CD34 positive cells. PLoS One, 2014, 9(8), e106310
[http://dx.doi.org/10.1371/journal.pone.0106310] [PMID: 25166961]
[7]
Zhou, J.; Chen, L.; Fan, Y.; Jiang, J.; Wan, J. Atorvastatin increases endothelial progenitor cells in balloon-injured mouse carotid artery. Can. J. Physiol. Pharmacol., 2014, 92(5), 369-374.
[http://dx.doi.org/10.1139/cjpp-2013-0292] [PMID: 24773377]
[8]
Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. cell, 2006, 126(4), 663-676.
[9]
Yu, J.; Vodyanik, M.A.; Smuga-Otto, K.; Antosiewicz-Bourget, J.; Frane, J.L.; Tian, S.; Nie, J.; Jonsdottir, G.A.; Ruotti, V.; Stewart, R. Induced pluripotent stem cell lines derived from human somatic cells. Obstet. Gynecol. Surv., 2008, 63(3), 154-155.
[http://dx.doi.org/10.1097/01.ogx.0000305193.72586.39]
[10]
Shalaby, R.H.; Rashed, L.A.; Ismaail, A.E.; Madkour, N.K.; Elwakeel, S.H. Hematopoietic stem cells derived from human umbilical cord ameliorate cisplatin-induced acute renal failure in rats. Am. J. Stem Cells, 2014, 3(2), 83-96.
[PMID: 25232508]
[11]
Liu, X-B.; Wang, J-A.; Ji, X-Y.; Yu, S.P.; Wei, L. Preconditioning of bone marrow mesenchymal stem cells by prolyl hydroxylase inhibition enhances cell survival and angiogenesis in vitro and after transplantation into the ischemic heart of rats. Stem Cell Res. Ther., 2014, 5(5), 111.
[http://dx.doi.org/10.1186/scrt499] [PMID: 25257482]
[12]
Yang, Z.; Chen, P.; Yu, H.; Luo, W.; Pi, M.; Wu, Y.; Wang, L.; Yang, F.; Gou, Y. Combinatorial effects of conception and governor vessel electroacupuncture and human umbilical cord blood-derived mesenchymal stem cells on pathomorphologic lesion and cellular apoptosis in rats with cerebral ischemia/reperfusion. J. Tradit. Chin. Med., 2013, 33(6), 779-786.
[http://dx.doi.org/10.1016/S0254-6272(14)60012-1] [PMID: 24660611]
[13]
Roubelakis, M.G.; Tsaknakis, G.; Pappa, K.I.; Anagnou, N.P.; Watt, S.M. Spindle shaped human mesenchymal stem/stromal cells from amniotic fluid promote neovascularization. PLoS One, 2013, 8(1), e54747
[http://dx.doi.org/10.1371/journal.pone.0054747] [PMID: 23359810]
[14]
McIntosh, K.; Zvonic, S.; Garrett, S.; Mitchell, J.B.; Floyd, Z.E.; Hammill, L.; Kloster, A.; Di Halvorsen, Y.; Ting, J.P.; Storms, R.W.; Goh, B.; Kilroy, G.; Wu, X.; Gimble, J.M. The immunogenicity of human adipose-derived cells: temporal changes in vitro. Stem Cells, 2006, 24(5), 1246-1253.
[http://dx.doi.org/10.1634/stemcells.2005-0235] [PMID: 16410391]
[15]
Tillman, B.W.; Yazdani, S.K.; Lee, S.J.; Geary, R.L.; Atala, A.; Yoo, J.J. The in vivo stability of electrospun polycaprolactone-collagen scaffolds in vascular reconstruction. Biomaterials, 2009, 30(4), 583-588.
[http://dx.doi.org/10.1016/j.biomaterials.2008.10.006] [PMID: 18990437]
[16]
de Mel, A.; Jell, G.; Stevens, M.M.; Seifalian, A.M. Biofunctionalization of biomaterials for accelerated in situ endothelialization: a review. Biomacromolecules, 2008, 9(11), 2969-2979.
[http://dx.doi.org/10.1021/bm800681k] [PMID: 18831592]
[17]
Lee, J.M.; Choe, W.; Kim, B-K.; Seo, W-W.; Lim, W-H.; Kang, C-K.; Kyeong, S.; Eom, K.D.; Cho, H-J.; Kim, Y-C.; Hur, J.; Yang, H.M.; Cho, H.J.; Lee, Y.S.; Kim, H.S. Comparison of endothelialization and neointimal formation with stents coated with antibodies against CD34 and vascular endothelial-cadherin. Biomaterials, 2012, 33(35), 8917-8927.
[http://dx.doi.org/10.1016/j.biomaterials.2012.08.066] [PMID: 22981075]
[18]
Khan, M.; Yang, J.; Shi, C.; Lv, J.; Feng, Y.; Zhang, W. Surface tailoring for selective endothelialization and platelet inhibition via a combination of SI-ATRP and click chemistry using Cys-Ala-Gly-peptide. Acta Biomater., 2015, 20, 69-81.
[http://dx.doi.org/10.1016/j.actbio.2015.03.032] [PMID: 25839123]
[19]
Song, Y.; Feijen, J.; Grijpma, D.W.; Poot, A.A. Tissue engineering of small-diameter vascular grafts: a literature review. Clin. Hemorheol. Microcirc., 2011, 49(1-4), 357-374.
[http://dx.doi.org/10.3233/CH-2011-1486] [PMID: 22214707]
[20]
Li, S.; Sengupta, D.; Chien, S. Vascular tissue engineering: from in vitro to in situ. Wiley Interdiscip. Rev. Syst. Biol. Med., 2014, 6(1), 61-76.
[http://dx.doi.org/10.1002/wsbm.1246] [PMID: 24151038]
[21]
Vatankhah, E.; Prabhakaran, M.P.; Semnani, D.; Razavi, S.; Morshed, M.; Ramakrishna, S. Electrospun tecophilic/gelatin nanofibers with potential for small diameter blood vessel tissue engineering. Biopolymers, 2014, 101(12), 1165-1180.
[http://dx.doi.org/10.1002/bip.22524] [PMID: 25042000]
[22]
Moffa, M.; Sciancalepore, A.G.; Passione, L.G.; Pisignano, D. Combined nano- and micro-scale topographic cues for engineered vascular constructs by electrospinning and imprinted micro-patterns. Small, 2014, 10(12), 2439-2450.
[http://dx.doi.org/10.1002/smll.201303179] [PMID: 24623539]
[23]
Ahmed, M.; Hamilton, G.; Seifalian, A.M. The performance of a small-calibre graft for vascular reconstructions in a senescent sheep model. Biomaterials, 2014, 35(33), 9033-9040.
[http://dx.doi.org/10.1016/j.biomaterials.2014.07.008] [PMID: 25106769]
[24]
Wang, S.; Mo, X.M.; Jiang, B.J.; Gao, C.J.; Wang, H.S.; Zhuang, Y.G.; Qiu, L.J. Fabrication of small-diameter vascular scaffolds by heparin-bonded P(LLA-CL) composite nanofibers to improve graft patency. Int. J. Nanomedicine, 2013, 8, 2131-2139.
[http://dx.doi.org/10.2147/IJN.S44956] [PMID: 23776333]
[25]
Ghanaati, S.; Unger, R.E.; Webber, M.J.; Barbeck, M.; Orth, C.; Kirkpatrick, J.A.; Booms, P.; Motta, A.; Migliaresi, C.; Sader, R.A.; Kirkpatrick, C.J. Scaffold vascularization in vivo driven by primary human osteoblasts in concert with host inflammatory cells. Biomaterials, 2011, 32(32), 8150-8160.
[http://dx.doi.org/10.1016/j.biomaterials.2011.07.041] [PMID: 21821280]
[26]
Yang, F.; Murugan, R.; Wang, S.; Ramakrishna, S. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials, 2005, 26(15), 2603-2610.
[http://dx.doi.org/10.1016/j.biomaterials.2004.06.051] [PMID: 15585263]
[27]
Cao, D.; Liu, W.; Wei, X.; Xu, F.; Cui, L.; Cao, Y. In vitro tendon engineering with avian tenocytes and polyglycolic acids: a preliminary report. Tissue Eng., 2006, 12(5), 1369-1377.
[http://dx.doi.org/10.1089/ten.2006.12.1369] [PMID: 16771649]
[28]
Chen, G-Q.; Wu, Q. The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials, 2005, 26(33), 6565-6578.
[http://dx.doi.org/10.1016/j.biomaterials.2005.04.036] [PMID: 15946738]
[29]
Hutmacher, D.W.; Schantz, T.; Zein, I.; Ng, K.W.; Teoh, S.H.; Tan, K.C. Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J. Biomed. Mater. Res., 2001, 55(2), 203-216.
[http://dx.doi.org/10.1002/1097-4636(200105)55:2<203:AID-JBM1007>3.0.CO;2-7] [PMID: 11255172]
[30]
Kwon, I.K.; Kidoaki, S.; Matsuda, T. Electrospun nano- to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential. Biomaterials, 2005, 26(18), 3929-3939.
[http://dx.doi.org/10.1016/j.biomaterials.2004.10.007] [PMID: 15626440]
[31]
Kim, B.S.; Mooney, D.J. Engineering smooth muscle tissue with a predefined structure. J. Biomed. Mater. Res., 1998, 41(2), 322-332.
[http://dx.doi.org/10.1002/(SICI)1097-4636(199808)41:2<322:AID-JBM18>3.0.CO;2-M] [PMID: 9638538]
[32]
Caspi, O.; Lesman, A.; Basevitch, Y.; Gepstein, A.; Arbel, G.; Habib, I.H.M.; Gepstein, L.; Levenberg, S. Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ. Res., 2007, 100(2), 263-272.
[http://dx.doi.org/10.1161/01.RES.0000257776.05673.ff] [PMID: 17218605]
[33]
Borinski, M.; Flege, C.; Schreiber, F.; Krott, N.; Gries, T.; Liehn, E.; Blindt, R.; Marx, N.; Vogt, F. Introduction of a high-throughput double-stent animal model for the evaluation of biodegradable vascular stents. J. Biomed. Mater. Res. B Appl. Biomater., 2012, 100(8), 2023-2028.
[http://dx.doi.org/10.1002/jbm.b.32810] [PMID: 22997102]
[34]
Heo, Y.; Shin, Y.M.; Lee, Y.B.; Lim, Y.M.; Shin, H. Effect of immobilized collagen type IV on biological properties of endothelial cells for the enhanced endothelialization of synthetic vascular graft materials. Colloids Surf. B Biointerfaces, 2015, 134, 196-203.
[http://dx.doi.org/10.1016/j.colsurfb.2015.07.003] [PMID: 26196092]
[35]
Wang, Y.; Hu, J.; Jiao, J.; Liu, Z.; Zhou, Z.; Zhao, C.; Chang, L.J.; Chen, Y.E.; Ma, P.X.; Yang, B. Engineering vascular tissue with functional smooth muscle cells derived from human iPS cells and nanofibrous scaffolds. Biomaterials, 2014, 35(32), 8960-8969.
[http://dx.doi.org/10.1016/j.biomaterials.2014.07.011] [PMID: 25085858]
[36]
Liu, H.; Li, X.; Niu, X.; Zhou, G.; Li, P.; Fan, Y. Improved hemocompatibility and endothelialization of vascular grafts by covalent immobilization of sulfated silk fibroin on poly(lactic-co-glycolic acid) scaffolds. Biomacromolecules, 2011, 12(8), 2914-2924.
[http://dx.doi.org/10.1021/bm200479f] [PMID: 21714569]
[37]
Kobayashi, H.; Terada, D.; Yokoyama, Y.; Moon, D.W.; Yasuda, Y.; Koyama, H.; Takato, T. Vascular-inducing poly(glycolic acid)-collagen nanocomposite-fiber scaffold. J. Biomed. Nanotechnol., 2013, 9(8), 1318-1326.
[http://dx.doi.org/10.1166/jbn.2013.1638] [PMID: 23926797]
[38]
Hajiali, H.; Shahgasempour, S.; Naimi-Jamal, M.R.; Peirovi, H. Electrospun PGA/gelatin nanofibrous scaffolds and their potential application in vascular tissue engineering. Int. J. Nanomedicine, 2011, 6, 2133-2141.
[http://dx.doi.org/10.2147/IJN.S24312] [PMID: 22114477]
[39]
Uttayarat, P.; Perets, A.; Li, M.; Pimton, P.; Stachelek, S.J.; Alferiev, I.; Composto, R.J.; Levy, R.J.; Lelkes, P.I. Micropatterning of three-dimensional electrospun polyurethane vascular grafts. Acta Biomater., 2010, 6(11), 4229-4237.
[http://dx.doi.org/10.1016/j.actbio.2010.06.008] [PMID: 20601235]
[40]
Zhang, X.; Battiston, K.G.; Labow, R.S.; Simmons, C.A.; Santerre, J.P. Generating favorable growth factor and protease release profiles to enable extracellular matrix accumulation within an in vitro tissue engineering environment. Acta Biomater., 2017, 54, 81-94.
[http://dx.doi.org/10.1016/j.actbio.2017.02.041] [PMID: 28242454]
[41]
Li, Q.; Mu, L.; Zhang, F.; Mo, Z.; Jin, C.; Qi, W. Manufacture and property research of heparin grafted electrospinning PCU artificial vascular scaffolds. Mater. Sci. Eng. C, 2017, 78, 854-861.
[http://dx.doi.org/10.1016/j.msec.2017.04.148] [PMID: 28576059]
[42]
Kucinska-Lipka, J.; Gubanska, I.; Janik, H.; Sienkiewicz, M. Fabrication of polyurethane and polyurethane based composite fibres by the electrospinning technique for soft tissue engineering of cardiovascular system. Mater. Sci. Eng. C, 2015, 46, 166-176.
[http://dx.doi.org/10.1016/j.msec.2014.10.027] [PMID: 25491973]
[43]
Laschke, M.W.; Schank, T.E.; Scheuer, C.; Kleer, S.; Schuler, S.; Metzger, W.; Eglin, D.; Alini, M.; Menger, M.D. Three-dimensional spheroids of adipose-derived mesenchymal stem cells are potent initiators of blood vessel formation in porous polyurethane scaffolds. Acta Biomater., 2013, 9(6), 6876-6884.
[http://dx.doi.org/10.1016/j.actbio.2013.02.013] [PMID: 23415749]
[44]
Laschke, M.W.; Strohe, A.; Scheuer, C.; Eglin, D.; Verrier, S.; Alini, M.; Pohlemann, T.; Menger, M.D. In vivo biocompatibility and vascularization of biodegradable porous polyurethane scaffolds for tissue engineering. Acta Biomater., 2009, 5(6), 1991-2001.
[http://dx.doi.org/10.1016/j.actbio.2009.02.006] [PMID: 19286433]
[45]
Wang, F.; Li, Z.; Guan, J. Fabrication of mesenchymal stem cells-integrated vascular constructs mimicking multiple properties of the native blood vessels. J. Biomater. Sci. Polym. Ed., 2013, 24(7), 769-783.
[http://dx.doi.org/10.1080/09205063.2012.712029] [PMID: 23594067]
[46]
Duttenhoefer, F.; Lara de Freitas, R.; Meury, T.; Loibl, M.; Benneker, L.M.; Hermann, M.; Richards, R.; Alini, M.; Verrier, S. 3D scaffolds co-seeded with human endothelial progenitor and mesenchymal stem cells: evidence of prevascularisation within 7 days. Eur. Cell. Mater., 2013, 26, 49-64.
[http://dx.doi.org/10.22203/ecm.v026a04]
[47]
Campbell, J.H.; Han, C.L.; Campbell, G.R. Neointimal formation by circulating bone marrow cells. Ann. N. Y. Acad. Sci., 2001, 947(1), 18-24.
[http://dx.doi.org/10.1111/j.1749-6632.2001.tb03926.x] [PMID: 11795265]
[48]
Andukuri, A.; Sohn, Y-D.; Anakwenze, C.P.; Lim, D-J.; Brott, B.C.; Yoon, Y-S.; Jun, H-W. Enhanced human endothelial progenitor cell adhesion and differentiation by a bioinspired multifunctional nanomatrix. Tissue Eng. Part C Methods, 2013, 19(5), 375-385.
[http://dx.doi.org/10.1089/ten.tec.2012.0312] [PMID: 23126402]
[49]
Aguirre, A.; González, A.; Navarro, M.; Castaño, Ó.; Planell, J.A.; Engel, E. Control of microenvironmental cues with a smart biomaterial composite promotes endothelial progenitor cell angiogenesis. Eur. Cell. Mater., 2012, 24, 90-106.
[http://dx.doi.org/10.22203/eCM.v024a07] [PMID: 22828988]
[50]
Lin, Y.S.; Wang, S.S.; Chung, T.W.; Wang, Y.H.; Chiou, S.H.; Hsu, J.J.; Chou, N.K.; Hsieh, K.H.; Chu, S.H. Growth of endothelial cells on different concentrations of Gly-Arg-Gly-Asp photochemically grafted in polyethylene glycol modified polyurethane. Artif. Organs, 2001, 25(8), 617-621.
[http://dx.doi.org/10.1046/j.1525-1594.2001.025008617.x] [PMID: 11531712]
[51]
Alobaid, N.; Salacinski, H.J.; Sales, K.M.; Ramesh, B.; Kannan, R.Y.; Hamilton, G.; Seifalian, A.M. Nanocomposite containing bioactive peptides promote endothelialisation by circulating progenitor cells: an in vitro evaluation. Eur. J. Vasc. Endovasc. Surg., 2006, 32(1), 76-83.
[http://dx.doi.org/10.1016/j.ejvs.2005.11.034] [PMID: 16466940]
[52]
Ravi, S.; Caves, J.M.; Martinez, A.W.; Haller, C.A.; Chaikof, E.L. Incorporation of fibronectin to enhance cytocompatibility in multilayer elastin-like protein scaffolds for tissue engineering. J. Biomed. Mater. Res. A, 2013, 101(7), 1915-1925.
[http://dx.doi.org/10.1002/jbm.a.34484] [PMID: 23225639]
[53]
Harding, S.I.; Afoke, A.; Brown, R.A.; MacLeod, A.; Shamlou, P.A.; Dunnill, P. Engineering and cell attachment properties of human fibronectin-fibrinogen scaffolds for use in tissue engineered blood vessels. Bioprocess Biosyst. Eng., 2002, 25(1), 53-59.
[http://dx.doi.org/10.1007/s004490100268] [PMID: 14505020]
[54]
van der Zijpp, Y.J.; Poot, A.A.; Feijen, J. ICAM-1 and VCAM-1 expression by endothelial cells grown on fibronectin-coated TCPS and PS. J. Biomed. Mater. Res. A, 2003, 65(1), 51-59.
[http://dx.doi.org/10.1002/jbm.a.10327] [PMID: 12635154]
[55]
Sipehia, R.; Martucci, G.; Barbarosie, M.; Wu, C. Enhanced attachment and growth of human endothelial cells derived from umbilical veins on ammonia plasma modified surfaces of PTFE and ePTFE synthetic vascular graft biomaterials. Biomater. Artif. Cells Immobilization Biotechnol., 1993, 21(4), 455-468.
[http://dx.doi.org/10.3109/10731199309117651] [PMID: 8260574]
[56]
Mugel, T.; Ghossain, M.A.; Guinet, C.; Buy, J.; Bethoux, J.; Texier, P.; Vadrot, D. MR and CT findings in a case of hibernoma of the thigh extending into the pelvis. Eur. Radiol., 1998, 8(3), 476-478.
[http://dx.doi.org/10.1007/s003300050419] [PMID: 9510590]
[57]
Jia, L.; Prabhakaran, M.P.; Qin, X.; Ramakrishna, S. Stem cell differentiation on electrospun nanofibrous substrates for vascular tissue engineering. Mater. Sci. Eng. C, 2013, 33(8), 4640-4650.
[http://dx.doi.org/10.1016/j.msec.2013.07.021] [PMID: 24094171]
[58]
Lu, S.; Zhang, P.; Sun, X.; Gong, F.; Yang, S.; Shen, L.; Huang, Z.; Wang, C. Synthetic ePTFE grafts coated with an anti-CD133 antibody-functionalized heparin/collagen multilayer with rapid in vivo endothelialization properties. ACS Appl. Mater. Interfaces, 2013, 5(15), 7360-7369.
[http://dx.doi.org/10.1021/am401706w] [PMID: 23859593]
[59]
Wang, X.; Zachman, A.L.; Chun, Y.W.; Shen, F-W.; Hwang, Y-S.; Sung, H-J. Polymeric stent materials dysregulate macrophage and endothelial cell functions: implications for coronary artery stent. Int. J. Cardiol., 2014, 174(3), 688-695.
[http://dx.doi.org/10.1016/j.ijcard.2014.04.228] [PMID: 24820736]
[60]
Chaubaroux, C.; Vrana, E.; Debry, C.; Schaaf, P.; Senger, B.; Voegel, J-C.; Haikel, Y.; Ringwald, C.; Hemmerlé, J.; Lavalle, P.; Boulmedais, F. Collagen-based fibrillar multilayer films cross-linked by a natural agent. Biomacromolecules, 2012, 13(7), 2128-2135.
[http://dx.doi.org/10.1021/bm300529a] [PMID: 22662909]
[61]
He, W.; Ma, Z.; Yong, T.; Teo, W.E.; Ramakrishna, S. Fabrication of collagen-coated biodegradable polymer nanofiber mesh and its potential for endothelial cells growth. Biomaterials, 2005, 26(36), 7606-7615.
[http://dx.doi.org/10.1016/j.biomaterials.2005.05.049] [PMID: 16000219]
[62]
Pärsson, H.; Jundzill, W.; Johansson, K.; Jonung, T.; Norgren, L. Healing characteristics of polymer-coated or collagen-treated Dacron grafts: an experimental porcine study. Cardiovasc. Surg., 1994, 2(2), 242-248.
[PMID: 8049955]
[63]
Flemming, R.G.; Murphy, C.J.; Abrams, G.A.; Goodman, S.L.; Nealey, P.F. Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials, 1999, 20(6), 573-588.
[http://dx.doi.org/10.1016/S0142-9612(98)00209-9] [PMID: 10213360]
[64]
Curtis, A.S.; Gadegaard, N.; Dalby, M.J.; Riehle, M.O.; Wilkinson, C.D.; Aitchison, G. Cells react to nanoscale order and symmetry in their surroundings. IEEE Trans. Nanobioscience, 2004, 3(1), 61-65.
[http://dx.doi.org/10.1109/TNB.2004.824276] [PMID: 15382646]
[65]
Bettinger, C.J.; Langer, R.; Borenstein, J.T. Engineering substrate topography at the micro- and nanoscale to control cell function. Angew. Chem. Int. Ed. Engl., 2009, 48(30), 5406-5415.
[http://dx.doi.org/10.1002/anie.200805179] [PMID: 19492373]
[66]
Teixeira, A.I.; Abrams, G.A.; Bertics, P.J.; Murphy, C.J.; Nealey, P.F. Epithelial contact guidance on well-defined micro- and nanostructured substrates. J. Cell Sci., 2003, 116(Pt 10), 1881-1892.
[http://dx.doi.org/10.1242/jcs.00383] [PMID: 12692189]
[67]
Lamers, E.; Walboomers, X.F.; Domanski, M.; te Riet, J.; van Delft, F.C.; Luttge, R.; Winnubst, L.A.; Gardeniers, H.J.; Jansen, J.A. The influence of nanoscale grooved substrates on osteoblast behavior and extracellular matrix deposition. Biomaterials, 2010, 31(12), 3307-3316.
[http://dx.doi.org/10.1016/j.biomaterials.2010.01.034] [PMID: 20122723]
[68]
Biela, S.A.; Su, Y.; Spatz, J.P.; Kemkemer, R. Different sensitivity of human endothelial cells, smooth muscle cells and fibroblasts to topography in the nano-micro range. Acta Biomater., 2009, 5(7), 2460-2466.
[http://dx.doi.org/10.1016/j.actbio.2009.04.003] [PMID: 19410529]
[69]
Kruss, S.; Wolfram, T.; Martin, R.; Neubauer, S.; Kessler, H.; Spatz, J.P. Stimulation of cell adhesion at nanostructured teflon interfaces. Adv. Mater., 2010, 22(48), 5499-5506.
[http://dx.doi.org/10.1002/adma.201003055] [PMID: 20972983]
[70]
Shi, Z.; Neoh, K.G.; Kang, E.T.; Poh, C.K.; Wang, W. Enhanced endothelial differentiation of adipose-derived stem cells by substrate nanotopography. J. Tissue Eng. Regen. Med., 2014, 8(1), 50-58.
[http://dx.doi.org/10.1002/term.1496] [PMID: 22628362]
[71]
de Mel, A.; Punshon, G.; Ramesh, B.; Sarkar, S.; Darbyshire, A.; Hamilton, G.; Seifalian, A.M. In situ endothelialization potential of a biofunctionalised nanocomposite biomaterial-based small diameter bypass graft. Biomed. Mater. Eng., 2009, 19(4-5), 317-331.
[http://dx.doi.org/10.3233/BME-2009-0597] [PMID: 20042799]
[72]
Oberdörster, G.; Oberdörster, E.; Oberdörster, J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect., 2005, 113(7), 823-839.
[http://dx.doi.org/10.1289/ehp.7339] [PMID: 16002369]
[73]
Prabhu, P.; Patravale, V. The upcoming field of theranostic nanomedicine: an overview. J. Biomed. Nanotechnol., 2012, 8(6), 859-882.
[http://dx.doi.org/10.1166/jbn.2012.1459] [PMID: 23029995]
[74]
Duncan, B.; Kim, C.; Rotello, V.M. Gold nanoparticle platforms as drug and biomacromolecule delivery systems. J. Control. Release, 2010, 148(1), 122-127.
[http://dx.doi.org/10.1016/j.jconrel.2010.06.004] [PMID: 20547192]
[75]
Huang, W.; Qian, W.; Jain, P.K.; El-Sayed, M.A. The effect of plasmon field on the coherent lattice phonon oscillation in electron-beam fabricated gold nanoparticle pairs. Nano Lett., 2007, 7(10), 3227-3234.
[http://dx.doi.org/10.1021/nl071813p] [PMID: 17760479]
[76]
Dreaden, E.C.; Austin, L.A.; Mackey, M.A.; El-Sayed, M.A. Size matters: gold nanoparticles in targeted cancer drug delivery. Ther. Deliv., 2012, 3(4), 457-478.
[http://dx.doi.org/10.4155/tde.12.21] [PMID: 22834077]
[77]
Liu, A.; Ye, B. Application of gold nanoparticles in biomedical researches and diagnosis. Clin. Lab., 2013, 59(1-2), 23-36.
[http://dx.doi.org/10.7754/Clin.Lab.2012.120614] [PMID: 23505903]
[78]
De Jong, W.H.; Hagens, W.I.; Krystek, P.; Burger, M.C.; Sips, A.J.; Geertsma, R.E. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials, 2008, 29(12), 1912-1919.
[http://dx.doi.org/10.1016/j.biomaterials.2007.12.037] [PMID: 18242692]
[79]
Yang, H.; Sun, C.; Fan, Z.; Tian, X.; Yan, L.; Du, L.; Liu, Y.; Chen, C.; Liang, X.J.; Anderson, G.J.; Keelan, J.A.; Zhao, Y.; Nie, G. Effects of gestational age and surface modification on materno-fetal transfer of nanoparticles in murine pregnancy. Sci. Rep., 2012, 2, 847.
[http://dx.doi.org/10.1038/srep00847] [PMID: 23150793]
[80]
Forestier, J. Copper and gold salts in rheumatoid arthritis. Ann. Rheum. Dis., 1949, 8(2), 132-134.
[http://dx.doi.org/10.1136/ard.8.2.132] [PMID: 18623803]
[81]
Lehman, A.J.; Esdaile, J.M.; Klinkhoff, A.V.; Grant, E.; Fitzgerald, A.; Canvin, J. A 48-week, randomized, double-blind, double-observer, placebo-controlled multicenter trial of combination methotrexate and intramuscular gold therapy in rheumatoid arthritis: results of the METGO study. Arthritis Rheum., 2005, 52(5), 1360-1370.
[http://dx.doi.org/10.1002/art.21018] [PMID: 15880810]
[82]
Connor, E.E.; Mwamuka, J.; Gole, A.; Murphy, C.J.; Wyatt, M.D. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small, 2005, 1(3), 325-327.
[http://dx.doi.org/10.1002/smll.200400093] [PMID: 17193451]
[83]
Polizzi, M.A.; Stasko, N.A.; Schoenfisch, M.H. Water-soluble nitric oxide-releasing gold nanoparticles. Langmuir, 2007, 23(9), 4938-4943.
[http://dx.doi.org/10.1021/la0633841] [PMID: 17375944]
[84]
Silva, B.R.; Lunardi, C.N.; Araki, K.; Biazzotto, J.C.; Da Silva, R.S.; Bendhack, L.M. Gold nanoparticle modifies nitric oxide release and vasodilation in rat aorta. J. Chem. Biol., 2014, 7(2), 57-65.
[http://dx.doi.org/10.1007/s12154-014-0109-x] [PMID: 24711859]
[85]
Yang, C.; Yang, H.; Wu, J.; Meng, Z.; Xing, R.; Tian, A.; Tian, X.; Guo, L.; Zhang, Y.; Nie, G.; Li, Z. No overt structural or functional changes associated with PEG-coated gold nanoparticles accumulation with acute exposure in the mouse heart. Toxicol. Lett., 2013, 222(2), 197-203.
[http://dx.doi.org/10.1016/j.toxlet.2013.07.018] [PMID: 23906719]
[86]
Hsu, S.H.; Tang, C.M.; Tseng, H.J. Biocompatibility of poly(ether)urethane-gold nanocomposites. J. Biomed. Mater. Res. A, 2006, 79(4), 759-770.
[http://dx.doi.org/10.1002/jbm.a.30879] [PMID: 16871514]
[87]
Hsu, S.H.; Tang, C-M.; Tseng, H-J. Gold nanoparticles induce surface morphological transformation in polyurethane and affect the cellular response. Biomacromolecules, 2008, 9(1), 241-248.
[http://dx.doi.org/10.1021/bm700471k] [PMID: 18163574]
[88]
Hsu, S.H.; Tseng, H-J.; Lin, Y-C. The biocompatibility and antibacterial properties of waterborne polyurethane-silver nanocomposites. Biomaterials, 2010, 31(26), 6796-6808.
[http://dx.doi.org/10.1016/j.biomaterials.2010.05.015] [PMID: 20542329]
[89]
Liu, H-L.; Dai, S.A.; Fu, K-Y.; Hsu, S.H. Antibacterial properties of silver nanoparticles in three different sizes and their nanocomposites with a new waterborne polyurethane. Int. J. Nanomedicine, 2010, 5, 1017-1028.
[http://dx.doi.org/10.2147/IJN.S14572] [PMID: 21187943]
[90]
Hsu, S.H.; Tang, C-M.; Tseng, H-J. Biostability and biocompatibility of poly(ester urethane)-gold nanocomposites. Acta Biomater., 2008, 4(6), 1797-1808.
[http://dx.doi.org/10.1016/j.actbio.2008.06.015] [PMID: 18657493]
[91]
Chou, C.W.; Hsu, S.H.; Wang, P.H. Biostability and biocompatibility of poly(ether)urethane containing gold or silver nanoparticles in a porcine model. J. Biomed. Mater. Res. A, 2008, 84(3), 785-794.
[PMID: 17635027]
[92]
Hung, H-S.; Wu, C-C.; Chien, S.; Hsu, S.H. The behavior of endothelial cells on polyurethane nanocomposites and the associated signaling pathways. Biomaterials, 2009, 30(8), 1502-1511.
[http://dx.doi.org/10.1016/j.biomaterials.2008.12.003] [PMID: 19118895]
[93]
Hung, H-S.; Hsu, S.H. The response of endothelial cells to polymer surface composed of nanometric micelles. N. Biotechnol., 2009, 25(4), 235-243.
[http://dx.doi.org/10.1016/j.nbt.2009.01.003] [PMID: 19429543]
[94]
Hung, H.S.; Chu, M.Y.; Lin, C.H.; Wu, C.C.; Hsu, S.H. Mediation of the migration of endothelial cells and fibroblasts on polyurethane nanocomposites by the activation of integrin-focal adhesion kinase signaling. J. Biomed. Mater. Res. A, 2012, 100(1), 26-37.
[http://dx.doi.org/10.1002/jbm.a.33224] [PMID: 21972215]
[95]
Huang, C-Y.; Lin, C-H.; Ho, T-T.; Chen, H-C.; Chu, M-Y.; Sun, W-S.; Kao, W-C.; Hung, H-S.; Hsu, S-h. Enhanced migration of wharton’s jelly mesenchymal stem cells grown on polyurethane nanocomposites. J. Med. Biol. Eng., 2013, 33(2), 139-148.
[http://dx.doi.org/10.5405/jmbe.1109]
[96]
Hung, H-S.; Yang, Y-C.; Lin, Y-C.; Lin, S-Z.; Kao, W-C.; Hsieh, H-H.; Chu, M-Y.; Fu, R-H.; Hsu, S.H. Regulation of human endothelial progenitor cell maturation by polyurethane nanocomposites. Biomaterials, 2014, 35(25), 6810-6821.
[http://dx.doi.org/10.1016/j.biomaterials.2014.04.076] [PMID: 24836305]
[97]
Hung, H-S.; Tang, C-M.; Lin, C-H.; Lin, S-Z.; Chu, M-Y.; Sun, W-S.; Kao, W-C.; Hsien-Hsu, H.; Huang, C-Y.; Hsu, S.H. Biocompatibility and favorable response of mesenchymal stem cells on fibronectin-gold nanocomposites. PLoS One, 2013, 8(6), e65738
[http://dx.doi.org/10.1371/journal.pone.0065738] [PMID: 23826082]
[98]
Hsieh, S-C.; Chen, H-J.; Hsu, S.H.; Yang, Y-C.; Tang, C-M.; Chu, M-Y.; Lin, P-Y.; Fu, R-H.; Kung, M-L.; Chen, Y-W.; Yeh, B.W.; Hung, H.S. Prominent vascularization capacity of mesenchymal stem cells in collagen-gold nanocomposites. ACS Appl. Mater. Interfaces, 2016, 8(42), 28982-29000.
[http://dx.doi.org/10.1021/acsami.6b09330] [PMID: 27714998]
[99]
Hung, H-S.; Chang, C-H.; Chang, C-J.; Tang, C-M.; Kao, W-C.; Lin, S-Z.; Hsieh, H-H.; Chu, M-Y.; Sun, W-S.; Hsu, S.H. In vitro study of a novel nanogold-collagen composite to enhance the mesenchymal stem cell behavior for vascular regeneration. PLoS One, 2014, 9(8), e104019
[http://dx.doi.org/10.1371/journal.pone.0104019] [PMID: 25093502]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy