Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Novel Chemotherapeutic Agents - The Contribution of Scorpionates

Author(s): Marta A. Andrade and Luísa M.D.R.S. Martins*

Volume 26, Issue 41, 2019

Page: [7452 - 7475] Pages: 24

DOI: 10.2174/0929867325666180914104237

Price: $65

Abstract

The development of safe and effective chemotherapeutic agents is one of the uppermost priorities and challenges of medicinal chemistry and new transition metal complexes are being continuously designed and tested as anticancer agents. Scorpionate ligands have played a great role in coordination chemistry, since their discovery by Trofimenko in the late 1960s, with significant contributions in the fields of catalysis and bioinorganic chemistry. Scorpionate metal complexes have also shown interesting anticancer properties, and herein, the most recent (last decade) and relevant scorpionate complexes reported for application in medicinal chemistry as chemotherapeutic agents are reviewed. The current progress on the anticancer properties of transition metal complexes bearing homo- or hetero- scorpionate ligands, derived from bis- or tris-(pyrazol-1-yl)-borate or -methane moieties is highlighted.

Keywords: Scorpionate, metal complexes, cytotoxic agents, carbon oxide releasing molecules (CORMs), photosensitizers, chemotherapeutic agents.

[1]
World Health Organization. Fact Sheet No. 297 on cancer., Available at: http://www.who.int/mediacentre/factsheets/fs297/en/
[2]
Farrell, N. Metal complexes as drugs and chemotherapeutic agents. Comprehensive Coordination Chemistry, 2004, 9, 809-840.
[http://dx.doi.org/10.1016/B0-08-043748-6/09021-6]
[3]
Mjos, K.D.; Orvig, C. Metallodrugs in medicinal inorganic chemistry. Chem. Rev., 2014, 114(8), 4540-4563.
[http://dx.doi.org/10.1021/cr400460s] [PMID: 24456146]
[4]
Muhammad, N.; Guo, Z. Metal-based anticancer chemotherapeutic agents. Curr. Opin. Chem. Biol., 2014, 19, 144-153.
[http://dx.doi.org/10.1016/j.cbpa.2014.02.003] [PMID: 24608084]
[5]
Barry, N.P.E.; Sadler, P.J. Exploration of the medical periodic table: towards new targets. Chem. Commun. (Camb.), 2013, 49(45), 5106-5131.
[http://dx.doi.org/10.1039/c3cc41143e] [PMID: 23636600]
[6]
Rosenberg, B.; Vancamp, L.; Krigas, T. Inhibition of cell division in Escherichia Coli by electrolysis products from a platinum electrode. Nature, 1965, 205, 698-699.
[http://dx.doi.org/10.1038/205698a0] [PMID: 14287410]
[7]
Johnstone, T.C.; Suntharalingam, K.; Lippard, S.J. The next generation of platinum drugs: targeted pt(II) agents, nanoparticle delivery, and pt(IV). Chem. Rev., 2016, 116(5), 3436-3486.
[http://dx.doi.org/10.1021/acs.chemrev.5b00597] [PMID: 26865551]
[8]
Gianferrara, T.; Bratsos, I.; Alessio, E. A categorization of metal anticancer compounds based on their mode of action. Dalton Trans., 2009, (37), 7588-7598.
[http://dx.doi.org/10.1039/b905798f] [PMID: 19759927]
[9]
Petrelli, A.; Giordano, S. From single- to multi-target drugs in cancer therapy: when aspecificity becomes an advantage. Curr. Med. Chem., 2008, 15(5), 422-432.
[http://dx.doi.org/10.2174/092986708783503212] [PMID: 18288997]
[10]
Jungwirth, U.; Kowol, C.R.; Keppler, B.K.; Hartinger, C.G.; Berger, W.; Heffeter, P. Anticancer activity of metal complexes: involvement of redox processes. Antioxid. Redox Signal., 2011, 15(4), 1085-1127.
[http://dx.doi.org/10.1089/ars.2010.3663] [PMID: 21275772]
[11]
Lazarević, T.; Rilak, A.; Bugarčić, Z.D. Platinum, palladium, gold and ruthenium complexes as anticancer agents: Current clinical uses, cytotoxicity studies and future perspectives. Eur. J. Med. Chem., 2017, 142, 8-31.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.007] [PMID: 28442170]
[12]
Zhang, P.Y.; Sadler, P.J. Advances in the design of organometallic anticancer complexes. J. Organomet. Chem., 2017, 839, 5-14.
[http://dx.doi.org/10.1016/j.jorganchem.2017.03.038]
[13]
Zhang, M.; Saint-Germain, C.; He, G.; Sun, R.W.Y. Drug delivery systems for anti-cancer active complexes of some coinage metals. Curr. Med. Chem., 2018, 25(4), 493-505.
[http://dx.doi.org/10.2174/0929867324666170511152441] [PMID: 28545356]
[14]
Chakravarty, A.R.; Roy, M. Photoactivated DNA cleavage and anticancer activity of 3D metal complexes. Prog. Inorg. Chem., 2012, 57(1), 119-202.
[http://dx.doi.org/10.1002/9781118148235.ch3]
[15]
Wani, W.A.; Prashar, S.; Shreaz, S.; Gomez-Ruiz, S. Nanostructured materials functionalized with metal complexes: In search of alternatives for administering anticancer metallodrugs. Coord. Chem. Rev., 2016, 312, 67-98.
[http://dx.doi.org/10.1016/j.ccr.2016.01.001]
[16]
Kumar, B.; Singh, S.; Skvortsova, I.; Kumar, V. Promising targets in anti-cancer drug development: recent updates. Curr. Med. Chem., 2017, 24(42), 4729-4752.
[PMID: 28393696]
[17]
Trofimenko, S. Photoinduced nucleophilic substitution in halogenated clovoboranes. J. Am. Chem. Soc., 1966, 88, 1899.
[http://dx.doi.org/10.1021/ja00961a010]
[18]
Trofimenko, S. Scorpionates: The Coordination Chemistry of Polypyrazolylborates Ligands, 1999.
[http://dx.doi.org/10.1142/p148]
[19]
Otero, A.; Fernandez-Baeza, J.; Lara-Sanchez, A.; Sanchez-Barba, L.F. Metal complexes with heteroscorpionate ligands based on the bis(pyrazol-1-yl)methane moiety: Catalytic chemistry. Coord. Chem. Rev., 2013, 257, 1806-1868.
[http://dx.doi.org/10.1016/j.ccr.2013.01.027]
[20]
Bigmore, H.R.; Lawrence, S.C.; Mountford, P.; Tredget, C.S. Coordination, organometallic and related chemistry of tris(pyrazolyl)methane ligands. Dalton Trans., 2005, 36(4), 635-651.
[http://dx.doi.org/10.1039/b413121e] [PMID: 15702171]
[21]
Martins, L.; Pombeiro, A.J.L. Tris(pyrazol-1-yl)methane metal complexes for catalytic mild oxidative functionalizations of alkanes, alkenes and ketones. Coord. Chem. Rev., 2014, 265, 74-88.
[http://dx.doi.org/10.1016/j.ccr.2014.01.013]
[22]
Martins, L.M.D.R.S.; Alegria, E.C.B.A.; Pombeiro, A.J.L. Synthesis and biological applications of tris(pyrazol-1-yl)- methane and borate metal complexes In: Ligands: Synthesis Characterization and Role in Biotechnology; , 2014; p. 117-140.
[23]
Pettinari, C.; Santini, C. Comprehensive Coordination Chemistry II: From Biology to Nanotechnology; McCleverty, J.A; Meyer, T.J., Ed.; , 2003.
[http://dx.doi.org/10.1016/B0-08-043748-6/01179-8]
[24]
Carrano, C.J. A Family of homo- and heteroscorpionate ligands: applications to bioinorganic chemistry. Eur. J. Inorg. Chem., 2016, 2016(15-16), 2377-2390.
[http://dx.doi.org/10.1002/ejic.201501476]
[25]
Martins, L.; Pombeiro, A.J.L. Water-soluble c-scorpionate complexes – catalytic and biological applications. Eur. J. Inorg. Chem., 2016, 2016(15-16), 2236-2252.
[http://dx.doi.org/10.1002/ejic.201600053]
[26]
Pettinari, C.; Pettinari, R. Metal derivatives of poly(pyrazolyl)alkanes - I. Tris(pyrazolyl)alkanes and related systems. Coord. Chem. Rev., 2005, 249(5-6), 525-543.
[http://dx.doi.org/10.1016/S0010-8545(04)00131-6]
[27]
Pettinari, C. Scorpionates II: Chelating Borate Ligands, 2008.
[http://dx.doi.org/10.1142/p527]
[28]
Reglinski, J.; Spicer, M.D. Chemistry of the p-block elements with anionic scorpionate ligands. Coord. Chem. Rev., 2015, 297-298, 181-207.
[http://dx.doi.org/10.1016/j.ccr.2015.02.023]
[29]
Semeniuc, R.F.; Reger, D.L. Metal complexes of multitopic, third generation poly(pyrazolyl)methane Ligands: multiple coordination arrangements. Eur. J. Inorg. Chem., 2016, 2016(15-16), 2253-2271.
[http://dx.doi.org/10.1002/ejic.201600116]
[30]
Silva, F.; Fernandes, C.; Campello, M.P.C.; Paulo, A. Metal complexes of tridentate tripod ligands in medical imaging and therapy. Polyhedron, 2017, 125, 186-205.
[http://dx.doi.org/10.1016/j.poly.2016.11.040]
[31]
Buss, J.L.; Greene, B.T.; Turner, J.; Torti, F.M.; Torti, S.V. Iron chelators in cancer chemotherapy. Curr. Top. Med. Chem., 2004, 4(15), 1623-1635.
[http://dx.doi.org/10.2174/1568026043387269] [PMID: 15579100]
[32]
Jin, H.; Xu, Z.; Li, D.; Huang, J. Antiproliferative activity and therapeutic implications of potassium tris(4-methyl-1-pyrazolyl) borohydride in hepatocellular carcinoma. Chem. Biol. Interact., 2014, 213, 69-76.
[http://dx.doi.org/10.1016/j.cbi.2013.12.011] [PMID: 24412237]
[33]
Chao, H.; Ji, L-N. 27Co cobalt complexes as potential pharmaceutical agents. In: Metallotherapeutic drugs and metal-based diagnostic agents: The use of metals in medicine; Marcel Gielen, Edward R.T. Tiekink, Eds., 2005; pp. 201-218.
[http://dx.doi.org/10.1002/0470864052.ch11]
[34]
Silva, T.F.S.; Martins, L.M.D.R.S.; Guedes da Silva, M.F.C.; Fernandes, A.R.; Silva, A.; Borralho, P.M.; Santos, S.; Rodrigues, C.M.P.; Pombeiro, A.J.L. Cobalt complexes bearing scorpionate ligands: synthesis, characterization, cytotoxicity and DNA cleavage. Dalton Trans., 2012, 41(41), 12888-12897.
[http://dx.doi.org/10.1039/c2dt11577h] [PMID: 22986733]
[35]
Silva, T.F.S.; Martins, L.M.; Guedes da Silva, M.F.; Kuznetsov, M.L.; Fernandes, A.R.; Silva, A.; Pan, C.J.; Lee, J.F.; Hwang, B.J.; Pombeiro, A.J.L. Cobalt complexes with pyrazole ligands as catalyst precursors for the peroxidative oxidation of cyclohexane: X-ray absorption spectroscopy studies and biological applications. Chem. Asian J., 2014, 9(4), 1132-1143.
[http://dx.doi.org/10.1002/asia.201301331] [PMID: 24482364]
[36]
González-Vílchez, F.; Vilaplana, R. 29Cu chemotherapeutic copper compounds. In: Metallotherapeutic drugs and metal-based diagnostic agents-the use of metals in medicine; Marcel Gielen, Edward R.T. Tiekink, Eds., 2005; pp. 219-236.
[http://dx.doi.org/10.1002/0470864052.ch12]
[37]
Santini, C.; Pellei, M.; Gandin, V.; Porchia, M.; Tisato, F.; Marzano, C. Advances in copper complexes as anticancer agents. Chem. Rev., 2014, 114(1), 815-862.
[http://dx.doi.org/10.1021/cr400135x] [PMID: 24102434]
[38]
Tisato, F.; Marzano, C.; Porchia, M.; Pellei, M.; Santini, C. Copper in diseases and treatments, and copper-based anticancer strategies. Med. Res. Rev., 2010, 30(4), 708-749.
[PMID: 19626597]
[39]
Tardito, S.; Marchiò, L. Copper compounds in anticancer strategies. Curr. Med. Chem., 2009, 16(11), 1325-1348.
[http://dx.doi.org/10.2174/092986709787846532] [PMID: 19355889]
[40]
Porchia, M.; Dolmella, A.; Gandin, V.; Marzano, C.; Pellei, M.; Peruzzo, V.; Refosco, F.; Santini, C.; Tisato, F. Neutral and charged phosphine/scorpionate copper(I) complexes: effects of ligand assembly on their antiproliferative activity. Eur. J. Med. Chem., 2013, 59, 218-226.
[http://dx.doi.org/10.1016/j.ejmech.2012.11.022] [PMID: 23229057]
[41]
Gandin, V.; Tisato, F.; Dolmella, A.; Pellei, M.; Santini, C.; Giorgetti, M.; Marzano, C.; Porchia, M. In vitro and in vivo anticancer activity of copper(I) complexes with homoscorpionate tridentate tris(pyrazolyl)borate and auxiliary monodentate phosphine ligands. J. Med. Chem., 2014, 57(11), 4745-4760.
[http://dx.doi.org/10.1021/jm500279x] [PMID: 24793739]
[42]
Khan, R.A.; Usman, M.; Dhivya, R.; Balaji, P.; Alsalme, A.; AlLohedan, H.; Arjmand, F.; AlFarhan, K.; Akbarsha, M.A.; Marchetti, F.; Pettinari, C.; Tabassum, S. Heteroleptic copper(I) complexes of “scorpionate” bis-pyrazolyl carboxylate ligand with auxiliary phosphine as potential anticancer agents: An insight into cytotoxic mode. Sci. Rep., 2017, 7, 45229.
[http://dx.doi.org/10.1038/srep45229] [PMID: 28338061]
[43]
Lentzen, O.; Moucheron, C.; Mesmaeker, A.K. 44Ru perspectives of ruthenium complexes in cancer therapy. In: Metallotherapeutic drugs and metal-based diagnostic agents-the use of metals in medicine; Marcel Gielen, Edward R.T. Tiekink, Eds., 2005; pp. 359-378.
[http://dx.doi.org/10.1002/0470864052.ch19]
[44]
Antonarakis, E.S.; Emadi, A. Ruthenium-based chemotherapeutics: are they ready for prime time? Cancer Chemother. Pharmacol., 2010, 66(1), 1-9.
[http://dx.doi.org/10.1007/s00280-010-1293-1] [PMID: 20213076]
[45]
Zeng, L.; Gupta, P.; Chen, Y.; Wang, E.; Ji, L.; Chao, H.; Chen, Z.S. The development of anticancer ruthenium(ii) complexes: from single molecule compounds to nanomaterials. Chem. Soc. Rev., 2017, 46(19), 5771-5804.
[http://dx.doi.org/10.1039/C7CS00195A] [PMID: 28654103]
[46]
Walker, J.M.; McEwan, A.; Pycko, R.; Tassotto, M.L.; Gottardo, C.; Th’ng, J.; Wang, R.Y.; Spivak, G.J. Tris(pyrazolyl)methane ruthenium complexes capable of inhibiting cancer cell growth. Eur. J. Inorg. Chem., 2009, 2009(31), 4629-4633.
[http://dx.doi.org/10.1002/ejic.200900766]
[47]
García-Fernández, A.; Díez, J.; Manteca, A.; Sánchez, J.; García-Navas, R.; Sierra, B.G.; Mollinedo, F.; Gamasa, M.P.; Lastra, E. Antitumor activity of new hydridotris(pyrazolyl)borate ruthenium(II) complexes containing the phosphanes PTA and 1-CH3-PTA. Dalton Trans., 2010, 39(42), 10186-10196.
[http://dx.doi.org/10.1039/c0dt00206b] [PMID: 20882255]
[48]
Khan, R.A.; Arjmand, F.; Tabassum, S.; Monari, M.; Marchetti, F.; Pettinari, C. Organometallic ruthenium(II) scorpionate as topo II alpha inhibitor; in vitro binding studies with DNA, HPLC analysis and its anticancer activity. J. Organomet. Chem., 2014, 771, 47-58.
[http://dx.doi.org/10.1016/j.jorganchem.2014.05.013]
[49]
Santillan, G.A.; Carrano, C.J. Synthesis and characterization of copper(II) complexes of nonfacially coordinating heteroscorpionate ligands (4-carboxyphenyl)bis(3,5-dimethylpyrazolyl)methane and (3-carboxyphenyl)bis(3,5-dimethylpyrazolyl)methane. Inorg. Chem., 2007, 46(5), 1751-1759.
[http://dx.doi.org/10.1021/ic062226u] [PMID: 17286399]
[50]
Montani, M.; Pazmay, G.V.B.; Hysi, A.; Lupidi, G.; Pettinari, R.; Gambini, V.; Tilio, M.; Marchetti, F.; Pettinari, C.; Ferraro, S.; Iezzi, M.; Marchini, C.; Amici, A. The water soluble ruthenium(II) organometallic compound [Ru(p-cymene)(bis(3,5 dimethylpyrazol-1-yl)methane)Cl]Cl suppresses triple negative breast cancer growth by inhibiting tumor infiltration of regulatory T cells. Pharmacol. Res., 2016, 107, 282-290.
[http://dx.doi.org/10.1016/j.phrs.2016.03.032] [PMID: 27038531]
[51]
Marchetti, F.; Pettinari, C.; Pettinari, R.; Cerquetella, A.; Di Nicola, C.; Macchioni, A.; Zuccaccia, D.; Monari, M.; Piccinelli, F. Synthesis and intramolecular and interionic structural characterization of half-sandwich (arene)ruthenium(II) derivatives of bis(pyrazolyl)alkanes. Inorg. Chem., 2008, 47(24), 11593-11603.
[http://dx.doi.org/10.1021/ic801150c] [PMID: 18998632]
[52]
Bertucci, F.; Finetti, P.; Birnbaum, D. Basal breast cancer: a complex and deadly molecular subtype. Curr. Mol. Med., 2012, 12(1), 96-110.
[http://dx.doi.org/10.2174/156652412798376134] [PMID: 22082486]
[53]
Klasen, H.J. Historical review of the use of silver in the treatment of burns. I. Early uses. Burns, 2000, 26(2), 117-130.
[http://dx.doi.org/10.1016/S0305-4179(99)00108-4] [PMID: 10716354]
[54]
Klasen, H.J. A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver. Burns, 2000, 26(2), 131-138.
[http://dx.doi.org/10.1016/S0305-4179(99)00116-3] [PMID: 10716355]
[55]
Medici, S.; Peana, M.; Crisponi, G.; Nurchi, V.M.; Lachowicz, J.I.; Remelli, M.; Zoroddu, M.A. Silver coordination compounds: A new horizon in medicine. Coord. Chem. Rev., 2016, 327, 349-359.
[http://dx.doi.org/10.1016/j.ccr.2016.05.015]
[56]
Pettinari, C.; Marchetti, F.; Lupidi, G.; Quassinti, L.; Bramucci, M.; Petrelli, D.; Vitali, L.A.; da Silva, M.F.; Martins, L.M.; Smoleński, P.; Pombeiro, A.J.L. Synthesis, antimicrobial and antiproliferative activity of novel silver(I) tris(pyrazolyl)methanesulfonate and 1,3,5-triaza-7-phosphadamantane complexes. Inorg. Chem., 2011, 50(21), 11173-11183.
[http://dx.doi.org/10.1021/ic201714c] [PMID: 21999582]
[57]
Bortoluzzi, M.; Paolucci, G.; Fregona, D.; Via, L.D.; Enrichi, F. Group 3 and lanthanide triflate-complexes with N,N,O -donor ligands: synthesis, characterization, and cytotoxic activity. J. Coord. Chem., 2012, 65, 3903-3916.
[http://dx.doi.org/10.1080/00958972.2012.728591]
[58]
Saturnino, C.; Bortoluzzi, M.; Napoli, M.; Popolo, A.; Pinto, A.; Longo, P.; Paolucci, G. New insights on cytotoxic activity of group 3 and lanthanide compounds: complexes with [N,N,N]-scorpionate ligands. J. Pharm. Pharmacol., 2013, 65(9), 1354-1359.
[http://dx.doi.org/10.1111/jphp.12112] [PMID: 23927474]
[59]
Caporale, A.; Palma, G.; Mariconda, A.; Del Vecchio, V.; Iacopetta, D.; Parisi, O.I.; Sinicropi, M.S.; Puoci, F.; Arra, C.; Longo, P.; Saturnino, C. Synthesis and Antitumor Activity of New Group 3 Metallocene Complexes. Molecules, 2017, 22(4), 1-13.
[http://dx.doi.org/10.3390/molecules22040526] [PMID: 28350335]
[60]
García-Gallego, S.; Bernardes, G.J.L. Carbon-monoxide-releasing molecules for the delivery of therapeutic CO in vivo. Angew. Chem. Int. Ed. Engl., 2014, 53(37), 9712-9721.
[http://dx.doi.org/10.1002/anie.201311225] [PMID: 25070185]
[61]
Heinemann, S.H.; Hoshi, T.; Westerhausen, M.; Schiller, A. Carbon monoxide--physiology, detection and controlled release. Chem. Commun. (Camb.), 2014, 50(28), 3644-3660.
[http://dx.doi.org/10.1039/C3CC49196J] [PMID: 24556640]
[62]
Romão, C.C.; Blättler, W.A.; Seixas, J.D.; Bernardes, G.J.L. Developing drug molecules for therapy with carbon monoxide. Chem. Soc. Rev., 2012, 41(9), 3571-3583.
[http://dx.doi.org/10.1039/c2cs15317c] [PMID: 22349541]
[63]
Schatzschneider, U. Photoactivated Biological Activity of Transition-Metal Complexes. Eur. J. Inorg. Chem., 2010, 1451-1467.
[http://dx.doi.org/10.1002/ejic.201000003]
[64]
Schatzschneider, U. PhotoCORMs: Light-triggered release of carbon monoxide from the coordination sphere of transition metal complexes for biological applications. Inorg. Chim. Acta, 2011, 374, 19-23.
[http://dx.doi.org/10.1016/j.ica.2011.02.068]
[65]
Schatzschneider, U. Novel lead structures and activation mechanisms for CO-releasing molecules (CORMs). Br. J. Pharmacol., 2015, 172(6), 1638-1650.
[http://dx.doi.org/10.1111/bph.12688] [PMID: 24628281]
[66]
Niesel, J.; Pinto, A.; N’Dongo, H.W.P.; Merz, K.; Ott, I.; Gust, R.; Schatzschneider, U. Photoinduced CO release, cellular uptake and cytotoxicity of a tris(pyrazolyl)methane (tpm) manganese tricarbonyl complex. Chem. Commun. (Camb.), 2008, (15), 1798-1800.
[67]
Motterlini, R.; Otterbein, L.E. The therapeutic potential of carbon monoxide. Nat. Rev. Drug Discov., 2010, 9(9), 728-743.
[http://dx.doi.org/10.1038/nrd3228] [PMID: 20811383]
[68]
Dördelmann, G.; Meinhardt, T.; Sowik, T.; Krueger, A.; Schatzschneider, U. CuAAC click functionalization of azide-modified nanodiamond with a photoactivatable CO-releasing molecule (PhotoCORM) based on [Mn(CO)3(tpm)]+. Chem. Commun. (Camb.), 2012, 48(94), 11528-11530.
[http://dx.doi.org/10.1039/c2cc36491c] [PMID: 23090687]
[69]
Dördelmann, G.; Pfeiffer, H.; Birkner, A.; Schatzschneider, U. Silicium dioxide nanoparticles as carriers for photoactivatable CO-releasing molecules (PhotoCORMs). Inorg. Chem., 2011, 50(10), 4362-4367.
[http://dx.doi.org/10.1021/ic1024197] [PMID: 21506524]
[70]
Strinitz, F.; Trautner, P.; Pfeiffer, H.; Schatzschneider, U.; Burzlaff, N. Synthesis and characterization of heteroscorpionate-based manganese carbonyl complexes as CO-releasing molecules. Tetrahedron, 2015, 71, 2951-2954.
[http://dx.doi.org/10.1016/j.tet.2015.03.002]
[71]
Robertson, C.A.; Evans, D.H.; Abrahamse, H. Photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT. J. Photochem. Photobiol. B, 2009, 96(1), 1-8.
[http://dx.doi.org/10.1016/j.jphotobiol.2009.04.001] [PMID: 19406659]
[72]
Kim, M.; Jung, H.Y.; Park, H.J. Topical PDT in the treatment of benign skin diseases: principles and new applications. Int. J. Mol. Sci., 2015, 16(10), 23259-23278.
[http://dx.doi.org/10.3390/ijms161023259] [PMID: 26404243]
[73]
Braathen, L.R.; Szeimies, R.M.; Basset-Seguin, N.; Bissonnette, R.; Foley, P.; Pariser, D.; Roelandts, R.; Wennberg, A.M.; Morton, C.A. Guidelines on the use of photodynamic therapy for nonmelanoma skin cancer: an international consensus. International society for photodynamic therapy in dermatology, 2005. J. Am. Acad. Dermatol., 2007, 56(1), 125-143.
[http://dx.doi.org/10.1016/j.jaad.2006.06.006] [PMID: 17190630]
[74]
Roy, S.; Patra, A.K.; Dhar, S.; Chakravarty, A.R. Photosensitizer in a molecular bowl and its effect on the DNA-binding and -cleavage activity of 3d-metal scorpionates. Inorg. Chem., 2008, 47(13), 5625-5633.
[http://dx.doi.org/10.1021/ic702508r] [PMID: 18533626]
[75]
Dhar, S.; Chakravarty, A.R. Photosensitizer in a molecular bowl: steric protection enhancing the photonuclease activity of copper(II) scorpionates. Inorg. Chem., 2005, 44(8), 2582-2584.
[http://dx.doi.org/10.1021/ic050085a] [PMID: 15819541]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy