[1]
Vidal M. A unifying view of 21st century systems biology. FEBS Lett 2009; 583: 3891-4.
[2]
Tan K, Shlomi T, Feizi H, Ideker T, Sharan R. Transcriptional regulation of protein complexes within and across species. Proc Natl Acad Sci USA 2007; 104: 1283-8.
[3]
Liang Z, Xu M, Teng M, Niu L. Comparison of protein interaction networks reveals species conservation and divergence. BMC Bioinformatics 2006; 7: 457.
[5]
Dill K. Biochemistry (Mathews, Christopher K.; van Holde, K.E.). J Chem Educ 1991; 68: A21.
[6]
Ideker T, Sharan R. Protein networks in disease. Genome Res 2008; 18: 644-52.
[7]
Vidal M, Cusick ME, Barabási AL. Interactome networks and human disease. Cell 144: 986-98.
[8]
Cheng F, Liu C, Jiang J, et al. Prediction of drug-target interactions and drug repositioning via network-based inference. PLOS Comput Biol 2012; 8: e1002503.
[9]
Alaimo S, Pulvirenti A, Giugno R, Ferro A. Drug–target interaction prediction through domain-tuned network-based inference. Bioinformatics 2013; 29: 2004-8.
[10]
Ge H, Walhout AJ, Vidal M. Integrating ‘omic’ information: a bridge between genomics and systems biology. Trends Genet 2003; 19: 551-60.
[11]
Yu H, Braun P, Yıldırım MA, et al. High-quality binary protein interaction map of the yeast interactome network. Science 2008; 322: 104-10.
[12]
He X, Zhang J. Why do hubs tend to be essential in protein networks? PLoS Genet 2006; 2: e88.
[13]
Dreze M, Monachello D, Lurin C, et al. Chapter 12 - High-Quality
Binary Interactome Mapping. In Methods in Enzymology. Volume
470: Academic Press; 2010; pp: 281-315.
[14]
Charbonnier S, Gallego O, Gavin AC. The social network of a cell:
Recent advances in interactome mapping. In Biotechnology Annual
Review. Volume 14. Edited by El-Gewely MR: Elsevier; 2008; pp:
1-28.
[15]
Snider J, Kotlyar M, Saraon P, et al. Fundamentals of protein interaction network mapping. Mol Syst Biol 2015; 11: 848.
[16]
Rain JC, Selig L, De Reuse H, et al. The protein–protein interaction map of Helicobacter pylori. Nature 2001; 409: 211.
[17]
Ito T, Chiba T, Ozawa R, et al. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA 2001; 98: 4569-74.
[18]
Uetz P, Giot L, Cagney G, et al. A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature 2000; 403: 623.
[19]
Li S, Armstrong CM, Bertin N, et al. A Map of the Interactome Network of the Metazoan C. elegans. Science 2004; 303: 540-3.
[20]
Giot L, Bader JS, Brouwer C, et al. A protein interaction map of Drosophila melanogaster. Science 2003; 302: 1727-36.
[21]
Li T, Wernersson R, Hansen RB, et al. A scored human protein–protein interaction network to catalyze genomic interpretation. Nat Methods 2016; 14: 61.
[22]
Goehler H, Lalowski M, Stelzl U, et al. A protein interaction network links GIT1, an enhancer of huntingtin aggregation, to Huntington’s disease. Mol Cell 2004; 15: 853-65.
[23]
Colland F, Jacq X, Trouplin V, et al. Functional proteomics mapping of a human signaling pathway. Genome Res 2004; 14: 1324-32.
[24]
Keshava Prasad TS, Goel R, Kandasamy K, et al. Human protein reference database-2009 update. Nucleic Acids Res 2009; 37: D767-72.
[25]
Kandasamy K, Mohan SS, Raju R, et al. NetPath: a public resource of curated signal transduction pathways. Genome Biol 2010; 11: R3.
[26]
Szklarczyk D, Franceschini A, Wyder S, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 2015; 43: D447-52.
[27]
Chatr-aryamontri A, Oughtred R, Boucher L, et al. The BioGRID interaction database: 2017 update. Nucleic Acids Res 2017; 45: D369-79.
[28]
Chung SS, Pandini A, Annibale A, et al. Bridging topological and functional information in protein interaction networks by short loops profiling. Sci Rep 2015; 5: 8540.
[29]
Newman M. Networks: An Introduction. Oxford University Press, Inc. 2010.
[30]
Lancichinetti A, Fortunato S. Community detection algorithms: A comparative analysis. P Phys Rev E Stat Nonlin Soft Matter Phys 2009; 80: 056117.
[31]
Wiuf C. Algebraic Statistics and Methods in Systems Biology.In Handbook of Statistical Systems Biology. John Wiley & Sons, Ltd 2011; pp. 114-32.
[32]
Royer L, Reimann M, Andreopoulos B, Schroeder M. Unraveling protein networks with power graph analysis. PLOS Comput Biol 2008; 4: e1000108.
[33]
Alon U. Network motifs: theory and experimental approaches. Nat Rev Genet 2007; 8: 450.
[34]
Jiancang Z, Dapeng L, Yunfeng W, Quan Z, Xiangrong L. An empirical study of features fusion techniques for protein-protein interaction prediction. Curr Bioinform 2016; 11: 4-12.
[35]
Leyi W, Quan Z, Minghong L, Huijuan L, Yuming Z. A novel machine learning method for cytokine-receptor interaction prediction. Comb Chem High Throughput Screen 2016; 19: 144-52.
[36]
Sánchez I, Mahlke C, Yuan J. Pivotal role of oligomerization in expanded polyglutamine neurodegenerative disorders. Nature 2003; 421: 373.
[37]
Jiao X, Sherman BT, Huang DW, et al. DAVID-WS: a stateful web service to facilitate gene/protein list analysis. Bioinformatics 2012; 28: 1805-6.
[38]
Yu LWC, Guo L, Liang Y, Yang X. Article exchange model and its algorithm. J Jilin University 2010; 48: 653-7.
[39]
Zhang XF, Ou-Yang L, Zhu Y, Wu MY, Dai DQ. Determining minimum set of driver nodes in protein-protein interaction networks. BMC Bioinformatics 2015; 16: 146.
[40]
Serrour B, Arenas A, Gómez S. Detecting communities of triangles in complex networks using spectral optimization. Comput Commun 2011; 34: 629-34.
[41]
Newman MEJ. Detecting community structure in networks. Eur Phys J B 2004; 38: 321-30.
[42]
Mistry M, Pavlidis P. Gene ontology term overlap as a measure of gene functional similarity. BMC Bioinformatics 2008; 9: 327.
[43]
Newman ME. Fast algorithm for detecting community structure in networks. Phys Rev E Stat Nonlin Soft Matter Phys 2004; 69: 066133.
[44]
Bhati M, Lee C, Nancarrow AL, et al. Implementing the LIM code: the structural basis for cell type‐specific assembly of LIM‐homeodomain complexes. EMBO J 2008; 27: 2018-29.
[45]
De Souza EB. Corticotropin-releasing factor receptors: Physiology, pharmacology, biochemistry and role in central nervous system and immune disorders. Psychoneuroendocrinology 1995; 20: 789-819.
[46]
Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2008; 4: 44.
[47]
Cohen J. A Coefficient of Agreement for Nominal Scales. Educ Psychol Meas 1960; 20: 37-46.
[48]
Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res 2005; 33: D514-7.
[49]
Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 2006; 5: 769.
[50]
Francoz S, Froment P, Bogaerts S, et al. Mdm4 and Mdm2 cooperate to inhibit p53 activity in proliferating and quiescent cells in vivo. Proc Natl Acad Sci USA 2006; 103: 3232-7.
[51]
Jiang PH, Motoo Y, Garcia S, et al. Down-expression of tumor protein p53-induced nuclear protein 1 in human gastric cancer. World J Gastroenterol 2006; 12: 691-6.
[52]
Sankalecha TH, Gupta SJ, Gaikwad NR, Shirole NU, Kothari HG. Yield of p53 expression in esophageal squamous cell cancer and its relationship with survival. Saudi J Gastroenterol 2017; 23: 281-6.
[53]
Ashburner M, Ball CA, Blake JA, et al. Gene Ontology: tool for the unification of biology. Nat Genet 2000; 25: 25.
[54]
Beutler B, Hoebe K, Du X, Ulevitch RJ. How we detect microbes and respond to them: the Toll-like receptors and their transducers. J Leukoc Biol 2003; 74: 479-85.
[55]
Wiencek JR, Na M, Hirbawi J, Kalafatis M. Amino Acid Region 1000–1008 of Factor V Is a Dynamic Regulator for the Emergence of Procoagulant Activity. J Biol Chem 2013; 288: 37026-38.
[56]
Esmon CT, Vigano-D’Angelo S, D’Angelo A, Comp PC. Anticoagulation Proteins C and S. In The New Dimensions of
Warfarin Prophylaxis. Edited by Wessler S, Becker CG, Nemerson
Y. Boston, MA: Springer US; 1987; pp: 47-54..