[1]
Spiegel, H.U.; Palmes, D. Organ preservation.InTransplantation surgery; Hakim, N.S.; Danovitch, G.M., Eds.; London, 2001, pp. 265-294.
[2]
Adam, R.; Bismuth, H.; Diamond, T.; Ducot, B.; Morino, M.; Astarcioglu, I.; Johann, M.; Azoulay, D.; Chiche, L.; Bao, Y.M. Effect of extended cold ischaemia with UW solution on graft function after liver transplantation. Lancet, 1992, 340(8832), 1373-1376.
[3]
Tian, T.; Lindell, S.L.; Kowalski, C.; Mangino, M.J. Moesin functionality in hypothermic liver preservation injury. Cryobiology, 2014, 69(1), 34-40.
[4]
Stahl, J.E.; Kreke, J.E.; Malek, F.A.A.; Schaefer, A.J.; Vacanti, J. Consequences of cold-ischemia time on primary nonfunction and patient and graft survival in liver transplantation: A meta-analysis. PLoS One, 2008, 3(6), e2468.
[5]
Stewart, Z.A. UW solution: Still the gold standard for liver transplantation. Am. J. Transplant., 2015, 15(2), 295-296.
[6]
Ben-Mosbah, I.; Roselló-Catafau, J.; Alfany-Fernandez, I.; Rimola, A.; Parellada, P.P.; Mitjavila, M.T.; Lojek, A.; Ben Abdennebi, H.; Boillot, O.; Rodés, J.; Peralta, C. Addition of carvedilol to university Wisconsin solution improves rat steatotic and nonsteatotic liver preservation. Liver Transpl., 2010, 16(2), 163-171.
[7]
Coskun, A.; Gunal, O.; Sahin, I.; Aslaner, A.; Yildirim, U.; Yavuz, O. Does L-carnitine have any effect on cold preservation injury of non-fatty liver in the university of Wisconsin solution? Hepatol. Res., 2007, 37(8), 656-660.
[8]
Gunal, O.; Coskun, A.; Aslaner, A.; Yildirim, U. Does melatonin alleviate cold preservation injury of the liver? Turk. J. Med. Sci., 2010, 40(3), 465-470.
[9]
Coskun, A.; Baykal, A.T.; Kazan, D.; Akgoz, M.; Senal, M.O.; Berber, I.; Titiz, I.; Bilsel, G.; Kilercik, H.; Karaosmanoglu, K.; Cicek, M.; Yurtsever, I.; Yazıcı, C. Proteomic analysis of kidney preservation solutions prior to renal transplantation. PLoS One, 2016, 11(12), e0168755.
[10]
Serhatli, M.; Baysal, K.; Acilan, C.; Tuncer, E.; Bekpinar, S.; Baykal, A.T. Proteomic study of the microdissected aortic media in human thoracic aortic aneurysms. J. Proteome Res., 2014, 13(11), 5071-5080.
[11]
Bradford, M.M.A. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72, 248-254.
[12]
Baykal, A.T.; Baykal, B.; Serhatli, M.; Adiguzel, Z.; Tuncer, M.A.; Kacar, O. Proteomic evidence for the plasticity of cultured vascular smooth muscle cells. Turk. J. Biol., 2013, 37, 414-425.
[13]
Tang, Z.; Baykal, A.T.; Gao, H.; Quezada, H.C.; Zhang, H.; Bereczki, E.; Serhatli, M.; Baykal, B.; Acioglu, C.; Wang, S.; Ioja, E.; Ji, X.; Zhang, Y.; Guan, Z.; Winblad, B.; Pei, J.J. mTor is a signaling hub in cell survival: A mass-spectrometry-based proteomics investigation. J. Proteome Res., 2014, 13(5), 2433-2444.
[14]
Ben-Ari, Z.; Pappo, O.; Mor, E. Intrahepatic cholestasis after liver transplantation. Liver Transpl., 2003, 9(10), 1005-1018.
[15]
Emadali, A.; Muscatelli-Groux, B.; Delom, F.; Jenna, S.; Boismenu, D.; Sacks, D.B.; Metrakos, P.P.; Chevet, E. Proteomic analysis of ischemia-reperfusion injury upon human liver transplantation reveals the protective role of IQGAP1. Mol. Cell. Proteomics, 2006, 5(7), 1300-1313.
[16]
Washington, K. Update on post-liver transplantation infections, malignancies, and surgical complications. Adv. Anat. Pathol., 2005, 12(4), 221-226.
[17]
Zatloukal, K.; Stumptner, C.; Fuchsbichler, A.; Fickert, P.; Lackner, C.; Trauner, M.; Denk, H. The keratin cytoskeleton in liver diseases. J. Pathol., 2004, 204(4), 367-376.
[18]
Ku, N.O.; Strnad, P.; Zhong, B.H.; Tao, G.Z.; Omary, M.B. Keratins let liver live: Mutations predispose to liver disease and crosslinking generates mallory-denk bodies. Hepatology, 2007, 46(5), 1639-1649.
[19]
Zhang, W.; Wang, M.; Xie, H.Y.; Zhou, L.; Meng, X.Q.; Shi, J.; Zheng, S. Role of reactive oxygen species in mediating hepatic ischemia-reperfusion injury and its therapeutic applications in liver transplantation. Transplant. Proc., 2007, 39(5), 1332-1337.
[20]
Rhee, S.G.; Chae, H.Z.; Kim, K. Peroxiredoxins: A historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic. Biol. Med., 2005, 38(12), 1543-1552.
[21]
Jochum, C.; Beste, M.; Sowa, J.P.; Farahani, M.S.; Penndorf, V.; Nadalin, S.; Saner, F.; Canbay, A.; Gerken, G. Glutathione-S-transferase subtypes α and π as a tool to predict and monitor graft failure or regeneration in a pilot study of living donor liver transplantation. Eur. J. Med. Res., 2011, 16(1), 34-40.
[22]
Schön, M.R.; Akkoc, N.; Schrem, H.; Keech, G.; Kräutlein, K.; Lemmens, H.P.; Wolf, S.; Tominaga, M.; Kollmar, O.; Neuhaus, P. Alpha-glutathione-S-transferase is a sensitive marker of hepatocellular damage due to warm or cold ischemia in pig liver transplantation. Transplant. Proc., 1997, 29(7), 3036-3038.
[23]
Caldwell, R.B.; Toque, H.A.; Narayanan, S.P.; Caldwell, R.W. Arginase: An old enzyme with new tricks. Trends Pharmacol. Sci., 2015, 36(6), 395-405.
[24]
Ikemoto, M.; Tsunekawa, S.; Tanaka, K.; Tanaka, A.; Yamaoka, Y.; Ozawa, K.; Fukuda, Y.; Moriyasu, F.; Totani, M.; Kasai, Y.; Mori, T.; Ueda, K. Liver-type arginase in serum during and after liver transplantation: A novel index in monitoring conditions of the liver graft and its clinical significance. Clin. Chim. Acta, 1998, 271(1), 11-23.
[25]
Grodzicki, M.; Pawlak, J.; Chrzanowska, A.; Porembska, Z.; Krawczyk, M. Arginase activity concentration marking in monitoring of hepatocytes function after orthotopic liver transplantation--preliminary report. Ann. Transplant., 2004, 9(3), 54-57.
[26]
Ashamiss, F.; Wierzbicki, Z.; Chrzanowska, A.; Scibior, D.; Pacholczyk, M.; Kosieradzki, M.; Lagiewska, B.; Porembska, Z.; Rowiński, W. Clinical significance of arginase after liver transplantation. Ann. Transplant., 2004, 9(3), 58-60.
[27]
Shimojima, N.; Shimazu, M.; Kikuchi, H.; Kawachi, S.; Tanabe, M.; Hoshino, K.; Wakabayashi, G.; Morikawa, Y.; Kitajima, M. Serum alcohol dehydrogenase: A sensitive biomarker of ongoing graft function after liver transplantation. Clin. Transplant., 2007, 21(4), 498-501.
[28]
Frateschi, S.; Camerer, E.; Crisante, G.; Rieser, S.; Membrez, M.; Charles, R.P.; Beermann, F.; Stehle, J.C.; Breiden, B.; Sandhoff, K.; Rotman, S.; Haftek, M.; Wilson, A.; Ryser, S.; Steinhoff, M.; Coughlin, S.R.; Hummler, E. PAR2 absence completely rescues inflammation and ichthyosis caused by altered CAP1/Prss8 expression in mouse skin. Nat. Commun., 2011, 2(1), 161.
[29]
Iero, M.; Squarcina, P.; Romero, P.; Guillaume, P.; Scarselli, E.; Cerino, R.; Carrabba, M.; Toutirais, O.; Parmiani, G.; Rivoltini, L. Low TCR avidity and lack of tumor cell recognition in CD8+ T cells primed with the CEA-analogue CAP1-6D peptide. Cancer Immunol. Immunother., 2007, 56(12), 1979-1991.
[30]
Chen, C.; Meng, Y.; Wang, L.; Wang, H.X.; Tian, C.; Pang, G.D.; Li, H.H.; Du, J. Ubiquitin-activating enzyme E1 inhibitor PYR41 attenuates angiotensin II-induced activation of dendritic cells via the I κ Ba/NF-κ B and MKP1/ERK/STAT1 pathways. Immunology, 2014, 142(2), 307-319.
[31]
Stratil, A.; Gahne, B.; Juneja, R.K.; Hjertén, S.; Spik, G. Pig plasma postalbumin-2 (Alpha 1B-glycoprotein): Isolation, partial characterization and immunological cross-reactivity with other mammalian sera. Comp. Biochem. Physiol. B, 1987, 88(3), 953-961.
[32]
Berbic, M.; Schulke, L.; Markham, R.; Tokushige, N.; Russell, P.; Fraser, I.S. Macrophage expression in endometrium of women with and without endometriosis. Hum. Reprod., 2009, 24(2), 325-332.
[33]
Hauet, T.; Eugene, M.A. New approach in organ preservation: Potential role of new polymers. Kidney Int., 2008, 74(8), 998-1003.