[1]
Ferlay, J.; Soerjomataram, I.; Ervik, M.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality
Worldwide: IARC CancerBase. No. 11 [Internet].
[3]
Zununi Vahed, S.; Salehi, R.; Davaran, S.; Sharifi, S. Liposome-Based Drug Co-Delivery Systems in Cancer Cells. Mater. Sci. Eng. C, 2017, 71, 1327-1341.
[4]
Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev., 2013, 65(1), 36-48.
[5]
Udofot, O.; Affram, K.; Israel, B.; Agyare, E. Cytotoxicity of 5-fluorouracil-loaded ph-sensitive liposomal nanoparticles in colorectal cancer cell lines. Integr. Cancer Sci. Ther., 2015, 2(5), 245-252.
[6]
Udofot, O.; Affram, K.; Smith, T.; Tshabe, B.; Krishnan, S.; Sachdeva, M.; Agyare, E. Pharmacokinetic, Biodistribution and therapeutic efficacy of 5-fluorouracil-loaded ph-sensitive pegylated liposomal nanoparticles in HCT-116 tumor bearing mouse. J. Nat. Sci., 2016, 2(1)
[7]
Moghimipour, E.; Rezaei, M.; Ramezani, Z.; Kouchak, M.; Amini, M.; Angali, K.A.; Dorkoosh, F.A.; Handali, S. Transferrin targeted liposomal 5-fluorouracil induced apoptosis via mitochondria signaling pathway in cancer cells. Life Sci., 2018, 194, 104-110.
[8]
Fanciullino, R.; Giacometti, S.; Mercier, C.; Aubert, C.; Blanquicett, C.; Piccerelle, P.; Ciccolini, J. In Vitro and in vivo Reversal of resistance to 5-Fluorouracil in colorectal cancer cells with a novel stealth double-liposomal formulation. Br. J. Cancer, 2007, 97(7), 919-926.
[9]
Fanciullino, R.; Mollard, S.; Giacometti, S.; Berda-Haddad, Y.; Chefrour, M.; Aubert, C.; Iliadis, A.; Ciccolini, J. In Vitro and in vivo Evaluation of lipofufol, a new triple stealth liposomal formulation of modulated 5-Fu: Impact on efficacy and toxicity. Pharm. Res., 2013, 30(5), 1281-1290.
[10]
Hare, J.I.; Neijzen, R.W.; Anantha, M.; Dos Santos, N.; Harasym, N.; Webb, M.S.; Allen, T.M.; Bally, M.B.; Waterhouse, D.N. Treatment of colorectal cancer using a combination of liposomal irinotecan (Irinophore CTM) and 5-Fluorouracil. PLoS One, 2013, 8(4), e62349.
[11]
Zhang, B.; Wang, T.; Yang, S.; Xiao, Y.; Song, Y.; Zhang, N.; Garg, S. Development and evaluation of oxaliplatin and irinotecan co-loaded liposomes for enhanced colorectal cancer therapy. J. Control. Release, 2016, 238, 10-21.
[12]
Yang, C.; Fu, Z-X. PEG-Liposomal oxaliplatin combined with nuclear factor-κb inhibitor (pdtc) induces apoptosis in human colorectal cancer cells. Oncol. Rep., 2014, 32(4), 1617-1621.
[13]
Li, K. ZHOU, Z.-Y.; JI, P.-P.; LUO, H.-S. Knockdown of β-Catenin by SiRNA influences proliferation, apoptosis and invasion of the colon cancer cell line SW480. Oncol. Lett., 2016, 11(6), 3896-3900.
[14]
Bochicchio, S.; Dapas, B.; Russo, I.; Ciacci, C.; Piazza, O.; De Smedt, S.; Pottie, E.; Barba, A.A.; Grassi, G. In vitro and Ex vivo Delivery of tailored SiRNA-nanoliposomes for E2F1 silencing as a potential therapy for colorectal cancer. Int. J. Pharm., 2017, 525(2), 377-387.
[15]
Mamot, C.; Ritschard, R.; Wicki, A.; Küng, W.; Schuller, J.; Herrmann, R.; Rochlitz, C. Immunoliposomal delivery of doxorubicin can overcome multidrug resistance mechanisms in EGFR- Overexpressing tumor cells. J. Drug Target., 2012, 20(5), 422-432.
[16]
Zalba, S.; Contreras, A.M.; Haeri, A.; ten Hagen, T.L.M.; Navarro, I.; Koning, G.; Garrido, M.J. Cetuximab-Oxaliplatin-Liposomes for epidermal growth factor receptor targeted chemotherapy of colorectal cancer. J. Control. Release, 2015, 210, 26-38.
[17]
Garg, A.; Kokkoli, E. PH-Sensitive PEGylated liposomes functionalized with a fibronectin-mimetic peptide show enhanced intracellular delivery to colon cancer cell. Curr. Pharm. Biotechnol., 2011, 12(8), 1135-1143.
[18]
Oku, N.; Asai, T.; Watanabe, K.; Kuromi, K.; Nagatsuka, M.; Kurohane, K.; Kikkawa, H.; Ogino, K.; Tanaka, M.; Ishikawa, D.; Tsukada, H.; Momose, M.; Nakayama, J.; Taki, T. Anti-Neovascular therapy using novel peptides homing to angiogenic vessels. Oncogene, 2002, 21(17), 2662-2669.
[19]
Asai, T.; Shimizu, K.; Kondo, M.; Kuromi, K.; Watanabe, K.; Ogino, K.; Taki, T.; Shuto, S.; Matsuda, A.; Oku, N. Anti-Neovascular therapy by liposomal DPP-CNDAC targeted to angiogenic vessels. FEBS Lett., 2002, 520(1-3), 167-170.
[20]
Maeda, N.; Takeuchi, Y.; Takada, M.; Sadzuka, Y.; Namba, Y.; Oku, N. Anti-neovascular therapy by use of tumor neovasculature-targeted long-circulating liposome. J. Control. Release, 2004, 100(1), 41-52.
[21]
Shimizu, K.; Asai, T.; Fuse, C.; Sadzuka, Y.; Sonobe, T.; Ogino, K.; Taki, T.; Tanaka, T.; Oku, N. Applicability of anti-neovascular therapy to drug-resistant tumor: suppression of drug-resistant P388 tumor growth with neovessel-targeted liposomal adriamycin. Int. J. Pharm., 2005, 296(1-2), 133-141.
[22]
Asai, T.; Miyazawa, S.; Maeda, N.; Hatanaka, K.; Katanasaka, Y.; Shimizu, K.; Shuto, S.; Oku, N. Antineovascular therapy with angiogenic vessel-targeted polyethyleneglycol-shielded liposomal DPP-CNDAC. Cancer Sci., 2008, 99(5), 1029-1033.
[23]
Schiffelers, R.M.; Koning, G.A.; Ten Hagen, T.L.M.; Fens, M.H.A.M.; Schraa, A.J.; Janssen, A.P.C.A.; Kok, R.J.; Molema, G.; Storm, G. Anti-Tumor efficacy of tumor vasculature-targeted liposomal doxorubicin. J. Control. Release, 2003, 91(1-2), 115-122.
[24]
Shibuya, M.; Claesson-Welsh, L. Signal Transduction by VEGF Receptors in Regulation of Angiogenesis and Lymphangiogenesis. Exp. Cell Res., 2006, 312(5), 549-560.
[25]
Wicki, A.; Rochlitz, C.; Orleth, A.; Ritschard, R.; Albrecht, I.; Herrmann, R.; Christofori, G.; Mamot, C. Targeting tumor-associated endothelial cells: anti-vegfr2 immunoliposomes mediate tumor vessel disruption and inhibit tumor growth. Clin. Cancer Res., 2012, 18(2), 454-464.
[26]
Song, Z.; Lin, Y.; Zhang, X.; Feng, C.; Lu, Y.; Gao, Y.; Dong, C.; Cyclic, R.G.D. Peptide-Modified liposomal drug delivery system for targeted oral apatinib administration: Enhanced cellular uptake and improved therapeutic effects. Int. J. Nanomedicine, 2017, 12, 1941-1958.
[27]
Crosasso, P.; Brusa, P.; Dosio, F.; Arpicco, S.; Pacchioni, D.; Schuber, F.; Cattel, L. Antitumoral activity of liposomes and immunoliposomes containing 5- fluorouridine prodrugs. J. Pharm. Sci., 1997, 86(7), 832-839.
[28]
Hosokawa, S.; Tagawa, T.; Niki, H.; Hirakawa, Y.; Nohga, K.; Nagaike, K. Efficacy of immunoliposomes on cancer models in a cell-surface-antigen-density-dependent manner. Br. J. Cancer, 2003, 89(8), 1545-1551.
[29]
Hamaguchi, T.; Matsumura, Y.; Nakanishi, Y.; Muro, K.; Yamada, Y.; Shimada, Y.; Shirao, K.; Niki, H.; Hosokawa, S.; Tagawa, T.; Kakizoe, T. Antitumor effect of MCC-465, pegylated liposomal doxorubicin tagged with newly developed monoclonal antibody gah, in colorectal cancer xenografts. Cancer Sci., 2004, 95(7), 608-613.
[30]
Lee, C.M.; Tanaka, T.; Murai, T.; Kondo, M.; Kimura, J.; Su, W.; Kitagawa, T.; Ito, T.; Matsuda, H.; Miyasaka, M. Novel chondroitin sulfate-binding cationic liposomes loaded with cisplatin efficiently suppress the local growth and liver metastasis of tumor cells in vivo. Cancer Res., 2002, 62(15), 4282-4288.
[31]
Kawakami, K.; Puri, R.K.; Kawakami, M. Overexpressed cell surface interleukin-4 receptor molecules can be successfully targeted for antitumor cytotoxin therapy. Crit. Rev. Immunol., 2001, 21(1-3), 12.
[32]
Koller, F.L.; Hwang, D.G.; Dozier, E.A.; Fingleton, B. Epithelial interleukin-4 receptor expression promotes colon tumor growth. Carcinogenesis, 2010, 31(6), 1010-1017.
[33]
Yang, C.; Liu, H.; Tsai, Y.; Tseng, J.; Liang, S.; Chen, C.; Lian, W.; Wei, M.; Lu, M.; Lu, R. Doxorubicin as a model for enhancing cellular uptake and antitumor efficacy in murine colorectal cancer interleukin-4 receptor-targeted liposomal doxorubicin as a model for enhancing cellular uptake and antitumor ef fi cacy in murine colorectal cancer. Cancer Biol. Ther., 2015, 4047, 1641-1650.
[34]
Bansal, D.; Gulbake, A.; Tiwari, J.; Jain, S.K. Development of liposomes entrapped in alginate beads for the treatment of colorectal cancer. Int. J. Biol. Macromol., 2016, 82, 687-695.
[35]
Fang, T.; Dong, Y.; Zhang, X.; Xie, K.; Lin, L.; Wang, H. Integrating a novel SN38 prodrug into the pegylated liposomal system as a robust platform for efficient cancer therapy in solid tumors. Int. J. Pharm., 2016, 512(1), 39-48.
[36]
Blocker, S.J.; Douglas, K.A.; Polin, L.A.; Lee, H.; Hendriks, B.S.; Lalo, E.; Chen, W.; Shields, A.F. Liposomal64Cu-PET imaging of anti-vegf drug effects on liposomal delivery to colon cancer xenografts. Theranostics, 2017, 7(17), 4229-4239.
[37]
Riahi, M.M.; Sahebkar, A.; Sadri, K.; Nikoofal-Sahlabadi, S.; Jaafari, M.R. Stable and Sustained Release Liposomal formulations of celecoxib: in vitro and in vivo anti-tumor evaluation. Int. J. Pharm., 2018, 540(1-2), 89-97.
[38]
Sun, D.; Zhao, L.; Lin, J.; Zhao, Y.; Zheng, Y. Cationic liposome Co-encapsulation of SMAC mimetic and ZVAD using a novel lipid bilayer fusion loaded with mlkl-pdna for tumour inhibition in vivo. J. Drug Target., 2018, 26(1), 45-54.
[39]
Peng, P.C.; Hong, R.L.; Tsai, Y.J.; Li, P.T.; Tsai, T.; Chen, C.T. Dual-effect liposomes encapsulated with doxorubicin and chlorin E6 augment the therapeutic effect of tumor treatment. Lasers Surg. Med., 2015, 47(1), 77-87.
[40]
Kang, X.J.; Wang, H.Y.; Peng, H.G.; Chen, B.F.; Zhang, W.Y.; Wu, A.H.; Xu, Q.; Huang, Y.Z. Codelivery of dihydroartemisinin and doxorubicin in mannosylated liposomes for Drug-resistant colon cancer therapy. Acta Pharmacol. Sin., 2017, 38(6), 885-896.
[41]
Kokuryo, D.; Aoki, I.; Yuba, E.; Kono, K.; Aoshima, S.; Kershaw, J.; Saga, T. Evaluation of a combination tumor treatment using thermo-triggered liposomal drug delivery and carbon ion irradiation. Transl. Res., 2017, 185, 24-33.
[42]
Jeong, H.S.; Hwang, H.; Oh, P.S.; Kim, E.M.; Lee, T.K.; Kim, M.; Kim, H.S.; Lim, S.T.; Sohn, M.H.; Jeong, H.J. Effect of high-intensity focused ultrasound on drug release from doxorubicin-loaded PEGylated liposomes and therapeutic effect in colorectal cancer murine models. Ultrasound Med. Biol., 2016, 42(4), 947-955.
[43]
Riviere, K.; Kieler-Ferguson, H.M.; Jerger, K.; Szoka, F.C. Anti-tumor activity of liposome encapsulated fluoroorotic acid as a single agent and in combination with liposome irinotecan. J. Control. Release, 2011, 153(3), 288-296.
[44]
Shimizu, T.; Abu Lila, A.S.; Nishio, M.; Doi, Y.; Ando, H.; Ukawa, M.; Ishima, Y.; Ishida, T. Modulation of antitumor immunity contributes to the enhanced therapeutic efficacy of liposomal oxaliplatin in mouse model. Cancer Sci., 2017, 108(9), 1864-1869.
[45]
Brody, L.P.; Sahuri-Arisoylu, M.; Parkinson, J.R.; Parkes, H.G.; So, P.W.; Hajji, N.; Thomas, E.; Frost, G.S.; Miller, A.D.; Bell, J.D. Cationic Lipid-Based nanoparticles mediate functional delivery of acetate to tumor cells in vivo leading to significant anticancer effects. Int. J. Nanomedicine, 2017, 12, 6677-6685.
[46]
Ichihara, H.; Nakagawa, S.; Matsuoka, Y.; Yoshida, K.; Matsumoto, Y.; Ueoka, R. Nanotherapy with hybrid liposomes for colorectal cancer along with apoptosis in vitro and in vivo. Anticancer Res., 2014, 34(9), 4701-4708.
[59]
Batist, G.; Gelmon, K.A.; Chi, K.N.; Miller, W.H.; Chia, S.K.L.; Mayer, L.D.; Swenson, C.E.; Janoff, A.S.; Louie, A.C. Safety, Pharmacokinetics, and efficacy of CPX-1 liposome injection in patients with advanced solid tumors. Clin. Cancer Res., 2009, 15(2), 692-700.
[60]
Stathopoulos, G.P.; Boulikas, T.; Kourvetaris, A.; Stathopoulos, J. Liposomal oxaliplatin in the treatment of advanced cancer: A phase I study. Anticancer Res., 2006, 26(2B), 1489-1493.
[61]
Beutel, G. Phase I study of OSI-7904L, a novel liposomal thymidylate synthase inhibitor in patients with refractory solid tumors. Clin. Cancer Res., 2005, 11(15), 5487-5495.
[62]
Falk, S.; Anthoney, A.; Eatock, M.; Van Cutsem, E.; Chick, J.; Glen, H.; Valle, J.W.; Drolet, D.W.; Albert, D.; Ferry, D. Ajani. J. Multicentre phase II pharmacokinetic and pharmacodynamic study of osi-7904l in previously untreated patients with advanced gastric or gastroesophageal junction adenocarcinoma. Br. J. Cancer, 2006, 95(4), 450-456.
[63]
Suenaga, M.; Mizunuma, N.; Matsusaka, S.; Shinozaki, E.; Ozaka, M.; Ogura, M.; Yamaguchi, T. Phase II study of reintroduction of oxaliplatin for advanced colorectal cancer in patients previously treated with oxaliplatin and irinotecan: RE-OPEN study. Drug Des. Devel. Ther., 2015, 9, 3099-3108.
[64]
Clamp, A.R.; Schöffski, P.; Valle, J.W.; Wilson, R.H.; Marreaud, S.; Govaerts, A.S.; Debois, M.; Lacombe, D.; Twelves, C.; Chick, J. A Phase I and pharmacokinetic study of OSI-7904L, a liposomal thymidylate synthase inhibitor in combination with oxaliplatin in patients with advanced colorectal cancer. Cancer Chemother. Pharmacol., 2008, 61(4), 579-585.
[65]
Golan, T.; Grenader, T.; Ohana, P.; Amitay, Y.; Shmeeda, H.; La-Beck, N.M.; Tahover, E.; Berger, R.; Gabizon, A.A. Pegylated liposomal mitomycin c prodrug enhances tolerance of mitomycin C: A phase 1 study in advanced solid tumor patients. Cancer Med., 2015, 4(10), 1472-1483.
[66]
Shields, A.F.; Lange, L.M.; Zalupski, M.M. Phase II study of liposomal doxorubicin in patients with advanced colorectal cancer. Am. J. Clin. Oncol., 2001, 24(1), 96-98.
[67]
Eckardt, J.R.; Campbell, E.; Burris, H.A.; Weiss, G.R.; Rodriguez, G.I.; Fields, S.M.; Thurman, A.M.; Peacock, N.W.; Cobb, P.; Rothenberg, M.L. A phase II trial of daunoxome, liposome-encapsulated daunorubicin, in patients with metastatic adeno-carcinoma of the colon. Am. J. Clin. Oncol., 1994, 17(6), 498-501.
[68]
Dragovich, T.; Mendelson, D.; Kurtin, S.; Richardson, K.; Von Hoff, D.; Hoos, A. A phase 2 trial of the liposomal dach platinum L-NDDP in patients with therapy-refractory advanced colorectal cancer. Cancer Chemother. Pharmacol., 2006, 58(6), 759-764.
[69]
Gentile, E.; Cilurzo, F.; Di Marzio, L.; Carafa, M.; Anna Ventura, C.; Wolfram, J.; Paolino, D.; Celia, C. Liposomal Chemotherapeutics. Future Oncol., 2013, 9(12), 1849-1859.
[70]
Tila, D.; Ghasemi, S.; Yazdani-Arazi, S.N.; Ghanbarzadeh, S. Functional liposomes in the cancer-targeted drug delivery. J. Biomater. Appl., 2015, 30(1), 3-16.
[71]
Sercombe, L.; Veerati, T.; Moheimani, F.; Wu, S.Y.; Sood, A.K.; Hua, S. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol., 2015, 6, 1-13.