Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Research Article

Evaluating the Radioprotective Effect of Curcumin on Rat’s Heart Tissues

Author(s): Sedighe Kolivand, Peyman Amini, Hana Saffar, Saeed Rezapoor, Elahe Motevaseli*, Masoud Najafi*, Farzad Nouruzi, Dheyauldeen Shabeeb and Ahmed Eleojo Musa

Volume 12, Issue 1, 2019

Page: [23 - 28] Pages: 6

DOI: 10.2174/1874471011666180831101459

Price: $65

Abstract

Background: Heart injury is one of the most important concerns after exposure to a high dose of radiation in chest cancer radiotherapy or whole body exposure to a radiation disaster. Studies have proposed that increased level of inflammatory and pro-fibrotic cytokines following radiotherapy or radiation events play a key role in the development of several side effects such as cardiovascular disorders. In the current study, we aimed to evaluate the expression of IL-4 and IL-13 cytokines as well as signaling pathways such as IL4Ra1, IL13Ra2, Duox1 and Duox2. In addition, we detected the possible protective effect of curcumin on the expression of these factors and infiltration of inflammatory cells.

Materials and Methods: Twenty rats were divided into 4 groups including control; curcumin treated; radiation; and radiation plus curcumin. After 10 weeks, rats were sacrificed for evaluation of mentioned parameters.

Results: Results showed an increase in the level of IL-4 and all evaluated genes, as well as increased infiltration of lymphocytes and macrophages. Treatment with curcumin could attenuate these changes.

Conclusion: Curcumin could reduce radiation-induced heart injury markers in rats.

Keywords: Radiation, curcumin, heart, IL-4, IL-13, Duox1, Duox2.

Graphical Abstract

[1]
Najafi, M.; Motevaseli, E.; Shirazi, A.; Geraily, G.; Rezaeyan, A.; Norouzi, F.; Rezapoor, S.; Abdollahi, H. Mechanisms of inflammatory responses to radiation and normal tissues toxicity: Clinical implications. Int. J. Radiat. Biol., 2018, 94(4), 335-356.
[2]
Farhood, B.; Goradel, N.H.; Mortezaee, K.; Khanlarkhani, N.; Salehi, E.; Nashtaei, M.S.; Shabeeb, D.; Musa, A.E.; Fallah, H.; Najafi, M. Intercellular communications-redox interactions in radiation toxicity; Potential targets for radiation mitigation. J. Cell Commun. Signal., 2018.
[http://dx.doi.org/10.1007/s12079-018-0473-3]
[3]
Yahyapour, R.; Amini, P.; Rezapour, S.; Cheki, M.; Rezaeyan, A.; Farhood, B.; Shabeeb, D.; Musa, A.E.; Fallah, H.; Najafi, M. Radiation-induced inflammation and autoimmune diseases. Mil. Med. Res., 2018, 5, 9.
[4]
Yahyapour, R.; Amini, P.; Rezapoor, S.; Rezaeyan, A.; Farhood, B.; Cheki, M.; Fallah, H.; Najafi, M. Targeting of inflammation for radiation protection and mitigation. Curr. Mol. Pharmacol., 2018, 11(3), 203-210.
[5]
Madan, R.; Benson, R.; Sharma, D.N.; Julka, P.K.; Rath, G.K. Radiation induced heart disease: Pathogenesis, management and review literature. J. Egypt. Natl. Canc. Inst., 2015, 27(4), 187-193.
[6]
Shimizu, Y.; Kodama, K.; Nishi, N.; Kasagi, F.; Suyama, A.; Soda, M.; Grant, E.J.; Sugiyama, H.; Sakata, R.; Moriwaki, H.; Hayashi, M.; Konda, M.; Shore, R.E. Radiation exposure and circulatory disease risk: Hiroshima and Nagasaki atomic bomb survivor data, 1950-2003. Bmj, 2010, 340, b5349.
[7]
Douple, E.B.; Mabuchi, K.; Cullings, H.M.; Preston, D.L.; Kodama, K.; Shimizu, Y.; Fujiwara, S.; Shore, R.E. Long-term radiation- related health effects in a unique human population: lessons learned from the atomic bomb survivors of Hiroshima and Nagasaki. Disaster Med. Public Health Prep., 2011, 5(S1), S122-S133.
[8]
Kawashima, R.; Kawamura, Y.I.; Kato, R.; Mizutani, N.; Toyama–Sorimachi, N.; Dohi, T. IL-13 receptor α2 promotes epithelial cell regeneration from radiation-induced small intestinal injury in mice. Gastroenterology, 2006, 131(1), 130-141.
[9]
Di Maggio, F.M.; Minafra, L.; Forte, G.I.; Cammarata, F.P.; Lio, D.; Messa, C.; Gilardi, M.C.; Bravatà, V. Portrait of inflammatory response to ionizing radiation treatment. J. Inflammation., 2015, 12(1), 14.
[10]
Raad, H.; Eskalli, Z.; Corvilain, B.; Miot, F.; De Deken, X. Thyroid hydrogen peroxide production is enhanced by the Th2 cytokines, IL-4 and IL-13, through increased expression of the dual oxidase 2and its maturation factorDUOXA2. Free Radic. Biol. Med., 2013, 56, 216-225.
[11]
Ameziane-El-Hassani, R.; Talbot, M.; Dos Santos, M.C.S.d.; Al Ghuzlan, A.; Hartl, D.; Bidart, J-M.; De Deken, X.; Miot, F.; Diallo, I.; de Vathaire, F. NADPH oxidase DUOX1 promotes long-term persistence of oxidative stress after an exposure to irradiation. PNAS, 2015, 112(16), 5051-5056.
[12]
Menon, V.P.; Sudheer, A.R. Antioxidant and anti-inflammatory properties of curcumin. Adv. Exp. Med. Biol., 2007, 595, 105-125.
[13]
Zhou, H.; Beevers, C.S.; Huang, S. Targets of curcumin. Curr. Drug Targets, 2011, 12(3), 332-347.
[14]
Bagheri, H.; Rezapour, S.; Najafi, M.; Motevaseli, E.; Shekarchi, B.; Cheki, M.; Mozdarani, H. Protection against radiation-induced micronuclei in rat bone marrow erythrocytes by curcumin and selenium l-methionine. Iran. J. Med. Sci., 2018, 43(6), 645-652.
[15]
Darby, S.C.; Cutter, D.J.; Boerma, M.; Constine, L.S.; Fajardo, L.F.; Kodama, K.; Mabuchi, K.; Marks, L.B.; Mettler, F.A.; Pierce, L.J.; Trott, K.R.; Yeh, E.T.H.; Shore, R.E. Radiation-related heart disease: current knowledge and future prospects. Int. J. Radiat. Oncol. Biol. Phys., 2010, 76(3), 656-665.
[16]
Ding, N-H.; Jian, Li. J.; Sun, L.-Q. Molecular mechanisms and treatment of radiation-induced lung fibrosis. Curr. Drug Targets, 2013, 14(11), 1347-1356.
[17]
Bhattacharjee, A.; Shukla, M.; Yakubenko, V.P.; Mulya, A.; Kundu, S.; Cathcart, M.K. IL-4 and IL-13 employ discrete signaling pathways for target gene expression in alternatively activated monocytes/macrophages. Free Radic. Biol. Med., 2013, 54, 1-16.
[18]
Yahyapour, R.; Shabeeb, D.; Cheki, M.; Musa, A.E.; Farhood, B.; Rezaeyan, A.; Amini, P.; Fallah, H.; Najafi, M. Radiation protection and mitigation by natural antioxidants and flavonoids; Implications to radiotherapy and radiation disasters. Curr. Mol. Pharmacol., 2018, 11(4), 285-304.
[19]
Kunnumakkara, A.B.; Diagaradjane, P.; Guha, S.; Deorukhkar, A.; Shentu, S.; Aggarwal, B.B.; Krishnan, S. Curcumin sensitizes human colorectal cancer xenografts in nude mice to γ-radiation by targeting nuclear factor-κb–regulated gene products. Clin. Cancer Res., 2008, 14(7), 2128-2136.
[20]
Jagetia, G.C. In The molecular targets and therapeutic uses of curcumin in health and disease; Springer, 2007, pp. 301-320.
[21]
Tokatli, F.; Uzal, C.; Doganay, L.; Kocak, Z.; Kaya, M.; Ture, M.; Kurum, T.; Alkaya, F.; Karadag, H.; Kutlu, K. The potential cardioprotective effects of amifostine in irradiated rats. Int. J. Radiat. Oncol. Biol. Phys., 2004, 58(4), 1228-1234.
[22]
Rezaeyan, A.; Haddadi, G.H.; Hosseinzadeh, M.; Moradi, M.; Najafi, M. Radioprotective effects of hesperidin on oxidative damages and histopathological changes induced by X-irradiation in rats heart tissue. J. Med. Phys., 2016, 4(3), 182-191.
[23]
Srinivasan, M.; Prasad, N.R.; Menon, V.P. Protective effect of curcumin on γ-radiation induced DNA damage and lipid peroxidation in cultured human lymphocytes. Mutat. Res., 2006, 611(1), 96-103.
[24]
Sreejayan, N.; Rao, M.; Priyadarsini, K.; Devasagayam, T. Inhibition of radiation-induced lipid peroxidation by curcumin. Int. J. Pharm., 1997, 151(1), 127-130.
[25]
Lee, J.C.; Kinniry, P.A.; Arguiri, E.; Serota, M.; Kanterakis, S.; Chatterjee, S.; Solomides, C.C.; Javvadi, P.; Koumenis, C.; Cengel, K.A. Dietary curcumin increases antioxidant defenses in lung, ameliorates radiation-induced pulmonary fibrosis, and improves survival in mice. Radiat. Res., 2010, 173(5), 590-601.
[26]
Cho, Y.J.; Yi, C.O.; Jeon, B.T.; Jeong, Y.Y.; Kang, G.M.; Lee, J.E.; Roh, G.S.; Lee, J.D. Curcumin attenuates radiation-induced inflammation and fibrosis in rat lungs. Korean J. Physiol. Pharmacol., 2013, 17(4), 267-274.
[27]
Inano, H.; Onoda, M.; Inafuku, N.; Kubota, M.; Kamada, Y.; Osawa, T.; Kobayashi, H.; Wakabayashi, K. Potent preventive action of curcumin on radiation-induced initiation of mammary tumorigenesis in rats. Carcinogenesis, 2000, 2(10), 1835-1841.
[28]
Patil, K.; Guledgud, M.V.; Kulkarni, P.K.; Keshari, D.; Tayal, S. Use of curcumin mouthrinse in radio-chemotherapy induced oral mucositis patients: A pilot study. JCDR, 2015, 9(8), ZC59-ZC62.
[29]
Elad, S.; Meidan, I.; Sellam, G.; Simaan, S.; Zeevi, I.; Waldman, E.; Weintraub, M.; Revel-Vilk, S. Topical curcumin for the prevention of oral mucositis in pediatric patients: Case series. Altern. Ther. Health Med., 2013, 19(3), 21-24.
[30]
Ryan, J.L.; Heckler, C.E.; Ling, M.; Katz, A.; Williams, J.P.; Pentland, A.P.; Morrow, G.R. Curcumin for radiation dermatitis: A randomized, double-blind, placebo-controlled clinical trial of thirty breast cancer patients. Radiat. Res., 2013, 180(1), 34-43.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy