[1]
Kunal, K.; Divya, A.; William, T.; Peter, J. Tonge.; Richard, A.; Slayden.; Iwao Ojima. Discovery of anti-TB agents that target the cell-division protein FtsZ. Future Med. Chem., 2010, 2, 1305-1323.
[2]
Bramhill, D. Bacterial cell division. Annu. Rev. Cell Dev. Biol., 1997, 13, 395-424.
[3]
Lutkenhaus, J.; Addinall, S.G. Bacterial Cell Division and the Z Ring. Annu. Rev. Biochem., 1997, 66, 93-116.
[4]
Romberg, L.; Levin, P.A. Assembly dynamics of the bacterial cell division protein FTSZ: poised at the edge of stability. Annu. Rev. Microbiol., 2003, 57, 125-154.
[5]
Ben Yehuda, S.; Losick, R. Asymmetric cell division in B. subtilis involves a spiral-like intermediate of the cytokinetic protein FtsZ. Cell, 2002, 109, 257-266.
[6]
Goehring, N.W. Beckwith. Diverse paths to midcell: assembly of the bacterial cell division machinery. J. Curr. Biol, 2005, 15, 514-526.
[7]
Leung, A.K.W.; White, E.L.; Ross, L.J.; Reynolds, R.C.; Devito, J.A.; Borhani, D.W. Structure of Mycobacterium tuberculosis FtsZ reveals unexpected, G protein-like conformational switches. J. Mol. Biol., 2004, 342, 953-970.
[8]
Moller-Jensen, J. Loewe. Increasing complexity of the bacterial cytoskeleton. J. Curr. Opin. Cell Biol., 2005, 17, 75-81.
[9]
Thanedar, S.; Margolin, W. FtsZ exhibits rapid movement and oscillation waves in helix-like patterns in Escherichia coli. Curr. Biol., 2004, 14, 1167-1173.
[10]
Respicio, L.; Nair, P.A.; Huang, Q. Characterizing septum inhibition in Mycobacterium tuberculosis for novel drug discovery. Tuberculosis, 2008, 88, 420-429.
[11]
Slayden, R.A.; Knudson, D.L.; Belisle, J.T. Identification of cell cycle regulators in Mycobacterium tuberculosis by inhibition of septum formation and global transcriptional analysis. Microbiology, 2006, 152, 1789-1797.
[12]
Beuria, T.K.; Santra, M.K.; Panda, D. Sanguinarine Blocks Cytokinesis in Bacteria by Inhibiting FtsZ Assembly and Bundling. Biochemistry, 2005, 44, 16584-16593.
[13]
Schaffner-Barbero, C.; Martín-Fontecha, M.; Chacón, P.; Andreu, J.M. Targeting the assembly of bacterial cell division protein FtsZ with small molecules. ACS Chem. Biol., 2012, 7, 269-277.
[14]
Haranahalli, K.; Tong, S.; Ojima, I. Recent advances in the discovery and development of antibacterial agents targeting the cell-division protein FtsZ. Bioorg. Med. Chem., 2016, 24, 6354-6369.
[15]
Bi, F.; Guo, L.; Wang, Y.; Venter, H.; Semple, S.J.; Liu, F. Design, synthesis and biological activity evaluation of novel 2,6-difluorobenzamide derivatives through FtsZ inhibition. Bioorg. Med. Chem. Lett., 2017, 27, 958-962.
[16]
Reynolds, R.C.; Srivastava, S.; Ross, L.J.; Suling, W.J.; White, E.L. A new 2-carbamoyl pteridine that inhibits mycobacterial FtsZ. Bioorg. Med. Chem. Lett., 2004, 4, 3161-3164.
[17]
Park, B.; Awasthi, D.; Chowdhury, S.R.; Melief, E.H.; Kumar, K.; Knudson, S.E.; Slayden, R.A.; Ojima, I. Design, Synthesis and Evaluation of Novel 2,5,6-Trisubstituted Benzimidazoles Targeting FtsZ as Antitubercular Agents. Bioorg. Med. Chem., 2014, 22, 2602-2612.
[19]
Shefali Srivastava. Larry, J.; Ross.; William, J.; Suling.; Lucile White, E.; Lisa, K.; Woolhiser.; Anne, J.; Lenaerts, Robert, C.; Reynolds. Novel Pyridopyrazine and Pyrimidothiazine Derivatives as FtsZ Inhibitors. Bioorg. Med. Chem., 2011, 19, 7120-7128.
[20]
White, E.L.; Suling, W.J.; Ross, L.J.; Seitz, L.E.; Reynolds, R.C. 2-Alkoxycarbonylaminopyridines: inhibitors of Mycobacterium tuberculosis FtsZ. J. Antimicrob. Chemother., 2002, 50, 111-114.
[21]
Yousif, E.; Hameed, A.; Rasheed, R.; Mansoor, H.; Farina, Y.; Salih, A.G.N. Salimon. Synthesis and photostability study of some modified poly (vinyl chloride) containing pendant benzothiazole and benzimidozole ring. J. Int. J. Chem, 2010, 2, 65-80.
[22]
Zhu, Z.Q.; Xiang, S.; Chen, Q.Y.; Chen, C.; Zeng, Z.; Cui, Y.P.; Xiao, J.C. Novel low-melting salts with donor–acceptor substituents as targets for second-order nonlinear optical applications. Chem. Commun., 2008, 13, 5016-5018.
[23]
Gravel, J.; Schmitzer, A.R. Transmembrane anion transport mediated by adamantyl-functionalized imidazolium salts. Supramol. Chem., 2014, 27, 364-371.
[24]
Li, S.; Yang, F.; Lv, T.; Lan, J.; Gao, G.; You, J. Synthesis of unsymmetrical imidazolium salts by direct quaternization of N-substituted imidazoles using arylboronic acids. Chem. Commun., 2014, 50, 3941-3943.
[25]
Gravel, J.; Schmitzer, A.R. Imidazolium and benzimidazolium-containing compounds: from simple toxic salts to highly bioactive drugs. Org. Biomol. Chem., 2017, 15, 1051-1071.
[26]
Sangeeta, G.P.V.; Murali Krishna Kumar, M.; Risy Namratha, J. PurnaNagasree, K. Computer Assisted Drug Repurposing: Anti TB activity in Non Antibiotics. Indian J. Chem. B., 2018, 57, 1295-1303.
[27]
Sarcina, M.; Mullineaux, C.W. Effects of tubulin assembly inhibitors on cell division in prokaryotes in vivo. FEMS Microbiol. Lett., 2000, 191, 25-29.
[28]
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31, 455-461.
[29]
Sandeep, G.; Nagasree, K.P.; Hanisha, M.; Krishna Kumar, M.M. AUDocker LE: A GUI for virtual screening with AUTODOCK Vina. BMC Res. Notes, 2011, 4, 445-459.
[30]
Adelaine, K.W. Leung1, E.; Lucile White.; Larry Ross,J.;Robert, Reynolds,C.; Joseph, A.; DeVito.; David, Borhani, W. Structure of Mycobacterium tuberculosis FtsZ reveals unexpected, G protein-like conformational switches. J. Mol. Biol., 2004, 342, 953-970.
[31]
Rusinka-Roszak, D. Intramolecular O–H···O═C Hydrogen Bond Energy via the Molecular Tailoring Approach to RAHB Structures. J. Phys. Chem. A, 2015, 119, 3674-3687.
[32]
Ravelli, R.B.; Gigant, B.; Curmi, P.A.; Jourdain, I.; Lachkar, S.; Sobel, A.; Knossow, M. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature, 2004, 428, 198-202.
[33]
Buey, R.M.; Díaz, J.F. Andreu. The nucleotide switch of tubulin and microtubule assembly: A polymerization-driven structural change. J. Biol. Chem., 2006, 45, 5933-5938.