Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Research Article

Novel Benzylidenehydrazide-1,2,3-Triazole Conjugates as Antitubercular Agents: Synthesis and Molecular Docking

Author(s): Mubarak H. Shaikh, Dnyaneshwar D. Subhedar, Laxman Nawale, Dhiman Sarkar, Firoz A. Kalam Khan, Jaiprakash N. Sangshetti and Bapurao B. Shingate*

Volume 19, Issue 14, 2019

Page: [1178 - 1194] Pages: 17

DOI: 10.2174/1389557518666180718124858

Price: $65

Abstract

Background & Objective: Novel 1,2,3-triazole based benzylidenehydrazide derivatives were synthesized and evaluated for antitubercular activity against Mycobacterium tuberculosis (MTB) H37Ra, M. bovis BCG and cytotoxic activity. Most of the derivatives exhibited promising in vitro potency against MTB characterized by lower MIC values.

Methods: Among all the synthesized derivatives, compound 6a and 6j were the most active against active and dormant MTB H37Ra, respectively. Compound 6d was significantly active against dormant and active M. bovis BCG.

Results: The structure activity relationship has been explored on the basis of anti-tubercular activity data. The active compounds were also tested against THP-1, A549 and Panc-1 cell lines and showed no significant cytotoxicity. Further, the synthesized compounds were found to have potential antioxidant with IC50 range = 11.19-56.64 µg/mL. The molecular docking study of synthesized compounds was performed against DprE1 enzyme of MTB to understand the binding interactions.

Conclusion: Furthermore, synthesized compounds were also analysed for ADME properties and the potency of compounds indicated that, this series can be considered as a starting point for the developement of novel and more potent anti-tubercular agents in future.

Keywords: 1, 2, 3-Triazole, antitubercular, antioxidant, docking study, cytotoxicity, ADME.

« Previous
Graphical Abstract

[1]
Global tuberculosis control: WHO report, 2016.
[2]
Singh, M.M. XDR-TB danger ahead. Indian J. Tuberc., 2007, 54, 1.
[3]
(a)Migliori, G.B.; De Iaco, G.; Besozzi, G.; Centis, R.; Cirillo, D.M. First tuberculosis cases in Italy resistant to all tested drugs. Euro Surveill., 2007, 12E070517.1
(b)Velayati, A.A.; Masjedi, M.R.; Farnia, P.; Tabarsi, P.; Ghanavi, J. ZiaZarifi, A.H. Emergence of new forms of totally drug-resistant tuberculosis bacilli: Super extensively drug-resistant tuberculosis or totally drug-resistant strains in Iran. Chest, 2009, 136(2), 420.
(c)Loewenberg, S. India reports cases of totally drug-resistant tuberculosis. Lancet, 2012, 379(9812), 205.
(d)Fauci, A.S. Multidrug-resistant and extensively drug-resistant tuberculosis: The national institute of allergy and infectious diseases research agenda and recommendations for priority research. J. Infect. Dis., 2008, 197(11), 1493.
[4]
(a)Ahirrao, P. Recent developments in antitubercular drugs. Mini Rev. Med. Chem., 2008, 8(14), 1441.
(b)http:// www.newtbdrugs.org/ pipeline.php
(c)Villemagne, B.; Crauste, C.; Flipo, M.; Baulard, A.R.; Deprez, B.; Willand, N. Tuberculosis: The drug development pipeline at a glance. Eur. J. Med. Chem., 2012, 51, 1.
(d)Ginsberg, A.M. Tuberculosis drug development: Progress, challenges, and the road ahead. Tuberculosis, 2010, 90(3), 162.
(e)Cole, S.T.; Riccardi, G. New tuberculosis drugs on the horizon. Curr. Opin. Microbiol., 2011, 14(5), 570.
[5]
(a)Diacon, A.H.; Donald, P.R.; Pym, A.; Grobusch, M.; Patientia, R.F.; Mahanyele, R.; Bantubani, N.; Narasimooloo, R.; De Marez, T.; van Heeswijk, R.; Lounis, N.; Meyvisch, P.; Andries, K.; McNeeley, D.F. Randomized pilot trial of eight weeks of bedaquiline (TMC207) treatment for multidrug-resistant tuberculosis: Long-term outcome, tolerability, and effect on emergence of drug resistance. Antimicrob. Agents Chemother., 2012, 56(6), 3271.
(b)Mahajan, R. Bedaquiline: First FDA-approved tuberculosis drug in 40 years. Int. J. Appl. Basic Med. Res., 2013, 3(1), 1.
[6]
Lugosi, L. Theoretical and methodological aspects of BCG vaccine from the discovery of Calmette and Guérin to molecular biology. A review. Tuber. Lung Dis., 1992, 73(5), 252.
[7]
Lamm, D.L.; van der Meijden, P.M.; Morales, A.; Brosman, S.A.; Catalona, W.J.; Herr, H.W.; Soloway, M.S.; Steg, A.; Debruyne, F.M. Incidence and treatment of complications of bacillus Calmette Guérin intravesical therapy in superficial bladder cancer. J. Urol., 1992, 147(3), 596.
[8]
Talbot, E.A.; Williams, D.L.; Frothingham, R. PCR identification of mycobacterium bovis BCG. J. Clin. Microbiol., 1997, 35(3), 566.
[9]
Wiid, I.; Seaman, T.; Hoal, E.G.; Benade, A.J.; Van Helden, P.D. Total antioxidant levels are low during active TB and rise with anti-tuberculosis therapy. IUBMB Life, 2004, 56(2), 101.
[10]
Kinsella, J.E.; Frankel, E.; German, B.; Kanner, J. Possible mechanisms for the protective role of antioxidants in wine and plant foods. Food Technol., 1993, 47, 85.
[11]
Brawn, R.A.; Welzel, M.; Lowe, J.T.; Panek, J.S. Regioselective intramolecular dipolar cycloaddition of azides and unsymmetrical alkynes. Org. Lett., 2010, 12(2), 336.
[12]
(a)Kolb, H.C.; Sharpless, K.B. The growing impact of click chemistry on drug discovery. Drug Discov. Today, 2003, 8(24), 1128.
(b)Lutz, J.F. 1,3-dipolar cycloadditions of azides and alkynes: A universal ligation tool in polymer and materials science. Angew. Chem. Int. Ed., 2007, 46, 1018.
(c)Gramlich, P.M.; Wirges, C.T.; Manetto, A.; Carell, T. Postsynthetic DNA modification through the copper-catalyzed azide-alkyne cycloaddition reaction. Angew. Chem. Int. Ed., 2008, 47(44), 8350.
(d)Hein, J.E.; Fokin, V.V. Copper-catalyzed azide-alkyne cycloaddition (CuAAC) and beyond: New reactivity of copper(I) acetylides. Chem. Soc. Rev., 2010, 39(4), 1302.
(e) Thirumurugan, P.; Matosiuk, D.; Jozwiak, K. Click chemistry for drug development and diverse chemical-biology applications. Chem. Rev.,2013, 113(7), 4905.
[13]
Tornoe, C.W.; Christensen, C.; Meldal, M.J. Peptidotriazoles on Solid Phase: [1,2,3]-Triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem., 2002, 67, 3057.
[14]
Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. A Stepwise huisgen cycloaddition process: Copper(i)‐catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed., 2002, 41(14), 2596.
[15]
Boechat, N.; Ferreira, V.F.; Ferreira, S.B.; Ferreira, M.L.G.; da Silva, F.C.; Bastos, M.M.; Costa, M.S.; Lourenco, M.C.S.; Pinto, A.C.; Krettli, A.U.; Aguiar, A.C.; Teixeira, B.M.; da Silva, N.V.; Martins, P.R.C.; Bezerra, F.A.F.M.; Camilo, A.L.S.; da Silva, G.P.; Costa, C.C.P. Novel 1,2,3-triazole derivatives for use against Mycobacterium tuberculosis H37Rv (ATCC 27294) strain. J. Med. Chem., 2011, 54(17), 5988-5999.
[16]
Agalave, S.G.; Maujan, R.S.; Pore, V.S. Click chemistry: 1,2,3-triazoles as pharmacophores. Chem. Asian J., 2011, 6(10), 2696-2718.
[17]
Lima-Neto, R.G.; Cavalcante, N.N.M.; Srivastava, R.M.; Mendonca, F.J.B.; Wanderley, A.G.; Neves, R.P.; dos Anjos, J.V. Synthesis of 1,2,3-triazole derivatives and in vitro antifungal evaluation on candida strains. Molecules, 2012, 17(5), 5882-5892.
[18]
Senger, M.R.; Gomes, L.C.A.; Ferreira, S.B.; Kaiser, C.R.; Ferreira, V.F.; Silva, Jr, F.P. Kinetics studies on the inhibition mechanism of pancreatic a-amylase by glycoconjugated 1H-1,2,3-triazoles: A new class of inhibitors with hypoglycemiant activity. ChemBioChem, 2012, 13(11), 1584-1593.
[19]
(a)Reddy, K.I.; Srihari, K.; Renuka, J.; Sree, K.S.; Chuppala, A.; Jeankumar, V.U.; Sridevi, J.P.; Babu, K.S.; Yogeeswari, P.; Sriram, D. An efficient synthesis and biological screening of benzofuran and benzo[d]isothiazole derivatives for Mycobacterium tuberculosis DNA GyrB inhibition. Bioorg. Med. Chem., 2014, 22(23), 6552.
(b)Shanmugavelan, P.; Nagarajan, S.; Sathishkumar, M.; Ponnuswamy, A.; Yogeeswari, P.; Sriram, D. Efficient synthesis and in vitro antitubercular activity of 1,2,3-triazoles as inhibitors of Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett., 2011, 21(24), 7273.
[20]
Jain, J.; Kumar, Y.; Sinha, R.; Kumar, R.; Stables, J. Menthone aryl acid hydrazones: A new class of anticonvulsants. Med. Chem., 2011, 7(1), 56.
[21]
Naqvi, A.; Malasoni, R.; Srivastava, A.; Pandey, R.R.; Dwivedi, A.K. Design, synthesis and molecular docking of substituted 3-hydrazinyl-3-oxo-propanamides as anti-tubercular agents. Bioorg. Med. Chem. Lett., 2014, 24(22), 5181.
[22]
(a)Congiu, C.; Onnis, V. Synthesis and biological evaluation of novel acylhydrazone derivatives as potential antitumor agents. Bioorg. Med. Chem., 2013, 21(21), 6592.
(b)Malhotra, M.; Sharma, S.; Deep, A. Synthesis, characterization and antimicrobial evaluation of novel derivatives of isoniazid. Med. Chem. Res., 2012, 21(7), 1237.
[23]
Aziz, H.A.A.; Fadl, T.A.; Al-Obaid, A.R.M.; Ghazzali, M.; Al-Dhfyan, A.; Contini, A. Design, synthesis and pharmacophoric model building of novel substituted nicotinic acid hydrazones with potential antiproliferative activity. Arch. Pharm. Res., 2012, 35(9), 1543.
[24]
Mansour, A.K.; Eid, M.M.; Khalil, N.S.A.M. Synthesis and reactions of some new heterocyclic carbohydrazides and related compounds as potential anticancer agents. Molecules, 2003, 8(10), 744.
[25]
(a)Pokrovskaya, V.; Baasov, T. Dual-acting hybrid antibiotics: A promising strategy to combat bacterial resistance. Expert Opin. Drug Discov., 2010, 5(9), 883.
(b)Meunier, B. Hybrid molecules with a dual mode of action: Dream or reality. Acc. Chem. Res., 2008, 41(1), 69.
[26]
Suman, P.; Dayakar, C.; Rajkumar, K.; Yashwanth, B.; Yogeeswari, P.; Sriram, D.; Rao, J.V.; Raju, B.C. Synthesis and anti-mycobacterial activity of 2-chloronicotinaldehydes based novel 1H-1,2,3-triazolylbenzohydrazides. Bioorg. Med. Chem. Lett., 2015, 25(11), 2390.
[27]
Kumar, D. Beena, Khare, G.; Kidwai, S.; Tyagi, A.K.; Singh, R.; Rawat, D.S. Synthesis of novel 1,2,3-triazole derivatives of isoniazid and their in vitro and in vivo antimycobacterial activity evaluation. Eur. J. Med. Chem., 2014, 81, 301.
[28]
(a)Shaikh, M.H.; Subhedar, D.D.; Arkile, M.; Khedkar, V.M.; Jadhav, N.; Sarkar, D.; Shingate, B.B. Synthesis and bioactivity of novel triazole incorporated benzothiazinone derivatives as antitubercular and antioxidant agent. Bioorg. Med. Chem. Lett., 2016, 26(2), 561-569.
(b)Shaikh, M.H.; Subhedar, D.D.; Nawale, L.; Sarkar, D.; Khan, F.A.K.; Sangshetti, J.N.; Shingate, B.B. 1,2,3-Triazole derivatives as antitubercular agents: Synthesis, biological evaluation and moleculardocking study. MedChemComm, 2015, 6, 1104-1116.
(c)Shaikh, M.H.; Subhedar, D.D.; Khan, F.A.K.; Sangshetti, J.N.; Shingate, B.B. 1,2,3-Triazole incorporated coumarin derivatives as potential antifungal and antioxidant agents. Chin. Chem. Lett., 2016, 27(2), 295-301.
(d)Subhedar, D.D.; Shaikh, M.H.; Shingate, B.B.; Nawale, L.; Sarkar, D.; Khedkar, V.M.; Khan, F.A.K.; Sangshetti, J.N. Quinolidene-rhodanine conjugates: Facile synthesis and biological evaluation. Eur. J. Med. Chem., 2017, 125, 385-399.
(e)Subhedar, D.D.; Shaikh, M.H.; Nawale, L.; Sarkar, D.; Khedkar, V.M.; Shingate, B.B. Quinolidene based monocarbonyl curcumin analogues as promisingantimy-cobacterial agents: Synthesis and molecular docking study. Bioorg. Med. Chem. Lett., 2017, 27(4), 922-928.
[29]
(a)Sarkar, D.; Singh, U. A novel screening method based on menadione mediated rapid reduction of tetrazolium salt for testing of anti-mycobacterial agents. J. Microbiol. Methods, 2011, 84(2), 202.
(b)Sarkar, S.; Sarkar, D. Potential use of nitrate reductase as a biomarker for the identification of active and dormant inhibitors of Mycobacterium tuberculosis in a THP1 infection mode. J. Biomol. Screen., 2012, 17(7), 966.
[30]
Wayne, L.G.; Hayes, L.G. An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect. Immun., 1996, 64(4), 2062.
[31]
De La Fuente, R.; Sonawane, N.D.; Arumainayagam, D.; Verkman, A.S. Small molecules with antimicrobial activity against E. coli and P. aeruginosa identified by high-throughput screening. Br. J. Pharmacol., 2006, 149(5), 551.
[32]
(a)Sreekanth, D.; Syed, A.; Sarkar, S.; Sarkar, D.; Santhakumari, B.; Ahmad, A.; Khan, I. Production, purification and characterization of taxol and 10 DAB III from a new endophytic fungus Gliocladium sp. isolated from the Indian yew tree, Taxus baccata. J. Microbiol. Biotechnol., 2009, 19(11), 1342.
(b)Carmichael, J.; DeGraff, W.G.; Gazdar, A.F.; Minna, J.I.; Mitchell, J.B. Evaluation of a tetrazolium-based semiautomated colorimetric assay: Assessment of chemosensitivity testing. Cancer Res., 1987, 47, 936.
[33]
(a)Poggi, M.; Barroso, R.; Costa-Filho, A.J.; de Barros, H.B.; Pavan, F.; Leite, C.Q.; Gambino, D.; Torre, M.H. New isoniazid complexes, promising agents against Mycobacterium tuberculosis. J. Mex. Chem. Soc., 2013, 57, 198.
(b)Gundersen, L.L.; Meyer, J.N.; Spilsberg, B. Synthesis and antimycobacterial activity of 6-arylpurines: The requirements for the n-9 substituent in active antimycobacterial purines. J. Med. Chem., 2002, 45(6), 1383.
[34]
Hartkoorn, R.C.; Chandler, B.; Owen, A.; Ward, S.A.; Squire, S.B.; Back, D.J.; Khoo, S.H. Differential drug susceptibility of intracellular and extracellular tuberculosis, and the impact of P-glycoprotein. Tuberculosis, 2007, 87(3), 248.
[35]
(a)Orme, I.; Secrist, J.; Anathan, S.; Kwong, C.; Maddry, J.; Reynolds, R. Search for new drugs for treatment of tuberculosis. Antimicrob. Agents Chemother., 2001, 45(7), 1943.
(b)Luo, X.; Pires, D.; Ainsa, J.A.; Gracia, B.; Duarte, N.; Mulhovo, S.; Anes, E.; Ferreira, M.J. Zanthoxylum capense constituents with antimycobacterial activity against Mycobacterium tuberculosis in vitro and ex vivo within human macrophages. J. Ethnopharmacol., 2013, 146, 417.
[36]
Alvarez, S.G.; Alvarez, M.T. A practical procedure for the synthesis of alkyl azides at ambient temperature in dimethyl sulfoxide in high purity and yield. Synthesis, 1997, 4, 413.
[37]
(a)Kell, D.B.; Kaprelyants, A.S.; Weichart, D.H.; Harwood, C.R.; Barer, M.R. Viability and activity in readily culturable bacteria: A review and discussion of the practical issues. Antonie van Leeuwenhoek, 1998, 73(2), 169.
(b)Barer, M.R.; Harwood, C.R. Bacterial viability and culturability. Adv. Microb. Physiol., 1999, 41, 93.
[38]
Burits, M.; Bucar, F. Antioxidant activity of Nigella sativa essential oil. Phytother. Res., 2000, 14(5), 323.
[39]
(a)Ciapetti, G.; Cenni, E.; Pratelli, L.; Pizzoferrato, A. In vitro evaluation of cell/biomaterial interaction by MTT assay. Biomaterials, 1993, 14(5), 359.
(b)Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55.
(c)Sreekanth, D.; Syed, A.; Sarkar, S.; Sarkar, D.; Santhakumari, B.; Ahmad, A.; Khan, M.I. Production, purification and characterization of taxol and 10DAB III from a new endophytic fungus Gliocladium sp. isolated from the Indian yew tree, Taxus baccata. J. Microbiol. Biotechnol., 2009, 19(11), 1342.
[40]
(a)Fauzia, M.; Syed, S.; Zaman, M.S.; Nitin, P.K.; Vikrant, S.R.; Chaitanya, M.; Naveen, M.; Inshad, A.K.; Alam, M.S. Sulfur rich 2-mercaptobenzothiazole and 1,2,3-triazole conjugates as novel antitubercular agents. Eur. J. Med. Chem., 2014, 76, 274.
(b)Stanley, S.A.; Grant, S.S.; Kawate, T.; Iwase, N.; Shimizu, M.; Wivagg, C.; Silvis, M.; Kazyanskaya, E.; Aquadro, J.; Golas, A.; Fitzgerald, M.; Dai, H.; Zhang, L.; Hung, D.T. Identification of novel inhibitors of M. tuberculosis growth using whole cell based high-throughput screening. ACS Chem. Biol., 2012, 7(8), 1377.
[41]
Riccardi, G.; Pasca, M.R.; Chiarelli, L.R.; Manina, G.; Mattevi, A.; Binda, C. The DprE1 enzyme, one of the most vulnerable targets of Mycobacterium tuberculosis. Appl. Microbiol. Biotechnol., 2013, 97(20), 8841.
[42]
Batt, S.M.; Jabeen, T.; Bhowruth, V.; Quill, L.; Lund, P.A.; Eggeling, L.; Alderwick, L.J.; Futterer, K.; Besra, G.S. Structural basis of inhibition of Mycobacterium tuberculosis DprE1 by benzothiazinone inhibitors. Proc. Natl. Acad. Sci. USA, 2012, 109(28), 11354.
[43]
VLife Molecular Design Suite 4.3, VLife Sciences Technologies Pvt. Ltd; www.Vlifesciences.com
[44]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-4), 3-26.
[45]
Molinspiration Chemoinformatics Brastislava, Slovak Republic, Available from: http://www.molinspiration.com/cgi-bin/properties2014.
[46]
Zhao, Y.H.; Abraham, M.H.; Le, J.; Hersey, A.; Luscombe, C.N.; Beck, G.; Sherborne, B.; Cooper, I. Rate-limited steps of human oral absorption and QSAR studies. Pharm. Res., 2002, 19(10), 1446.
[47]
Drug-likeness and molecular property prediction, available from: http://www.molsoft.com/mprop/
[48]
Ertl, P.; Rohde, B.; Selzer, P. Fast calculation of molecular polar surface area as a sum of fragment based contributions and its application to the prediction of drug transport properties. J. Med. Chem., 2000, 43(20), 3714-3717.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy