Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Research Article

PDO Rotonda’s Red Eggplant Extract: In vitro Determination of Biological Properties and Minerals Bioaccessibility

Author(s): Ortensia Ilaria Parisi, Mariarosa Ruffo, Fabio Amone, Rocco Malivindi, Domenico Gorgoglione, Filomena De Biasio, Luca Scrivano, Vincenzo Pezzi and Francesco Puoci*

Volume 16, Issue 1, 2020

Page: [65 - 74] Pages: 10

DOI: 10.2174/1573401314666180622110952

Price: $65

Abstract

Background: The Rotonda’s Red Eggplant belongs to the family of Solanum aethiopicum and it is cultivated in a specific area of Potenza (Basilicata, South of Italy) including villages of Rotonda, Viggianello, Castelluccio Superiore and Castelluccio Inferiore. The Red Eggplant cultivated in this area has gained the PDO, “Protected Designation of Origin”.

Objective: The aim of this research was to evaluate the use of PDO Rotonda’s Red Eggplant extract as a possible nutraceutical supplement. The antioxidant, antihypertensive, hypoglycemic, and hypolipidemic properties were in vitro evaluated.

Methods: The antioxidant activity was investigated by evaluating the scavenging properties against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-Azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals and by performing the Ammonium Molybdate and Folin-Ciocalteu assay. The hypoglycemic and antihypertensive activity was studied by evaluating the α-Amylase, α-Glucosidase and Angiotensin Converting Enzyme, respectively, inhibiting activity. In order to evaluate the hypolipidemic activity, the pancreatic lipase inhibiting property was determined and Oil Red O staining assay was performed. Finally, to evaluate the possible use of this extract as a minerals supplement, Selenium, Potassium and Chrome bioaccessibility was studied.

Results: The obtained results underline the good antioxidant, hypoglycemic, antihypertensive and hypolipidemic in vitro properties of the PDO Rotonda’s Red Eggplant extract. Moreover, the obtained data show a higher minerals bioaccessibility and this higher value could be ascribable to the natural phytocomplex of PDO Rotonda’s Red Eggplant, which increases the minerals bioaccessibility if compare it with a control sample.

Conclusion: The obtained results show that PDO Rotonda’s Red Eggplant extract, might be used as a possible nutraceutical supplement, along with traditional therapies, both for its biological properties and for its minerals bioaccessibility value.

Keywords: ABTS, ammonium molybdate, DPPH, minerals bioaccessibility, oil Red O, pancreatic lipase, Rotonda’s Red Eggplant extract, Solanum aethiopicum, α-amylase, α-glucosidase.

Graphical Abstract

[1]
Plazas M, Andújar I, Vilanova S, Gramazio P, Herraiz FJ, Prohens J. Conventional and phenomics characterization provides insight into the diversity and relationships of hypervariable scarlet (Solanum aethiopicum L.) and gboma (S. macrocarpon L.) eggplant complexes. Front Plant Sci 2014; 5: 318.
[http://dx.doi.org/10.3389/ fpls.2014.00318] [PMID: 25071801]
[2]
Daunay M, Lester R, Ano G. Cultivated eggplants. In: Charrier A, Jacquot M, Hamon S, Nicolas D, Eds TTropical Plant Breeding. Science Publishers Inc. USA. 2001; pp. 199-222.
[3]
Laghetti G, Hammer K, Brandi M, et al. Ritrovamento in coltura della melanzana africana (Solanum aethipicum L) nel comune di Rotonda (PZ). Informatore agrario LI 1995; 39: 52-8.
[4]
Sunseri F, Polignano G, Alba V, et al. Genetic diversity and characterization of African eggplant germplasm collection. Afr J Plant Sci 2010; 4(7): 231-41.
[5]
Polignano G, Laghetti G, Margiotta B, et al. Agricultural sustainability and underutilized crop species in southern Italy. Plant Genet Resour 2004; 2(1): 29-35.
[http://dx.doi.org/10.1079/PGR200432]
[6]
Plazas M, Prohens J, Cuñat AN, et al. Reducing capacity, chlorogenic acid content and biological activity in a collection of scarlet (Solanum aethiopicum) and Gboma (S. macrocarpon) eggplants. Int J Mol Sci 2014; 15(10): 17221-41.
[http://dx.doi.org/10.3390/ijms151017221] [PMID: 25264739]
[7]
Nwanna EE, Ibukun EO, Oboh G, Ademosun AO, Boligon AA, Athayde M. HPLC-DAD analysis and in-vitro property of polyphenols extracts from (Solanum aethiopium) fruits on α -amylase, α -glucosidase and angiotensin - 1- converting enzyme activities. Int J Biomed Sci 2014; 10(4): 272-81.
[PMID: 25598760]
[8]
Rawat S, Jugran A, Giri L, et al. Assessment of antioxidant properties in fruits of Myrica esculenta: a popular wild edible species in Indian Himalayan region. Evid Based Complementary Altern Med 2011. available at . https://www.hindawi.com/journals/ecam/2011/ 512787/
[9]
Odetola AA, Iranloye YO, Akinloye O. Hypolipidaemic potentials of Solanum melongena and Solanum gilo on hypercholesterolemic rabbits. Pak J Nutr 2004; 3(3): 180-7.
[http://dx.doi.org/10.3923/pjn.2004.180.187]
[10]
Anosike CA, Obidoa O, Ezeanyika LU. The anti-inflammatory activity of garden egg (Solanum aethiopicum) on egg albumin-induced oedema and granuloma tissue formation in rats. Asian Pac J Trop Med 2012; 5(1): 62-6.
[http://dx.doi.org/10.1016/S1995-7645(11)60247-2] [PMID: 22182646]
[11]
Nikolic NC, Stankovic MZ. Solanidine hydrolytic extraction and separation from the potato (Solanum tuberosum L.) vines by using solid-liquid-liquid systems. J Agric Food Chem 2003; 51(7): 1845-9.
[http://dx.doi.org/10.1021/jf020426s] [PMID: 12643640]
[12]
Parisi OI, Aiello D, Casula MF, et al. Mesoporous nanocrystalline TiO2 loaded with ferulic acid for sunscreen and photo-protection: safety and efficacy assessment. RSC Advances 2016; 6(87): 83767-75.
[http://dx.doi.org/10.1039/C6RA07653J]
[13]
Spizzirri U, Altimari I, Puoci F, et al. Innovative antioxidant thermo-responsive hydrogels by radical grafting of catechin on inulin chain. Carbohydr Polym 2011; 84(1): 517-23.
[http://dx.doi.org/10.1016/j.carbpol.2010.12.015]
[14]
Prieto P, Pineda M, Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem 1999; 269(2): 337-41.
[http://dx.doi.org/10.1006/abio.1999.4019] [PMID: 10222007]
[15]
Parisi OI, Malivindi R, Amone F, et al. Safety and efficacy of dextran-rosma-rinic acid conjugates as innovative polymeric antioxidants in skin whitening: What is the evidence? Cosmetics 2017; 4(3): 28.
[http://dx.doi.org/10.3390/cosmetics4030028]
[16]
Kim M, Kim E, Kwak HS, Jeong Y. The ingredients in Saengshik, a formulated health food, inhibited the activity of α-amylase and α-glucosidase as anti-diabetic function. Nutr Res Pract 2014; 8(5): 602-6.
[http://dx.doi.org/10.4162/nrp.2014.8.5.602] [PMID: 25324943]
[17]
Chaudhary SK, De A, Bhadra S, Mukherjee PK. Angiotensin-converting enzyme (ACE) inhibitory potential of standardized Mucuna pruriens seed extract. Pharm Biol 2015; 53(11): 1614-20.
[http://dx.doi.org/10.3109/13880209.2014.996820] [PMID: 25868619]
[18]
Lim SM, Goh YM, Kuan WB, Loh SP. Effect of germinated brown rice extracts on pancreatic lipase, adipogenesis and lipolysis in 3T3-L1 adipocytes. Lipids Health Dis 2014; 13(1): 169.
[http://dx.doi.org/10.1186/1476-511X-13-169] [PMID: 25367070]
[19]
Zebisch K, Voigt V, Wabitsch M, Brandsch M. Protocol for effective differentiation of 3T3-L1 cells to adipocytes. Anal Biochem 2012; 425(1): 88-90.
[http://dx.doi.org/10.1016/j.ab.2012.03.005] [PMID: 22425542]
[20]
Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65(1-2): 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[21]
Kim SP, Nam SH, Friedman M. Mechanism of the antiadipogenic-antiobesity effects of a rice hull smoke extract in 3T3-L1 preadipocyte cells and in mice on a high-fat diet. Food Funct 2015; 6(9): 2939-48.
[http://dx.doi.org/10.1039/C5FO00469A] [PMID: 26190448]
[22]
Matute RG, Serra A, Figlas D, Curvetto N. Copper and zinc bioaccumulation and bioavailability of Ganoderma lucidum. J Med Food 2011; 14(10): 1273-9.
[http://dx.doi.org/10.1089/jmf.2010.0206] [PMID: 21554122]
[23]
Soobrattee MA, Neergheen VS, Luximon-Ramma A, Aruoma OI, Bahorun T. Phenolics as potential antioxidant therapeutic agents: mechanism and actions. Mutat Res 2005; 579(1-2): 200-13.
[http://dx.doi.org/10.1016/j.mrfmmm.2005.03.023] [PMID: 16126236]
[24]
Mennella G, Rotino GL, Fibiani M, et al. Characterization of health-related compounds in eggplant (Solanum melongena L.) lines derived from introgression of allied species. J Agric Food Chem 2010; 58(13): 7597-603.
[http://dx.doi.org/10.1021/jf101004z] [PMID: 20527988]
[25]
Sakthiswary R, Zakaria Z, Das S. Diabetes mellitus: treatment challenges and the role of some herbal therapies. Middle East J Sci Res 2014; 20(7): 786-98.
[26]
Béjaoui A, Boulila A, Salem IB, Boussaid M. Chemical composition and bioactivities of the polyphenolic-rich extract of Ormenis africana Jord. and Fourr. Int J Food Prop 2017; 20(8): 1786-95.
[http://dx.doi.org/10.1080/10942912.2016.1219368]
[27]
Martínez-Maqueda D, Miralles B, Recio I, Hernández-Ledesma B. Antihypertensive peptides from food proteins: a review. Food Funct 2012; 3(4): 350-61.
[http://dx.doi.org/10.1039/c2fo10192k] [PMID: 22249830]
[28]
Uraipong C, Zhao J. Rice bran protein hydrolysates exhibit strong in vitro α-amylase, β-glucosidase and ACE-inhibition activities. J Sci Food Agric 2016; 96(4): 1101-10.
[http://dx.doi.org/10.1002/jsfa.7182] [PMID: 25801199]
[29]
de la Garza AL, Milagro FI, Boque N, Campión J, Martínez JA. Natural inhibitors of pancreatic lipase as new players in obesity treatment. Planta Med 2011; 77(8): 773-85.
[http://dx.doi.org/10.1055/s-0030-1270924] [PMID: 21412692]
[30]
Fabroni S, Ballistreri G, Amenta M, Romeo FV, Rapisarda P. Screening of the anthocyanin profile and in vitro pancreatic lipase inhibition by anthocyanin-containing extracts of fruits, vegetables, legumes and cereals. J Sci Food Agric 2016; 96(14): 4713-23.
[http://dx.doi.org/10.1002/jsfa.7708] [PMID: 26970531]
[31]
Sudheesh S, Presannakumar G, Vijayakumar S, Vijayalakshmi NR. Hypolipidemic effect of flavonoids from Solanum melongena. Plant Foods Hum Nutr 1997; 51(4): 321-30.
[http://dx.doi.org/10.1023/A:1007965927434] [PMID: 9650725]
[32]
Omrani H, Golmohamadi S, Pasdar Y, Jasemi K, Almasi A. Effect of selenium supplementation on lipid profile in hemodialysis patients. J Renal Inj Prev 2016; 5(4): 179-82.
[http://dx.doi.org/10.15171/jrip.2016.38] [PMID: 27689119]
[33]
Duntas LH. Selenium and inflammation: underlying anti-inflammatory mechanisms. Horm Metab Res 2009; 41(6): 443-7.
[http://dx.doi.org/10.1055/s-0029-1220724] [PMID: 19418416]
[34]
Panchal SK, Wanyonyi S, Brown L. Selenium, vanadium, and chromium as micronutrients to improve metabolic syndrome. Curr Hypertens Rep 2017; 19(3): 10.
[http://dx.doi.org/10.1007/s11906-017-0701-x] [PMID: 28197835]
[35]
Consensus Study Report. Vitamin C, Vitamin E, Selenium and Carotenoids. National Academy Press: Washington, DC . 2000.
[36]
Fairweather-Tait SJ, Bao Y, Broadley MR, et al. Selenium in human health and disease. Antioxid Redox Signal 2011; 14(7): 1337-83.
[http://dx.doi.org/10.1089/ars.2010.3275]
[37]
Drutel A, Archambeaud F, Caron P. Selenium and the thyroid gland: more good news for clinicians. Clin Endocrinol (Oxf) 2013; 78(2): 155-64.
[http://dx.doi.org/10.1111/cen.12066] [PMID: 23046013]
[38]
Lewicki S, Zdanowski R, Krzyżowska M, et al. The role of Chromium III in the organism and its possible use in diabetes and obesity treatment. Ann Agric Environ Med 2014; 21(2): 331-5.
[http://dx.doi.org/10.5604/1232-1966.1108599] [PMID: 24959784]
[39]
Institute of Medicine (US) Panel on Micronutrients. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium,copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. National Academies Press (US): Washington,DC. 2001.
[40]
Chen Y, Watson HM, Gao J, Sinha SH, Cassady CJ, Vincent JB. Characterization of the organic component of low-molecular-weight chromium-binding substance and its binding of chromium. J Nutr 2011; 141(7): 1225-32.
[http://dx.doi.org/10.3945/jn.111.139147] [PMID: 21593351]
[41]
Iskra R, Ianovych V. Biochemical mechanisms of chromium action in the human and animal organism. Ukr Biokhim Zh 2011; 83(5): 5-12.
[42]
Chen G, Liu P, Pattar GR, et al. Chromium activates glucose transporter 4 trafficking and enhances insulin-stimulated glucose transport in 3T3-L1 adipocytes via a cholesterol-dependent mechanism. Mol Endocrinol 2006; 20(4): 857-70.
[http://dx.doi.org/10.1210/me.2005-0255] [PMID: 16339278]
[43]
Komorowski JR, Tuzcu M, Sahin N, et al. Chromium picolinate modulates serotonergic properties and carbohydrate metabolism in a rat model of diabetes. Biol Trace Elem Res 2012; 149(1): 50-6.
[http://dx.doi.org/10.1007/s12011-012-9393-x] [PMID: 22434381]
[44]
He FJ, MacGregor GA. Beneficial effects of potassium on human health. Physiol Plant 2008; 133(4): 725-35.
[http://dx.doi.org/10.1111/j.1399-3054.2007.01033.x] [PMID: 18724413]
[45]
Zhu K, Devine A, Prince RL. The effects of high potassium consumption on bone mineral density in a prospective cohort study of elderly postmenopausal women. Osteoporos Int 2009; 20(2): 335-40.
[http://dx.doi.org/10.1007/s00198-008-0666-3] [PMID: 18575949]
[46]
Cogswell ME, Zhang Z, Carriquiry AL, et al. Sodium and potassium intakes among US adults: NHANES 2003-2008. Am J Clin Nutr 2012; 96(3): 647-57.
[http://dx.doi.org/10.3945/ajcn.112.034413] [PMID: 22854410]
[47]
Pedrero Z, Madrid Y, Cámara C. Selenium species bioaccessibility in enriched radish (Raphanus sativus): a potential dietary source of selenium. J Agric Food Chem 2006; 54(6): 2412-7.
[http://dx.doi.org/10.1021/jf052500n] [PMID: 16536627]
[48]
Ruzik L, Wojcieszek J. In vitro digestion method for estimation of copper bioaccessibility in Açaí berry. Monatsh Chem 2016; 147: 1429-38.
[http://dx.doi.org/10.1007/s00706-016-1798-3] [PMID: 27546910]
[49]
Frossard E, Bucher M, Mächler M, Mozafar A, et al. Potential for increasing the content and bioavailability of Fe, Zn and Ca in plants for human nutrition. J Sci Food Agric 2000; 80(7): 861-79.
[http://dx.doi.org/10.1002/(SICI)1097-0010(20000515)80:7<861:AID-JSFA601>3.0.CO;2-P]
[50]
Boivin D, Lamy S, Lord Dufour S, et al. Antiproliferative and antioxidant activities of common vegetables: A comparative study. Food Chem 2009; 112(2): 374-80.
[http://dx.doi.org/10.1016/j.foodchem.2008.05.084]
[51]
da Costa JP. A current look at Nutraceuticals–key concepts and future prospects. Trends Food Sci Technol 2017; 62: 68-78.
[http://dx.doi.org/10.1016/j.tifs.2017.02.010]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy