Generic placeholder image

Cardiovascular & Hematological Disorders-Drug Targets

Editor-in-Chief

ISSN (Print): 1871-529X
ISSN (Online): 2212-4063

Review Article

Humoral Immunity in Heart Failure

Author(s): Amrita Sarkar and Khadija Rafiq*

Volume 19, Issue 1, 2019

Page: [14 - 18] Pages: 5

DOI: 10.2174/1871529X18666180518101527

Price: $65

Abstract

Cardiovascular Disease (CVD) is a class of diseases that involve disorders of heart and blood vessels, including hypertension, coronary heart disease, cerebrovascular disease, peripheral vascular disease, which finally lead to Heart Failure (HF). There are several treatments available all over the world, but still, CVD and heart failure became the number one problem causing death every year worldwide. Both experimental and clinical studies have shown a role for inflammation in the pathogenesis of heart failure. This seems related to an imbalance between pro-inflammatory and anti-inflammatory cytokines. Cardiac inflammation is a major pathophysiological mechanism operating in the failing heart, regardless of HF aetiology. Disturbances of the cellular and humoral immune system are frequently observed in heart failure. This review describes how B-cells play a specific role in the heart failure states. There is an urgent need to identify novel therapeutic targets and develop advanced therapeutic strategies to combat the syndrome of HF. Understanding and describing the elements of the humoral immunity function are essential and may suggest potential new treatment strategies.

Keywords: Inflammation, heart failure, myocardium, humoral immunity, B-cell, cardiovascular disease.

Graphical Abstract

[1]
Landers-Ramos, R.Q.; Jenkins, N.T.; Spangenburg, E.E.; Hagberg, J.M.; Prior, S.J. Circulating angiogenic and inflammatory cytokine responses to acute aerobic exercise in trained and sedentary young men. Eur. J. Appl. Physiol., 2014, 114(7), 1377-1384.
[2]
Downing, J.; Balady, G.J. The role of exercise training in heart failure. J. Am. Coll. Cardiol., 2011, 58(6), 561-569.
[3]
Torpy, J.M.; Burke, A.E.; Glass, R.M. JAMA patient page. Coronary heart disease risk factors. JAMA, 2009, 302(21), 2388.
[4]
Shrivastava, A.K.; Singh, H.V.; Raizada, A.; Singh, S.K. C-reactive protein, inflammation and coronary heart disease. Egypt. Heart J., 2015, 67(2), 89-97.
[5]
Palomer, X.; Salvado, L.; Barroso, E.; Vazquez-Carrera, M. An overview of the crosstalk between inflammatory processes and metabolic dysregulation during diabetic cardiomyopathy. Int. J. Cardiol., 2013, 168(4), 3160-3172.
[6]
Fuentes-Antras, J.; Ioan, A.M.; Tunon, J.; Egido, J.; Lorenzo, O. Activation of toll-like receptors and inflammasome complexes in the diabetic cardiomyopathy-associated inflammation. Int. J. Endocrinol., 2014, 2014, 847827.
[7]
Hotamisligil, G.S.; Erbay, E. Nutrient sensing and inflammation in metabolic diseases. Nat. Rev. Immunol., 2008, 8(12), 923-934.
[8]
Nishida, K.; Otsu, K. Inflammation and metabolic cardiomyopathy. Cardiovasc. Res., 2017, 113(4), 389-398.
[9]
Bluher, M. Adipose tissue inflammation: A cause or consequence of obesity-related insulin resistance? Clin. Sci (London, England : 1979), 2016, 130(18), 1603-1614
[10]
Yndestad, A.; Kristian Damås, J.; Øie, E.; Ueland, T.; Gullestad, L.; Aukrust, P. Systemic inflammation in heart failure-The whys and wherefores. Heart Fail. Rev., 2006, 11(1), 83-92.
[11]
Mann, D.L. Innate immunity and the failing heart. Circ. Res., 2015, 116(7), 1254-1268.
[12]
Sánchez-Trujillo, L.; Vázquez-Garza, E.; Castillo, E.C.; García-Rivas, G.; Torre-Amione, G. Role of adaptive immunity in the development and progression of heart failure: New evidence. Arch. Med. Res., 2017, 48(1), 1-11.
[13]
Swirski, F.K.; Nahrendorf, M. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science, 2013, 339(6116), 161-166.
[14]
Epelman, S.; Liu, P.P.; Mann, D.L. Role of innate and adaptive immune mechanisms in cardiac injury and repair. Nat. Rev. Immunol., 2015, 15(2), 117-129.
[15]
Youker, K.A.; Assad-Kottner, C.; Cordero-Reyes, A.M.; Trevino, A.R.; Flores-Arredondo, J.H.; Barrios, R.; Fernandez-Sada, E.; Estep, J.D.; Bhimaraj, A.; Torre-Amione, G. High proportion of patients with end-stage heart failure regardless of aetiology demonstrates anti-cardiac antibody deposition in failing myocardium: humoral activation, a potential contributor of disease progression. Eur. Heart J., 2013, 35(16), 1061-1068.
[16]
Baumgarth, N. The double life of a B-1 cell: Self-reactivity selects for protective effector functions. Nat. Rev. Immunol., 2011, 11(1), 34-46.
[17]
Martin, F.; Oliver, A.M.; Kearney, J.F. Marginal zone and B1 B cells unite in the early response against T-independent blood-borne particulate antigens. Immunity, 2001, 14(5), 617-629.
[18]
Wolf, S.D.; Dittel, B.N.; Hardardottir, F.; Janeway, C.A., Jr Experimental autoimmune encephalomyelitis induction in genetically B cell-deficient mice. J. Exp. Med., 1996, 184(6), 2271-2278.
[19]
Yanaba, K.; Bouaziz, J.D.; Haas, K.M.; Poe, J.C.; Fujimoto, M.; Tedder, T.F. A regulatory B cell subset with a unique CD1dhiCD5+ phenotype controls T cell-dependent inflammatory responses. Immunity, 2008, 28(5), 639-650.
[20]
Vitale, G.; Mion, F.; Pucillo, C. Regulatory B cells: Evidence, developmental origin and population diversity. Mol. Immunol., 2010, 48(1), 1-8.
[21]
Ding, Q.; Yeung, M.; Camirand, G.; Zeng, Q.; Akiba, H.; Yagita, H.; Chalasani, G.; Sayegh, M.H.; Najafian, N.; Rothstein, D.M. Regulatory B cells are identified by expression of TIM-1 and can be induced through TIM-1 ligation to promote tolerance in mice. J. Clin. Invest., 2011, 121(9), 3645-3656.
[22]
Torre-Amione, G.; Kapadia, S.; Benedict, C.; Oral, H.; Young, J.B.; Mann, D.L. Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction: A report from the studies of left ventricular dysfunction (SOLVD). J. Am. Coll. Cardiol., 1996, 27(5), 1201-1206.
[23]
Frantz, S.; Kobzik, L.; Kim, Y-D.; Fukazawa, R.; Medzhitov, R.; Lee, R.T.; Kelly, R.A. Toll4 (TLR4) expression in cardiac myocytes in normal and failing myocardium. J. Clin. Invest., 1999, 104(3), 271-280.
[24]
Birks, E.J.; Felkin, L.E.; Banner, N.R.; Khaghani, A.; Barton, P.J.R.; Yacoub, M.H. Increased toll-like receptor 4 in the myocardium of patients requiring left ventricular assist devices. J. Heart Lung Transplant., 2004, 23(2), 228-235.
[25]
Caforio, A.L.P.; Mahon, N.J.; McKenna, W.J. Cardiac autoantibodies to myosin and other heart-specific autoantigens in myocarditis and dilated cardiomyopathy. Autoimmunity, 2001, 34(3), 199-204.
[26]
Ponnuswamy, P.; Van Vré, E.A.; Mallat, Z.; Tedgui, A. Humoral and cellular immune responses in atherosclerosis: Spotlight on B- and T-cells. Vascul. Pharmacol., 2012, 56(5), 193-203.
[27]
Ait-Oufella, H.; Sage, A.P.; Mallat, Z.; Tedgui, A. Adaptive (T and B cells) immunity and control by dendritic cells in atherosclerosis. Circ. Res., 2014, 114(10), 1640-1660.
[28]
Kyaw, T.; Tay, C.; Khan, A.; Dumouchel, V.; Cao, A.; To, K.; Kehry, M.; Dunn, R.; Agrotis, A.; Tipping, P.; Bobik, A.; Toh, B.H. Conventional B2 B cell depletion ameliorates whereas its adoptive transfer aggravates atherosclerosis. J. Immunol., 2010, 185(7), 4410-4419.
[29]
Caligiuri, G.; Nicoletti, A.; Poirier, B.; Hansson, G.K. Protective immunity against atherosclerosis carried by B cells of hypercholesterolemic mice. J. Clin. Invest., 2002, 109(6), 745-753.
[30]
DiLillo, D.J.; Matsushita, T.; Tedder, T.F. B10 cells and regulatory B cells balance immune responses during inflammation, autoimmunity, and cancer. Ann. N. Y. Acad. Sci., 2010, 1183, 38-57.
[31]
Cordero-Reyes, A.M.; Youker, K.A.; Torre-Amione, G. The role of B-cells in heart failure. Methodist DeBakey Cardiovasc. J., 2013, 9(1), 15-19.
[32]
Annunziato, F.; Romagnani, C.; Romagnani, S. The 3 major types of innate and adaptive cell-mediated effector immunity. J. Allergy Clin. Immunol., 2015, 135(3), 626-635.
[33]
Kaya, Z.; Leib, C.; Katus, H.A. Autoantibodies in heart failure and cardiac dysfunction. Circ. Res., 2012, 110(1), 145-158.
[34]
Liu, H-R.; Zhao, R-R.; Jiao, X-Y.; Wang, Y-Y.; Fu, M. Relationship of myocardial remodeling to the genesis of serum autoantibodies to cardiac beta1-adrenoceptors and muscarinic type 2 acetylcholine receptors in rats. J. Am. Coll. Cardiol., 2002, 39(11), 1866-1873.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy