[1]
Leek, R.G.; Fayer, R. The gastrointestinal ecosystem: A precarious alliance among epithelium, immunity and microbiota. Cell. Microbiol., 2001, 3, 1-11.
[2]
Turner, J.R. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol., 2009, 9, 799-809.
[3]
Johansson, M.E.; Larsson, J.M.; Hansson, G.C. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc. Natl. Acad. Sci. USA, 2011, 108(Suppl. 1), 4659-4665.
[4]
Derrien, M.; van Passel, M.W.; van de Bovenkamp, J.H.; Schipper, R.G.; de Vos, W.M.; Dekker, J. Mucin-bacterial interactions in the human oral cavity and digestive tract. Gut Microbes, 2010, 1, 254-268.
[5]
Hollingsworth, M.A.; Swanson, B.J. Mucins in cancer: Protection and control of the cell surface. Nat. Rev. Cancer, 2004, 4, 45-60.
[6]
Johansson, M.E.; Phillipson, M.; Petersson, J.; Velcich, A.; Holm, L.; Hansson, G.C. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl. Acad. Sci. USA, 2008, 105, 15064-15069.
[7]
Hansson, G.C. Role of mucus layers in gut infection and inflammation. Curr. Opin. Microbiol., 2012, 15, 57-62.
[8]
Moran, A.P.; Gupta, A.; Joshi, L. Sweet-talk: Role of host glycosylation in bacterial pathogenesis of the gastrointestinal tract. Gut, 2011, 60, 1412-1425.
[9]
Laura, W.; Sylvie, M.; Marie-Louise, N.; Stephan, B.; Joncquel, C.C.M.; Véronique, R.; Catherine, P.; Chantal, B.; Claire, C.; Catherine, R.M. Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii influence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent. BMC Biol., 2013, 11, 1-13.
[10]
Gaskins, H. Immunological aspects of host/microbiota interactions at the intestinal epithelium. Gastrointest. Microbiol., 1997, 2, 537-587.
[11]
Thai, P.; Loukoianov, A.; Wachi, S.; Wu, R. Regulation of airway mucin gene expression. Annu. Rev. Physiol., 2008, 70, 405-429.
[12]
Burger-Van, P.N.; Vincent, A.; Puiman, P.J.; Van, D.S.M.; Bouma, J.; Boehm, G.; van Goudoever, J.B.; Van, S.I.; Renes, I.B. The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: Implications for epithelial protection. Biochem. J., 2009, 420, 211-219.
[13]
Barcelo, A.; Claustre, J.; Moro, F.; Chayvialle, J.A.; Cuber, J.C.; Plaisancié, P. Mucin secretion is modulated by luminal factors in the isolated vascularly perfused rat colon. Gut, 2000, 46, 218-224.
[14]
Konturek, P.C.; Brzozowski, T.; Konturek, S. Stress and the gut: Pathophysiology, clinical consequences, diagnostic approach and treatment options. J. Physiol. Pharmacol., 2011, 62, 591-599.
[15]
Da, S.S.; Robbe-Masselot, C.; Ait-Belgnaoui, A.; Mancuso, A.; Mercade-Loubière, M.; Salvador-Cartier, C.; Gillet, M.; Ferrier, L.; Loubière, P.; Dague, E. Stress disrupts intestinal mucus barrier in rats via mucin O-glycosylation shift: Prevention by a probiotic treatment. Am. J. Physiol. Gastrointest. Liver Physiol., 2014, 307, G420-G429.
[16]
Bell, A.E.; Sellers, L.A.; Allen, A.; Cunliffe, W.J.; Morris, E.R.; Ross-Murphy, S.B. Properties of gastric and duodenal mucus: Effect of proteolysis, disulfide reduction, bile, acid, ethanol, and hypertonicity on mucus gel structure. Gastroenterology, 1985, 88, 269-280.
[17]
Atuma, C.; Strugala, V.; Allen, A.; Holm, L. The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. Am. J. Physiol. Gastrointest. Liver Physiol., 2001, 280, G922-G929.
[18]
Johansson, M.E.; Ambort, D.; Pelaseyed, T.; Schutte, A.; Gustafsson, J.K.; Ermund, A.; Subramani, D.B.; Holmen-Larsson, J.M.; Thomsson, K.A.; Bergstrom, J.H.; van der Post, S.; Rodriguez-Pineiro, A.M.; Sjovall, H.; Backstrom, M.; Hansson, G.C. Composition and functional role of the mucus layers in the intestine. Cell. Mol. Life Sci., 2011, 68, 3635-3641.
[19]
Allen, A.; Flemström, G. Gastroduodenal mucus bicarbonate barrier: protection against acid and pepsin. Am. J. Physiol. Cell Physiol., 2005, 288, C1-C19.
[20]
Allen, A. Mucus — a protective secretion of complexity. Trends Biochem. Sci., 1983, 8, 169-173.
[21]
Deplancke, B.; Gaskins, H.R. Microbial modulation of innate defense: Goblet cells and the intestinal mucus layer. Am. J. Clin. Nutr., 2001, 73, 1131S-1141S.
[22]
Lang, T.; Hansson, G.C.; Samuelsson, T. Gel-forming mucins appeared early in metazoan evolution. Proc. Natl. Acad. Sci. USA, 2007, 104, 16209-16214.
[23]
Perezvilar, J.; Hill, R.L. The structure and assembly of secreted mucins. J. Biol. Chem., 1999, 274, 31751-31754.
[24]
Phillips, T.E.; Phillips, T.H.; Neutra, M.R. Regulation of intestinal goblet cell secretion. III. Isolated intestinal epithelium. Am. J. Physiol., 1984, 247, G674-G681.
[25]
Dekker, J.; Strous, G.J. Covalent oligomerization of rat gastric mucin occurs in the rough endoplasmic reticulum, is N-glycosylation-dependent, and precedes initial O-glycosylation. J. Biol. Chem., 1990, 265, 18116-18122.
[26]
Godl, K.; Johansson, M.E.; Lidell, M.E.; Mörgelin, M.; Karlsson, H.; Olson, F.J.; Gum, J.R. Jr. Kim, Y.S.; Hansson, G.C. The N terminus of the MUC2 mucin forms trimers that are held together within a trypsin-resistant core fragment. J. Biol. Chem., 2002, 277, 47248-47256.
[27]
Bergstrom, K.S.B.; Kissoonsingh, V.; Gibson, D.L.; Ma, C.; Montero, M.; Sham, H.P.; Ryz, N.; Huang, T.; Velcich, A.; Finlay, B.B. Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa. PLoS Pathog., 2010, 6, e1000902.
[28]
Rhodes, J.M. Colonic mucus and mucosal glycoproteins: The key to colitis and cancer? Gut, 1989, 30, 1660-1666.
[29]
Smith, A.C.; Podolsky, D.K. Colonic mucin glycoproteins in health and disease. Clin. Gastroenterol., 1986, 15, 815-837.
[30]
Alexander, C.; Rietschel, E.T. Bacterial lipopolysaccharides and innate immunity. J. Endotoxin Res., 2001, 7, 167-202.
[31]
Raetz, C.R.H. Biochemistry of endotoxins. Annu. Rev. Biochem., 1990, 59, 129-170.
[32]
Li, J.D.; Dohrman, A.F.; Gallup, M.; Miyata, S.; Gum, J.R.; Kim, Y.S.; Nadel, J.A.; Prince, A.; Basbaum, C.B. Transcriptional activation of mucin by Pseudomonas aeruginosa lipopolysaccharide in the pathogenesis of cystic fibrosis lung disease. Proc. Natl. Acad. Sci. USA, 1997, 94, 967.
[33]
Dohrman, A.; Miyata, S.; Gallup, M.; Li, J.D.; Chapelin, C.; Coste, A.; Escudier, E.; Nadel, J.; Basbaum, C. Mucin gene (MUC 2 and MUC 5AC) upregulation by Gram-positive and Gram-negative bacteria. Biochim. Biophys. Acta, 1998, 1406, 251-259.
[34]
Smirnova, M.G.; Guo, L.; Birchall, J.P.; Pearson, J.P. LPS up-regulates mucin and cytokine mRNA expression and stimulates mucin and cytokine secretion in goblet cells. Cell. Immunol., 2003, 221, 42-49.
[35]
Mcnamara, N.; Basbaum, C. Signaling networks controlling mucin production in response to Gram-positive and Gram-negative bacteria. Glycoconj. J., 2001, 18, 715-722.
[36]
Li, J.D.; Feng, W.; Gallup, M.; Kim, J.H.; Gum, J.; Kim, Y.; Basbaum, C. Activation of NF-kappaB via a Src-dependent Ras-MAPK-pp90rsk pathway is required for Pseudomonas aeruginosa-induced mucin overproduction in epithelial cells. Proc. Natl. Acad. Sci. USA, 1998, 95, 5718-5723.
[37]
Shapiro, L. The bacterial flagellum: From genetic network to complex architecture. Cell, 1995, 80, 525-527.
[38]
Feldman, M.; Bryan, R.; Rajan, S.; Scheffler, L.; Brunnert, S.; Tang, H.; Prince, A. Role of flagella in pathogenesis of Pseudomonas aeruginosa pulmonary infection. Infect. Immun., 1998, 66, 43-51.
[39]
Mcnamara, N.; Khong, A.; Mckemy, D.; Caterina, M.; Boyer, J.; Julius, D.; Basbaum, C. ATP transduces signals from ASGM1, a glycolipid that functions as a bacterial receptor. Proc. Natl. Acad. Sci. USA, 2001, 98, 9086-9091.
[40]
Lemjabbar, H.; Basbaum, C. Platelet-activating factor receptor and ADAM10 mediate responses to Staphylococcus aureus in epithelial cells. Nat. Med., 2002, 8, 41-46.
[41]
Scheppach, W. Effects of short chain fatty acids on gut morphology and function. Gut, 1994, 35, S35-S38.
[42]
Butzner, J.D.; Parmar, R.; Bell, C.J.; Dalal, V. Butyrate enema therapy stimulates mucosal repair in experimental colitis in the rat. Gut, 1996, 38, 568-573.
[43]
Cook, S.I.; Sellin, J.H. Review article: Short chain fatty acids in health and disease. Aliment. Pharmacol. Ther., 1998, 12, 499-507.
[44]
Bugaut, M. Occurrence, absorption and metabolism of short chain fatty acids in the digestive tract of mammals. Comp. Biochem. Physiol. B, 1987, 86, 439-472.
[45]
Shimotoyodome, A.; Meguro, S.; Hase, T.; Tokimitsu, I.; Sakata, T. Short chain fatty acids but not lactate or succinate stimulate mucus release in the rat colon. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 2000, 125, 525-531.
[46]
Yajima, T. Chemical specificity of short-chain fatty acid-induced electrogenic secretory response in te rat colonic mucosa. Comp. Biochem. Physiol. A. Physiol., 1989, 93, 851-856.
[47]
Fulde, M.; Hornef, M.W. Maturation of the enteric mucosal innate immune system during the postnatal period. Immunol. Rev., 2014, 260, 21-34.
[48]
Kamada, N.; Chen, G.Y.; Inohara, N.; Núñez, G. Control of pathogens and pathobionts by the gut microbiota. Nat. Immunol., 2013, 14, 685-690.
[49]
Noortje, I.; Clara, B.; Hooiveld, G.J.; Jan, D.; Mil, S.W.C.; Michael, M.; Michiel, K.; Roelof, V.D.M. Gut microbiota facilitates dietary heme-induced epithelial hyperproliferation by opening the mucus barrier in colon. Proc. Natl. Acad. Sci. USA, 2015, 112, 10038-10043.
[50]
Reinhardt, C.; Bergentall, M.; Greiner, T.U.; Schaffner, F.; Ostergren-Lundén, G.; Petersen, L.C.; Ruf, W.; Bäckhed, F. Tissue factor and PAR1 promote microbiota-induced intestinal vascular remodelling. Nature, 2012, 483, 627-631.
[51]
Neuman, H.; Debelius, J.W.; Knight, R.; Koren, O. Microbial endocrinology: The interplay between the microbiota and the endocrine system. FEMS Microbiol. Rev., 2015, 39, 509-521.
[52]
Yan, J.; Herzog, J.W.; Tsang, K.; Brennan, C.A.; Bower, M.A.; Garrett, W.S.; Sartor, B.R.; Aliprantis, A.O.; Charles, J.F. Gut microbiota induce IGF-1 and promote bone formation and growth. Proc. Natl. Acad. Sci. USA, 2016, 113, E7554-E7563.
[53]
Canfora, E.E.; Jocken, J.W.; Blaak, E.E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol., 2015, 11, 577-591.
[54]
Koh, A.; Vadder, F.D.; Kovatcheva-Datchary, P.; Ckhed, F.B. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell, 2016, 165, 1332-1345.
[55]
Bäckhed, F.; Ley, R.E.; Sonnenburg, J.L.; Peterson, D.A.; Gordon, J.I. Host-bacterial mutualism in the human intestine. Science, 2016, 307, 1915-1920.
[56]
Eckburg, P.B.; Bik, E.M.; Bernstein, C.N.; Purdom, E.; Dethlefsen, L.; Sargent, M.; Gill, S.R.; Nelson, K.E.; Relman, D.A. Diversity of the human intestinal microbial flora. Science, 2005, 308, 1635-1638.
[57]
Ley, R.E.; Hamady, M.; Lozupone, C.; Turnbaugh, P.J.; Ramey, R.R.; Bircher, J.S.; Schlegel, M.L.; Tucker, T.A.; Schrenzel, M.D.; Knight, R. Evolution of mammals and their gut microbes. Science, 2008, 320, 1647-1651.
[58]
Arumugam, M.; Raes, J.; Pelletier, E.; Paslier, D.L.; Yamada, T.; Mende, D.R.; Fernandes, G.R.; Tap, J.; Bruls, T.; Batto, J.M. Enterotypes of the human gut microbiome. Nature, 2013, 506, 516.
[59]
Gu, S.; Chen, D.; Zhang, J.N.; Lv, X.; Wang, K.; Duan, L.P.; Nie, Y.; Wu, X.L. Bacterial community mapping of the mouse gastrointestinal tract. PLoS One, 2013, 8, e74957.
[60]
Donaldson, G.P.; Lee, S.M.; Mazmanian, S.K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol., 2016, 14, 20-32.
[61]
Thierry, P.; Céline, M.; Catherine, D.; Lionel, F.; Christian, C.; Gianfranco, G.; Sansonetti, P.J. A crypt-specific core microbiota resides in the mouse colon. MBio, 2012, 3, 2153-2154.
[62]
Sekirov, I.; Russell, S.L.; Antunes, L.C.M.; Finlay, B.B. Gut microbiota in health and disease. Physiol. Rev., 2010, 90, 859-904.
[63]
Robert, H.; Payros, D.; Pinton, P.; Théodorou, V.; Mercierbonin, M.; Oswald, I.P. Impact of mycotoxins on the intestine: Are mucus and microbiota new targets? J. Toxicol. Environ. Health B Crit. Rev., 2017, 20, 249-275.
[64]
Albenberg, L.; Esipova, T.V.; Judge, C.P.; Bittinger, K.; Chen, J.; Laughlin, A.; Grunberg, S.; Baldassano, R.N.; Lewis, J.D.; Li, H. Correlation between intraluminal oxygen gradient and radial partitioning of intestinal microbiota. Gastroenterology, 2014, 147, 1055-1063.
[65]
Louis, P.; Hold, G.L.; Flint, H.J. The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol., 2014, 12, 661-672.
[66]
Rajilićstojanović, M.; Heilig, H.G.; Tims, S.; Zoetendal, E.G.; de Vos, W.M. Long-term monitoring of the human intestinal microbiota composition. Environ. Microbiol., 2013, 15, 1146-1159.
[67]
Shafquat, A.; Joice, R.; Simmons, S.L.; Huttenhower, C. Functional and phylogenetic assembly of microbial communities in the human microbiome. Trends Microbiol., 2014, 22, 261-266.
[68]
Salonen, A.; Vos, W.M.D. Impact of diet on human intestinal microbiota and health. Annu. Rev. Food Sci. Technol., 2014, 5, 239-262.
[69]
Sonnenburg, J.L.; Bäckhed, F. Diet-microbiota interactions as moderators of human metabolism. Nature, 2016, 535, 56-64.
[70]
Bailey, M.T.; Dowd, S.E.; Parry, N.M.; Galley, J.D.; Schauer, D.B.; Lyte, M. Stressor exposure disrupts commensal microbial populations in the intestines and leads to increased colonization by Citrobacter rodentium. Infect. Immun., 2010, 78, 1509-1519.
[71]
Bailey, M.T.; Lubach, G.R.; Coe, C.L. Prenatal stress alters bacterial colonization of the gut in infant monkeys. J. Pediatr. Gastroenterol. Nutr., 2004, 38, 414-421.
[72]
Chevalier, C.; Stojanović, O.; Colin, D.J.; Suarezzamorano, N.; Tarallo, V.; Veyratdurebex, C.; Rigo, D.; Fabbiano, S.; Stevanović, A.; Hagemann, S. Gut microbiota orchestrates energy homeostasis during cold. Cell, 2015, 163, 1360-1374.
[73]
Maurice, C.F.; Haiser, H.J.; Turnbaugh, P.J. Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell, 2013, 152, 39-50.
[74]
Lozupone, C.A.; Stombaugh, J.I.; Gordon, J.I.; Jansson, J.K.; Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature, 2012, 489, 220-230.
[75]
Linden, S.K.; Sutton, P.; Karlsson, N.G.; Korolik, V.; Mcguckin, M.A. Mucins in the mucosal barrier to infection. Mucosal Immunol., 2008, 1, 183-197.
[76]
Levy, G.N.; Aminoff, D. Purification and properties of alpha-N-acetylgalactosaminidase from Clostridium perfringens. J. Biol. Chem., 1980, 255, 11737-11742.
[77]
Prizont, R. Degradation of intestinal glycoproteins by pathogenic Shigella flexneri. Infect. Immun., 1982, 36, 615-620.
[78]
Slomiany, B.L.; Murty, V.L.; Piotrowski, J.; Liau, Y.H.; Sundaram, P.; Slomiany, A. Glycosulfatase activity of Helicobacter pylori toward gastric mucin. Biochem. Biophys. Res. Commun., 1992, 183, 506-513.
[79]
Norin, K.E.; Gustafsson, B.E.; Lindblad, B.S.; Midtvedt, T. The Establishment of some microflora associated biochemical characteristics in feces from children during the first years of life. Acta Paediatr. Scand., 1985, 74, 207-212.
[80]
Midtvedt, A.C.; Carlstedt-Duke, B.; Midtvedt, T. Establishment of a mucin-degrading intestinal microflora during the first two years of human life. J. Pediatr. Gastroenterol. Nutr., 1994, 18, 321-326.
[81]
Martens, E.C.; Chiang, H.C.; Gordon, J.I. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe, 2008, 4, 447-457.
[82]
Salyers, A.A.; Vercellotti, J.R.; West, S.E.; Wilkins, T.D. Fermentation of mucin and plant polysaccharides by strains of Bacteroides from the human colon. Appl. Environ. Microbiol., 1977, 33, 319-322.
[83]
Martens, E.C.; Lowe, E.C.; Chiang, H.; Pudlo, N.A.; Wu, M.; Mcnulty, N.P.; Abbott, D.W.; Henrissat, B.; Gilbert, H.J.; Bolam, D.N. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol., 2011, 9, e1001221.
[84]
Marcobal, A.; Barboza, M.; Sonnenburg, E.D.; Pudlo, N.; Martens, E.C.; Desai, P.; Lebrilla, C.B.; Weimer, B.C.; Mills, D.A.; German, J.B.; Sonnenburg, J.L. Bacteroides in the infant gut consume milk oligosaccharides via mucus-utilization pathways. Cell Host Microbe, 2011, 10, 507-514.
[85]
Nakayamaimaohji, H.; Ichimura, M.; Iwasa, T.; Okada, N.; Ohnishi, Y.; Kuwahara, T. Characterization of a gene cluster for sialoglycoconjugate utilization in Bacteroides fragilis. J. Med. Invest., 2012, 59, 79-94.
[86]
Png, C.W.; Lindén, S.K.; Gilshenan, K.S.; Zoetendal, E.G.; Mcsweeney, C.S.; Sly, L.I.; Mcguckin, M.A.; Florin, T.H. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am. J. Gastroenterol., 2010, 105, 2420-2428.
[87]
Hoskins, L.C.; Agustines, M.; Mckee, W.B.; Boulding, E.T.; Kriaris, M.; Niedermeyer, G. Mucin degradation in human colon ecosystems. Isolation and properties of fecal strains that degrade ABH blood group antigens and oligosaccharides from mucin glycoproteins. J. Clin. Invest., 1985, 75, 944-953.
[88]
Hoskins, L.C.; Boulding, E.T.; Gerken, T.A.; Harouny, V.R.; Kriaris, M.S. Mucin glycoprotein degradation by mucin oligosaccharide-degrading strains of human faecal bacteria. characterisation of saccharide cleavage products and their potential role in nutritional support of larger faecal bacterial populations. Microb. Ecol. Health Dis., 1992, 5, 193-207.
[89]
Corfield, A.P.; Wagner, S.A.; Clamp, J.R.; Kriaris, M.S.; Hoskins, L.C. Mucin degradation in the human colon: Production of sialidase, sialate O-acetylesterase, N-acetylneuraminate lyase, arylesterase, and glycosulfatase activities by strains of fecal bacteria. Infect. Immun., 1992, 60, 3971-3978.
[90]
Crost, E.H.; Tailford, L.E.; Le, G.G.; Fons, M.; Henrissat, B.; Juge, N. Utilisation of mucin glycans by the human gut symbiont Ruminococcus gnavus is strain-dependent. PLoS One, 2013, 8, e76341.
[91]
Derrien, M.; Vaughan, E.E.; Plugge, C.M.; de Vos, W.M. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int. J. Syst. Evol. Microbiol., 2004, 54, 1469-1476.
[92]
Collado, M.C.; Derrien, M.; Isolauri, E.; Vos, W.M.D.; Salminen, S. Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly. Appl. Environ. Microbiol., 2007, 73, 7767-7770.
[93]
Derrien, M.; Collado, M.C.; Benamor, K.; Salminen, S.; Vos, W.M.D. The mucin degrader akkermansia muciniphila is an abundant resident of the human intestinal tract. Appl. Environ. Microbiol., 2008, 74, 1646-1648.
[94]
Kanengoni, A.T.; Chimonyo, M.; Tasara, T.; Cormican, P.; Chapwanya, A.; Ndimba, B.K.; Dzama, K. A comparison of faecal microbial populations of South African Windsnyer-type indigenous pigs (SAWIPs) and Large White × Landrace (LW × LR) crosses fed diets containing ensiled maize cobs. FEMS Microbiol. Lett., 2015, 362(13), fnv100.
[95]
Rodriguez, C.; Taminiau, B.; Brévers, B.; Avesani, V.; Broeck, J.V.; Leroux, A.; Gallot, M.; Bruwier, A.; Amory, H.; Delmée, M. Faecal microbiota characterisation of horses using 16 rdna barcoded pyrosequencing, and carriage rate of clostridium difficile at hospital admission. BMC Microbiol., 2015, 15, 181.
[96]
Costa, M.C.; Stämpfli, H.R.; Allen‐Vercoe, E.; Weese, J.S. Development of the faecal microbiota in foals. Equine Vet. J., 2016, 48, 681-688.
[97]
Bo, Z.; Han, S.; Ping, W.; Wen, B.; Jian, W.; Wei, G.; Yu, Z.; Dan, D.; Fu, X.; Kong, F. The bacterial communities associated with fecal types and body weight of rex rabbits. Sci. Rep., 2015, 5, 9342.
[98]
Derrien, M. Mucin utilisation and host interactions of the novel
intestinal microbe Akkermansia muciniphila. Wur Wageningen Ur.,
2007, PhD. thesis Wageningen University, Wageningen, The Netherlands,
with summary in Dutch and French..
[99]
Remely, M.; Tesar, I.; Hippe, B.; Gnauer, S.; Rust, P.; Haslberger, A.G. Gut microbiota composition correlates with changes in body fat content due to weight loss. Benef. Microbes, 2015, 6, 431-439.
[100]
Escobar, J.S.; Klotz, B.; Valdes, B.E.; Agudelo, G.M. The gut microbiota of Colombians differs from that of Americans, Europeans and Asians. BMC Microbiol., 2014, 14, 1-14.
[101]
Everard, A.; Belzer, C.; Geurts, L.; Ouwerkerk, J.P.; Druart, C.; Bindels, L.B.; Guiot, Y.; Derrien, M.; Muccioli, G.G.; Delzenne, N.M. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. USA, 2013, 110, 9066-9071.
[102]
Hoskins, L.C.; Boulding, E.T. Mucin degradation in human colon ecosystems: Evidence for the existence and role of bacterial subpopulations producing glycosidase as extracellular enzymes. J. Clin. Invest., 1981, 67, 163-172.
[103]
Lombard, V.; Ramulu, H.G.; Drula, E.; Coutinho, P.M.; Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res., 2014, 42, 490-495.
[104]
Tailford, L.E.; Crost, E.H.; Devon, K.; Nathalie, J. Mucin glycan foraging in the human gut microbiome. Front. Genet., 2015, 6, 81.
[105]
Selye, H. A syndrome produced by diverse nocuous agents. Nature, 1936, 138, 32.
[106]
Söderholm, J.D.; Perdue, M.H. II. Stress and intestinal barrier function. Am. J. Physiol. Gastrointest. Liver Physiol., 2001, 280, G7-G13.
[107]
Nakade, Y.; Fukuda, H.; Iwa, M.; Tsukamoto, K.; Yanagi, H.; Yamamura, T.; Mantyh, C.; Pappas, T.N.; Takahashi, T. Restraint stress stimulates colonic motility via central corticotropin-releasing factor and peripheral 5-HT 3 receptors in conscious rats. Am. J. Physiol. Gastrointest. Liver Physiol., 2007, 292, G1037-G1044.
[108]
Konturek, S.J.; Brzozowski, T.; Konturek, P.C.; Zwirska‐Korczala, K.; Reiter, R.J. Day/night differences in stress‐induced gastric lesions in rats with an intact pineal gland or after pinealectomy. J. Pineal Res., 2008, 44, 408-415.
[109]
Lyte, M.; Vulchanova, L.; Brown, D.R. Stress at the intestinal surface: catecholamines and mucosa–bacteria interactions. Cell Tissue Res., 2011, 343, 23-32.
[110]
Bailey, M.T.; Coe, C.L. Maternal separation disrupts the integrity of the intestinal microflora in infant rhesus monkeys. Dev. Psychobiol., 1999, 35, 146-155.
[111]
Knowles, S.R.; Nelson, E.A.; Palombo, E.A. Investigating the role of perceived stress on bacterial flora activity and salivary cortisol secretion: A possible mechanism underlying susceptibility to illness. Biol. Psychol., 2008, 77, 132-137.
[112]
Lizko, N.N. Stress and intestinal microflora. Mol. Nutr. Food Res., 1987, 31, 443-447.
[113]
Lenz, H.J.; Drüge, G. Neurohumoral pathways mediating stress-induced inhibition of gastric acid secretion in rats. Gastroenterology, 1990, 98, 1490-1492.
[114]
Lenz, H.J. Neurohumoral pathways mediating changes in rat gastrointestinal transit. Gastroenterology, 1989, 97, 216-218.
[115]
Lenz, H.J. Regulation of duodenal bicarbonate secretion during stress by corticotropin-releasing factor and beta-endorphin. Proc. Natl. Acad. Sci. USA, 1989, 86, 1417-1420.
[116]
Lutgendorff, F.; Akkermans, L.M.; Söderholm, J.D. The role of microbiota and probiotics in stress-induced gastro-intestinal damage. Curr. Mol. Med., 2008, 8, 282-298.
[117]
Clarke, G.; Stilling, R.M.; Kennedy, P.J.; Stanton, C.; Cryan, J.F.; Dinan, T.G. Minireview: Gut microbiota: The neglected endocrine organ. Mol. Endocrinol., 2014, 28, 1221-1238.
[118]
Pigrau, M.; Rodiño‐Janeiro, B.; Casado‐Bedmar, M.; Lobo, B.; Vicario, M.; Santos, J.; Alonso‐Cotoner, C. The joint power of sex and stress to modulate brain–gut–microbiota axis and intestinal barrier homeostasis: implications for irritable bowel syndrome. Neurogastroenterol. Motil., 2016, 28, 463-486.
[119]
Dinan, T.G.; Cryan, J.F. Regulation of the stress response by the gut microbiota: implications for psychoneuroendocrinology. Psychoneuroendocrinology, 2012, 37, 1369-1378.
[120]
Taché, Y.; Bonaz, B. Corticotropin-releasing factor receptors and stress-related alterations of gut motor function. J. Clin. Invest., 2007, 117, 33-40.
[121]
Sudo, N.; Chida, Y.; Aiba, Y.; Sonoda, J.; Oyama, N.; Yu, X.N.; Kubo, C.; Koga, Y. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J. Physiol., 2010, 558, 263-275.
[122]
Clarke, G.; Grenham, S.; Scully, P.; Fitzgerald, P.; Moloney, R.D.; Shanahan, F.; Dinan, T.G.; Cryan, J.F. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol. Psychiatry, 2013, 18, 666-673.
[123]
Castagliuolo, I.; Lamount, J.T.; Qiu, B.; Fleming, S.M.; Bhaskar, K.R.; Nikulasson, S.T.; Kornetsky, C.; Pothoulakis, C. Acute stress causes mucin release from rat colon: Role of corticotropin releasing factor and mast cells. Am. J. Physiol., 1996, 271, 884-892.
[124]
O’Malley, D.; Julio-pieper, M.; Gibney, S.M.; Dinan, T.G.; Cryan, J.F. Distinct alterations in colonic morphology and physiology in two rat models of enhanced stress-induced anxiety and depression-like behaviour. Stress, 2010, 13, 114-122.
[125]
Söderholm, J.D.; Yang, P.C.; Ceponis, P.; Vohra, A.; Riddell, R.; Sherman, P.M.; Perdue, M.H. Chronic stress induces mast cell-dependent bacterial adherence and initiates mucosal inflammation in rat intestine. Gastroenterology, 2002, 123, 1099.
[126]
Pfeiffer, C.J.; Qiu, B.; Lam, S.K. Reduction of colonic mucus by repeated short-term stress enhances experimental colitis in rats. J. Physiol. Paris, 2001, 95, 81-87.
[127]
Shigeshiro, M.; Tanabe, S.; Suzuki, T. Repeated exposure to water immersion stress reduces the Muc2 gene level in the rat colon via two distinct mechanisms. Brain Behav. Immun., 2012, 26, 1061-1065.