[1]
Davila, A.M.; Blachier, F.; Gotteland, M.; Andriamihaja, M.; Benetti, P.H.; Sanz, Y.; Tome, D. Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host. Pharmacol. Res., 2013, 68, 95-107.
[2]
Bishu, S. Sensing of nutrients and microbes in the gut. Curr. Opin. Gastroenterol., 2016, 32, 86-95.
[3]
Hughes, R.; Magee, E.A.; Bingham, S. Protein degradation in the large intestine: Relevance to colorectal cancer. Curr. Issues Intest. Microbiol., 2000, 1, 51-58.
[4]
Wikoff, W.R.; Anfora, A.T.; Liu, J.; Schultz, P.G.; Lesley, S.A.; Peters, E.C.; Siuzdak, G. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl. Acad. Sci. USA, 2009, 106, 3698-3703.
[5]
Fan, P.; Li, L.; Rezaei, A.; Eslamfam, S.; Che, D.; Ma, X. Metabolites of dietary protein and peptides by intestinal microbes and their impacts on gut. Curr. Protein Pept. Sci., 2015, 16, 646-654.
[6]
Shanahan, M.T.; Carroll, I.M.; Gulati, A.S. Critical design aspects involved in the study of Paneth cells and the intestinal microbiota. Gut Microbes, 2014, 5, 208-214.
[7]
Fan, P.; Liu, P.; Song, P.; Chen, X.; Ma, X. Moderate dietary protein restriction alters the composition of gut microbiota and improves ileal barrier function in adult pig model. Sci. Rep., 2017, 7, 43412.
[8]
Macfarlane, G.T.; Allison, C.; Gibson, S.A.; Cummings, J.H. Contribution of the microflora to proteolysis in the human large intestine. J. Appl. Bacteriol., 1988, 64, 37-46.
[9]
He, L.; Han, M.; Qiao, S.; He, P.; Li, D.; Li, N.; Ma, X. Soybean antigen proteins and their intestinal sensitization activities. Curr. Protein Pept. Sci., 2015, 16, 613-621.
[10]
Libao-Mercado, A.J.; Zhu, C.L.; Cant, J.P.; Lapierre, H.; Thibault, J.N.; Seve, B.; Fuller, M.F.; de Lange, C.F. Dietary and endogenous amino acids are the main contributors to microbial protein in the upper gut of normally nourished pigs. J. Nutr., 2009, 139, 1088-1094.
[11]
Laparra, J.M.; Sanz, Y. Interactions of gut microbiota with functional food components and nutraceuticals. Pharmacol. Res., 2010, 61, 219-225.
[12]
Cani, P.D.; Everard, A.; Duparc, T. Gut microbiota, enteroendocrine functions and metabolism. Curr. Opin. Pharmacol., 2013, 13, 935-940.
[13]
Metges, C.C. Contribution of microbial amino acids to amino acid homeostasis of the host. J. Nutr., 2000, 130, 1857S-1864S.
[14]
Torrallardona, D.; Harris, C.I.; Fuller, M.F. Microbial amino acid synthesis and utilization in rats: The role of coprophagy. Br. J. Nutr., 1996, 76, 701-709.
[15]
Grohmann, U.; Bronte, V. Control of immune response by amino acid metabolism. Immunol. Rev., 2010, 236, 243-264.
[16]
Stoll, B.; Henry, J.; Reeds, P.J.; Yu, H.; Jahoor, F.; Burrin, D.G. Catabolism dominates the first-pass intestinal metabolism of dietary essential amino acids in milk protein-fed piglets. J. Nutr., 1998, 128, 606-614.
[17]
Pridmore, R.D.; Berger, B.; Desiere, F.; Vilanova, D.; Barretto, C.; Pittet, A.C.; Zwahlen, M.C.; Rouvet, M.; Altermann, E.; Barrangou, R.; Mollet, B.; Mercenier, A.; Klaenhammer, T.; Arigoni, F.; Schell, M.A. The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc. Natl. Acad. Sci. USA, 2004, 101, 2512-2517.
[18]
Riepe, S.P.; Goldstein, J.; Alpers, D.H. Effect of secreted Bacteroides proteases on human intestinal brush border hydrolases. J. Clin. Invest., 1980, 66, 314-322.
[19]
Baglieri, A.; Mahe, S.; Zidi, S.; Huneau, J.F.; Thuillier, F.; Marteau, P.; Tome, D. Gastro-jejunal digestion of soya-bean-milk protein in humans. Br. J. Nutr., 1994, 72, 519-532.
[20]
Gaudichon, C.; Mahe, S.; Benamouzig, R.; Luengo, C.; Fouillet, H.; Dare, S.; Van Oycke, M.; Ferriere, F.; Rautureau, J.; Tome, D. Net postprandial utilization of [15N]-labeled milk protein nitrogen is influenced by diet composition in humans. J. Nutr., 1999, 129, 890-895.
[21]
Bos, C.; Juillet, B.; Fouillet, H.; Turlan, L.; Dare, S.; Luengo, C.; N’Tounda, R.; Benamouzig, R.; Gausseres, N.; Tome, D.; Gaudichon, C. Postprandial metabolic utilization of wheat protein in humans. Am. J. Clin. Nutr., 2005, 81, 87-94.
[22]
Evenepoel, P.; Claus, D.; Geypens, B.; Hiele, M.; Geboes, K.; Rutgeerts, P.; Ghoos, Y. Amount and fate of egg protein escaping assimilation in the small intestine of humans. Am. J. Physiol., 1999, 277, G935-G943.
[23]
Blachier, F.; Mariotti, F.; Huneau, J.F.; Tome, D. Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences. Amino Acids, 2007, 33, 547-562.
[24]
Barker, H.A. Amino acid degradation by anaerobic bacteria. Annu. Rev. Biochem., 1981, 50, 23-40.
[25]
Macfarlane, S.; Macfarlane, G.T. Regulation of short-chain fatty acid production. Proc. Nutr. Soc., 2003, 62, 67-72.
[26]
Maslowski, K.M.; Vieira, A.T.; Ng, A.; Kranich, J.; Sierro, F.; Yu, D.; Schilter, H.C.; Rolph, M.S.; Mackay, F.; Artis, D.; Xavier, R.J.; Teixeira, M.M.; Mackay, C.R. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature, 2009, 461, 1282-1286.
[27]
den Besten, G.; van Eunen, K.; Groen, A.K.; Venema, K.; Reijngoud, D.J.; Bakker, B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res., 2013, 54, 2325-2340.
[28]
Tolhurst, G.; Heffron, H.; Lam, Y.S.; Parker, H.E.; Habib, A.M.; Diakogiannaki, E.; Cameron, J.; Grosse, J.; Reimann, F.; Gribble, F.M. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes, 2012, 61, 364-371.
[29]
Chen, J.; Li, Y.; Tian, Y.; Huang, C.; Li, D.; Zhong, Q.; Ma, X. Interaction between microbes and host intestinal health: Modulation by dietary nutrients and gut-brain-endocrine-immune axis. Curr. Protein Pept. Sci., 2015, 16, 592-603.
[30]
Yano, J.M.; Yu, K.; Donaldson, G.P.; Shastri, G.G.; Ann, P.; Ma, L.; Nagler, C.R.; Ismagilov, R.F.; Mazmanian, S.K.; Hsiao, E.Y. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell, 2015, 161, 264-276.
[31]
Hamer, H.M.; Jonkers, D.; Venema, K.; Vanhoutvin, S.; Troost, F.J.; Brummer, R.J. Review article: The role of butyrate on colonic function. Aliment. Pharmacol. Ther., 2008, 27, 104-119.
[32]
Thibault, R.; Blachier, F.; Darcy-Vrillon, B.; de Coppet, P.; Bourreille, A.; Segain, J.P. Butyrate utilization by the colonic mucosa in inflammatory bowel diseases: A transport deficiency. Inflamm. Bowel Dis., 2010, 16, 684-695.
[33]
Morrison, D.J.; Preston, T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes, 2016, 7, 189-200.
[34]
Brim, H.; Kumar, K.; Nazarian, J.; Hathout, Y.; Jafarian, A.; Lee, E.; Green, W.; Smoot, D.; Park, J.; Nouraie, M.; Ashktorab, H. SLC5A8 gene, a transporter of butyrate: A gut flora metabolite, is frequently methylated in African American colon adenomas. PLoS One, 2011, 6, e20216.
[35]
Ganapathy, V.; Gopal, E.; Miyauchi, S.; Prasad, P.D. Biological functions of SLC5A8, a candidate tumour suppressor. Biochem. Soc. Trans., 2005, 33, 237-240.
[36]
Liu, H.; Wang, J.; He, T.; Becker, S.; Zhang, G.; Li, D.; Ma, X. Butyrate: A double-edged sword for health? Adv. Nutr., 2018, 9(1), 21-29.
[37]
Sunkara, L.T.; Achanta, M.; Schreiber, N.B.; Bommineni, Y.R.; Dai, G.; Jiang, W.; Lamont, S.; Lillehoj, H.S.; Beker, A.; Teeter, R.G.; Zhang, G. Butyrate enhances disease resistance of chickens by inducing antimicrobial host defense peptide gene expression. PLoS One, 2011, 6, e27225.
[38]
Mouille, B.; Robert, V.; Blachier, F. Adaptative increase of ornithine production and decrease of ammonia metabolism in rat colonocytes after hyperproteic diet ingestion. Am. J. Physiol. Gastrointest. Liver Physiol., 2004, 287, G344-G351.
[39]
Eklou-Lawson, M.; Bernard, F.; Neveux, N.; Chaumontet, C.; Bos, C.; Davila-Gay, A.M.; Tome, D.; Cynober, L.; Blachier, F. Colonic luminal ammonia and portal blood L-glutamine and L-arginine concentrations: A possible link between colon mucosa and liver ureagenesis. Amino Acids, 2009, 37, 751-760.
[40]
Handlogten, M.E.; Hong, S.P.; Zhang, L.; Vander, A.W.; Steinbaum, M.L.; Campbell-Thompson, M.; Weiner, I.D. Expression of the ammonia transporter proteins Rh B glycoprotein and Rh C glycoprotein in the intestinal tract. Am. J. Physiol. Gastrointest. Liver Physiol., 2005, 288, G1036-G1047.
[41]
Ma, N.; Wu, Y.; Xie, F.; Du, K.; Wang, Y.; Shi, L.; Ji, L.; Liu, T.; Ma, X. Dimethyl fumarate reduces the risk of mycotoxins via improving intestinal barrier and microbiota. Oncotarget, 2017, 8, 44625-44638.
[42]
Fan, P.; Song, P.; Li, L.; Huang, C.; Chen, J.; Yang, W.; Qiao, S.; Wu, G.; Zhang, G.; Ma, X. Roles of biogenic amines in intestinal signaling. Curr. Protein Pept. Sci., 2017, 18, 532-540.
[43]
Awano, N.; Wada, M.; Mori, H.; Nakamori, S.; Takagi, H. Identification and functional analysis of Escherichia coli cysteine desulfhydrases. Appl. Environ. Microbiol., 2005, 71, 4149-4152.
[44]
Smith, E.A.; Macfarlane, G.T. Dissimilatory amino Acid metabolism in human colonic bacteria. Anaerobe, 1997, 3, 327-337.
[45]
Mouille, B.; Morel, E.; Robert, V.; Guihot-Joubrel, G.; Blachier, F. Metabolic capacity for L-citrulline synthesis from ammonia in rat isolated colonocytes. Biochim. Biophys. Acta, 1999, 1427, 401-407.
[46]
Fan, P.; Tan, Y.; Jin, K.; Lin, C.; Xia, S.; Han, B.; Zhang, F.; Wu, L.; Ma, X. Supplemental lipoic acid relieves post-weaning diarrhoea by decreasing intestinal permeability in rats. J. Anim. Physiol. Anim. Nutr. (Berl.), 2017, 101, 136-146.
[47]
Noack, J.; Dongowski, G.; Hartmann, L.; Blaut, M. The human gut bacteria Bacteroides thetaiotaomicron and Fusobacterium varium produce putrescine and spermidine in cecum of pectin-fed gnotobiotic rats. J. Nutr., 2000, 130, 1225-1231.
[48]
Nowak, A.; Libudzisz, Z. Influence of phenol, p-cresol and indole on growth and survival of intestinal lactic acid bacteria. Anaerobe, 2006, 12, 80-84.
[49]
Smith, E.A.; Macfarlane, G.T. Formation of phenolic and indolic compounds by anaerobic bacteria in the human large intestine. Microb. Ecol., 1997, 33, 180-188.
[50]
Macfarlane, G.T.; Macfarlane, S. Human colonic microbiota: Ecology, physiology and metabolic potential of intestinal bacteria. Scand. J. Gastroenterol. Suppl., 1997, 222, 3-9.
[51]
Windey, K.; De Preter, V.; Verbeke, K. Relevance of protein fermentation to gut health. Mol. Nutr. Food Res., 2012, 56, 184-196.
[52]
Hughes, R.; Kurth, M.J.; McGilligan, V.; McGlynn, H.; Rowland, I. Effect of colonic bacterial metabolites on Caco-2 cell paracellular permeability in vitro. Nutr. Cancer, 2008, 60, 259-266.
[53]
Pedersen, G.; Brynskov, J.; Saermark, T. Phenol toxicity and conjugation in human colonic epithelial cells. Scand. J. Gastroenterol., 2002, 37, 74-79.
[54]
Klose, V.; Bayer, K.; Bruckbeck, R.; Schatzmayr, G.; Loibner, A.P. In vitro antagonistic activities of animal intestinal strains against swine-associated pathogens. Vet. Microbiol., 2010, 144, 515-521.
[55]
Sørensen, M.T.; Vestergaard, E.; Jensen, S.K.; Lauridsen, C.; Højsgaard, S. Performance and diarrhoea in piglets following weaning at seven weeks of age: Challenge with E. coli O 149 and effect of dietary factors. Livestock Science, 2009, 123, 314-321.
[56]
Espeche, T.M.; de Moreno, D.L.A.; Perdigon, G.; Savoy, D.G.G.; Hebert, E.M. beta-Casein hydrolysate generated by the cell envelope-associated proteinase of Lactobacillus delbrueckii ssp. Lactis CRL 581 protects against trinitrobenzene sulfonic acid-induced colitis in mice. J. Dairy Sci., 2012, 95, 1108-1118.
[57]
Farooq, S.; Hussain, I.; Mir, M.A.; Bhat, M.A.; Wani, S.A. Isolation of atypical enteropathogenic Escherichia coli and Shiga toxin 1 and 2f-producing Escherichia coli from avian species in India. Lett. Appl. Microbiol., 2009, 48, 692-697.
[58]
Peng, M.; Bitsko, E.; Biswas, D. Functional properties of peanut fractions on the growth of probiotics and foodborne bacterial pathogens. J. Food Sci., 2015, 80, M635-M641.
[59]
Lozupone, C.A.; Stombaugh, J.I.; Gordon, J.I.; Jansson, J.K.; Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature, 2012, 489, 220-230.
[60]
Tremaroli, V.; Bäckhed, F. Functional interactions between the gut microbiota and host metabolism. Nature, 2012, 489, 242-249.
[61]
Deplancke, B.; Gaskins, H.R. Microbial modulation of innate defense: Goblet cells and the intestinal mucus layer. Am. J. Clin. Nutr., 2001, 73, 1131S-1141S.
[62]
Hooper, L.V.; Littman, D.R.; Macpherson, A.J. Interactions between the microbiota and the immune system. Science, 2012, 336, 1268-1273.
[63]
Liu, H.; Zhang, J.; Zhang, S.; Yang, F.; Thacker, P.A.; Zhang, G.; Qiao, S.; Ma, X. Oral administration of Lactobacillus fermentum I5007 favors intestinal development and alters the intestinal microbiota in formula-fed piglets. J. Agric. Food Chem., 2014, 62, 860-866.
[64]
Ma, X.; He, P.; Sun, P.; Han, P. Lipoic acid: An immunomodulator that attenuates glycinin-induced anaphylactic reactions in a rat model. J. Agric. Food Chem., 2010, 58, 5086-5092.
[65]
Hu, S.; Liu, H.; Qiao, S.; He, P.; Ma, X.; Lu, W. Development of immunoaffinity chromatographic method for isolating glycinin (11S) from soybean proteins. J. Agric. Food Chem., 2013, 61, 4406-4410.
[66]
Putignani, L.; Dallapiccola, B. Foodomics as part of the host-microbiota-exposome interplay. J. Proteomics, 2016, 147, 3-20.
[67]
Pluske, J.R.; Pethick, D.W.; Hopwood, D.E.; Hampson, D.J. Nutritional influences on some major enteric bacterial diseases of pig. Nutr. Res. Rev., 2002, 15, 333-371.
[68]
Morita, T.; Kasaoka, S.; Kiriyama, S. Physiological functions of resistant proteins: Proteins and peptides regulating large bowel fermentation of indigestible polysaccharide. J. AOAC Int., 2004, 87, 792-796.
[69]
Hancock, R.E.; Haney, E.F.; Gill, E.E. The immunology of host defence peptides: beyond antimicrobial activity. Nat. Rev. Immunol., 2016, 16, 321-334.
[70]
Faith, J.J.; McNulty, N.P.; Rey, F.E.; Gordon, J.I. Predicting a human gut microbiota’s response to diet in gnotobiotic mice. Science, 2011, 333, 101-104.
[71]
Neis, E.P.; Dejong, C.H.; Rensen, S.S. The role of microbial amino acid metabolism in host metabolism. Nutrients, 2015, 7, 2930-2946.
[72]
Tilg, H.; Moschen, A.R. Food, immunity, and the microbiome. Gastroenterology, 2015, 148, 1107-1119.
[73]
Kau, A.L.; Ahern, P.P.; Griffin, N.W.; Goodman, A.L.; Gordon, J.I. Human nutrition, the gut microbiome and the immune system. Nature, 2011, 474, 327-336.
[74]
Gensollen, T.; Iyer, S.S.; Kasper, D.L.; Blumberg, R.S. How colonization by microbiota in early life shapes the immune system. Science, 2016, 352(6285), 539-544.
[75]
Zitvogel, L.; Ayyoub, M.; Routy, B.; Kroemer, G. Microbiome and anticancer immunosurveillance. Cell, 2016, 165, 276-287.
[76]
Sokol, H.; Pigneur, B.; Watterlot, L.; Lakhdari, O.; Bermudez-Humaran, L.G.; Gratadoux, J.J.; Blugeon, S.; Bridonneau, C.; Furet, J.P.; Corthier, G.; Grangette, C.; Vasquez, N.; Pochart, P.; Trugnan, G.; Thomas, G.; Blottiere, H.M.; Dore, J.; Marteau, P.; Seksik, P.; Langella, P. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl. Acad. Sci. USA, 2008, 105, 16731-16736.
[77]
Louis, P.; Hold, G.L.; Flint, H.J. The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol., 2014, 12, 661-672.
[78]
Sandrini, S.; Aldriwesh, M.; Alruways, M.; Freestone, P. Microbial endocrinology: Host-bacteria communication within the gut microbiome. J. Endocrinol., 2015, 225, R21-R34.
[79]
Jalanka, J.; Salonen, A.; Fuentes, S.; de Vos, W.M. Microbial signatures in post-infectious irritable bowel syndrome--toward patient stratification for improved diagnostics and treatment. Gut Microbes, 2015, 6, 364-369.
[80]
Bikker, P.; Dirkzwager, A.; Fledderus, J.; Trevisi, P.; le Huerou-Luron, I.; Lalles, J.P.; Awati, A. The effect of dietary protein and fermentable carbohydrates levels on growth performance and intestinal characteristics in newly weaned piglets. J. Anim. Sci., 2006, 84, 3337-3345.
[81]
Thaler, D.S. Toward a microbial Neolithic revolution in buildings. Microbiome, 2016, 4, 14.
[82]
Huang, C.; Song, P.; Fan, P.; Hou, C.; Thacker, P.; Ma, X. Dietary sodium butyrate decreases postweaning diarrhea by modulating intestinal permeability and changing the bacterial communities in weaned piglets. J. Nutr., 2015, 145, 2774-2780.
[83]
Ma, X.; Fan, P.X.; Li, L.S.; Qiao, S.Y.; Zhang, G.L.; Li, D.F. Butyrate promotes the recovering of intestinal wound healing through its positive effect on the tight junctions. J. Anim. Sci., 2012, 90(Suppl. 4), 266-268.
[84]
Han, M.; Song, P.; Huang, C.; Rezaei, A.; Farrar, S.; Brown, M.A.; Ma, X. Dietary grape seed proanthocyanidins (GSPs) improve weaned intestinal microbiota and mucosal barrier using a piglet model. Oncotarget, 2016, 7, 80313-80326.
[85]
Maruyama, N.; Maruyama, Y.; Tsuruki, T.; Okuda, E.; Yoshikawa, M.; Utsumi, S. Creation of soybean beta-conglycinin beta with strong phagocytosis-stimulating activity. Biochim. Biophys. Acta, 2003, 1648, 99-104.
[86]
Maruyama, N.; Fukuda, T.; Saka, S.; Inui, N.; Kotoh, J.; Miyagawa, M.; Hayashi, M.; Sawada, M.; Moriyama, T.; Utsumi, S. Molecular and structural analysis of electrophoretic variants of soybean seed storage proteins. Phytochemistry, 2003, 64, 701-708.
[87]
Ma, X.; He, P.; Sun, P.; Han, P. Lipoic acid: an immunomodulator that attenuates glycinin-induced anaphylactic reactions in a rat model. J. Agric. Food Chem., 2010, 58, 5086-5092.
[88]
Shen, C.L.; Chen, W.H.; Zou, S.X. In vitro and in vivo effects of hydrolysates from conglycinin on intestinal microbial community of mice after Escherichia coli infection. J. Appl. Microbiol., 2007, 102, 283-289.
[89]
Rist, V.T.; Weiss, E.; Sauer, N.; Mosenthin, R.; Eklund, M. Effect of dietary protein supply originating from soybean meal or casein on the intestinal microbiota of piglets. Anaerobe, 2014, 25, 72-79.
[90]
Ma, N.; Tian, Y.; Wu, Y.; Ma, X. Contributions of the interaction between dietary protein and gut microbiota to intestinal health. Curr. Protein Pept. Sci., 2017, 18, 795-808.
[91]
Han, P.; Ma, X.; Yin, J. The effects of lipoic acid on soybean beta-conglycinin-induced anaphylactic reactions in a rat model. Arch. Anim. Nutr., 2010, 64, 254-264.
[92]
Song, P.; Zhang, R.; Wang, X.; He, P.; Tan, L.; Ma, X. Dietary grape-seed procyanidins decreased postweaning diarrhea by modulating intestinal permeability and suppressing oxidative stress in rats. J. Agric. Food Chem., 2011, 59, 6227-6232.
[93]
Ma, X.; Sun, P.; He, P.; Han, P.; Wang, J.; Qiao, S.; Li, D. Development of monoclonal antibodies and a competitive ELISA detection method for glycinin, an allergen in soybean. Food Chem., 2010, 121, 546-551.
[94]
Weintraut, M.L.; Kim, S.; Dalloul, R.A.; Wong, E.A. Expression of small intestinal nutrient transporters in embryonic and posthatch turkeys. Poult. Sci., 2016, 95, 90-98.
[95]
Woyengo, T.A.; Weihrauch, D.; Nyachoti, C.M. Effect of dietary phytic acid on performance and nutrient uptake in the small intestine of piglets. J. Anim. Sci., 2012, 90, 543-549.