Review Article

基于基因工程的生物材料在生物医学中的应用

卷 26, 期 40, 2019

页: [7117 - 7146] 页: 30

弟呕挨: 10.2174/0929867325666180508094637

价格: $65

摘要

基于蛋白质的聚合物是新一代创新生物材料的最有希望的候选者,因为基因工程和生物技术的最新进展意味着可以以更高程度的复杂性和准确性设计和构建基于蛋白质的生物材料。此外,它们的序列(源自基于蛋白质的结构模块)可以轻松地进行修饰,以包含改善其功能和物质-宿主相互作用的生物活性基序,从而满足基本的生物学要求。这些高级多肽的生产准确性,多功能性,自组装行为,刺激反应性和生物相容性,意味着它们越来越受到生物医学应用的关注,例如细胞培养,组织工程,蛋白质纯化,表面工程和受控的药物输送。在这篇综述中讨论的生物聚合物是弹性蛋白衍生的基于蛋白质的聚合物,是生物启发和仿生材料。这篇综述还将侧重于这些遗传编码聚合物的设计,合成和表征,以及它们在受控药物和基因递送以及组织工程和再生医学中的潜在效用。

关键词: 药物输送,组织工程,弹性蛋白样重组子,纳米载体,水凝胶,刺激性反应,单体,自组装

[1]
Goldberg, M.; Langer, R.; Jia, X. Nanostructured materials for applications in drug delivery and tissue engineering. J. Biomater. Sci. Polym. Ed., 2007, 18(3), 241-268.
[http://dx.doi.org/10.1163/156856207779996931] [PMID: 17471764]
[2]
Furth, M.E.; Atala, A.; Van Dyke, M.E. Smart biomaterials design for tissue engineering and regenerative medicine. Biomaterials, 2007, 28(34), 5068-5073.
[http://dx.doi.org/10.1016/j.biomaterials.2007.07.042] [PMID: 17706763]
[3]
Vert, M. Biopolymers and artificial biopolymers in biomedical applications, an overview. In: Biorelated Polymers; Chiellini, E.; Gil, H.; Braunegg, G.; Buchert, J.; Gatenholm, P.; van der Zee, M., Eds.; Springer, 2001; pp. 63-79.
[http://dx.doi.org/10.1007/978-1-4757-3374-7_6]
[4]
Langer, R. New methods of drug delivery. Science, 1990, 249(4976), 1527-1533.
[http://dx.doi.org/10.1126/science.2218494] [PMID: 2218494]
[5]
Allen, T.M.; Cullis, P.R. Drug delivery systems: entering the mainstream. Science, 2004, 303(5665), 1818-1822.
[http://dx.doi.org/10.1126/science.1095833] [PMID: 15031496]
[6]
Lattin, J.R.; Belnap, D.M.; Pitt, W.G. Formation of eLiposomes as a drug delivery vehicle. Colloids Surf. B Biointerfaces, 2012, 89, 93-100.
[http://dx.doi.org/10.1016/j.colsurfb.2011.08.030] [PMID: 21962853]
[7]
Sarikaya, M.; Tamerler, C.; Jen, A.K-Y.; Schulten, K.; Baneyx, F. Molecular biomimetics: nanotechnology through biology. Nat. Mater., 2003, 2(9), 577-585.
[http://dx.doi.org/10.1038/nmat964] [PMID: 12951599]
[8]
Langer, R.; Tirrell, D.A. Designing materials for biology and medicine. Nature, 2004, 428(6982), 487-492.
[http://dx.doi.org/10.1038/nature02388] [PMID: 15057821]
[9]
Zorlutuna, P.; Vrana, N.E.; Khademhosseini, A. The expanding world of tissue engineering: the building blocks and new applications of tissue engineered constructs. IEEE Rev. Biomed. Eng., 2013, 6, 47-62.
[http://dx.doi.org/10.1109/RBME.2012.2233468] [PMID: 23268388]
[10]
Girotti, A.; Orbanic, D.; Ibáñez-Fonseca, A.; Gonzalez-Obeso, C.; Rodríguez-Cabello, J.C. Recombinant technology in the development of materials and systems for soft-tissue repair. Adv. Healthc. Mater., 2015, 4(16), 2423-2455.
[http://dx.doi.org/10.1002/adhm.201500152] [PMID: 26172311]
[11]
Floss, D.M.; Schallau, K.; Rose-John, S.; Conrad, U.; Scheller, J. Elastin-like polypeptides revolutionize recombinant protein expression and their biomedical application. Trends Biotechnol., 2010, 28(1), 37-45.
[http://dx.doi.org/10.1016/j.tibtech.2009.10.004] [PMID: 19897265]
[12]
Girotti, A.; Fernández-Colino, A.; López, I.M.; Rodríguez-Cabello, J.C.; Arias, F.J. Elastin-like recombinamers: biosynthetic strategies and biotechnological applications. Biotechnol. J., 2011, 6(10), 1174-1186.
[http://dx.doi.org/10.1002/biot.201100116] [PMID: 21932251]
[13]
Arias, F.J.; Santos, M.; Ibáñez-Fonseca, A.; Piña, M.J.; Serrano, S. Elastin-like recombinamers as smart drug delivery systems. Curr. Drug Targets, 2018, 19(4), 360-379.
[http://dx.doi.org/10.2174/1389450117666160201114617] [PMID: 26844559]
[14]
Meyer, D.E.; Chilkoti, A. Quantification of the effects of chain length and concentration on the thermal behavior of elastin-like polypeptides. Biomacromolecules, 2004, 5(3), 846-851.
[http://dx.doi.org/10.1021/bm034215n] [PMID: 15132671]
[15]
González Valdivieso, J.; Girotti, A.; Muñoz, R.; Rodríguez-Cabello, J.C.; Arias Vallejo, F.J. Self-assembling ELR-based nanoparticles as smart drug-delivery systems modulating celular growth via Akt. Biomacromolecules, 2019, 20(5), 1996-2007.
[http://dx.doi.org/10.1021/acs.biomac.9b00206] [PMID: 30946582]
[16]
Rodríguez-Cabello, J.C.; Arias, F.J.; Rodrigo, M.A.; Girotti, A. Elastin-like polypeptides in drug delivery. Adv. Drug Deliv. Rev., 2016, 97, 85-100.
[http://dx.doi.org/10.1016/j.addr.2015.12.007] [PMID: 26705126]
[17]
MacEwan, S.R.; Chilkoti, A. Applications of elastin-like polypeptides in drug delivery. J. Control. Release, 2014, 190, 314-330.
[http://dx.doi.org/10.1016/j.jconrel.2014.06.028] [PMID: 24979207]
[18]
Arias, F.J.; Santos, M.; Fernández-Colino, A.; Pinedo, G.; Girotti, A. Recent contributions of elastin-like recombinamers to biomedicine and nanotechnology. Curr. Top. Med. Chem., 2014, 14(6), 819-836.
[http://dx.doi.org/10.2174/1568026614666140118223412] [PMID: 24444149]
[19]
Lyons, D.F.; Le, V.; Kramer, W.H.; Bidwell, G.L., III; Lewis, E.A.; Raucher, D.; Correia, J.J. Effect of basic cell-penetrating peptides on the structural, thermodynamic, and hydrodynamic properties of a novel drug delivery vector, ELP [V5G3A2-150]. Biochemistry, 2014, 53(6), 1081-1091. [V5G3A2-150]
[http://dx.doi.org/10.1021/bi400955w] [PMID: 24450599]
[20]
Kowalczyk, T.; Hnatuszko-Konka, K.; Gerszberg, A.; Kononowicz, A.K. Elastin-like polypeptides as a promising family of genetically-engineered protein based polymers. World J. Microbiol. Biotechnol., 2014, 30(8), 2141-2152.
[http://dx.doi.org/10.1007/s11274-014-1649-5] [PMID: 24699809]
[21]
MacEwan, S.R.; Chilkoti, A. Controlled apoptosis by a thermally toggled nanoscale amplifier of cellular uptake. Nano Lett., 2014, 14(4), 2058-2064.
[http://dx.doi.org/10.1021/nl5002313] [PMID: 24611762]
[22]
Jiang, T.; Zhang, Z.; Zhang, Y.; Lv, H.; Zhou, J.; Li, C.; Hou, L.; Zhang, Q. Dual-functional liposomes based on pH-responsive cell-penetrating peptide and hyaluronic acid for tumor-targeted anticancer drug delivery. Biomaterials, 2012, 33(36), 9246-9258.
[http://dx.doi.org/10.1016/j.biomaterials.2012.09.027] [PMID: 23031530]
[23]
Koren, E.; Torchilin, V.P. Cell-penetrating peptides: breaking through to the other side. Trends Mol. Med., 2012, 18(7), 385-393.
[http://dx.doi.org/10.1016/j.molmed.2012.04.012] [PMID: 22682515]
[24]
Milletti, F. Cell-penetrating peptides: classes, origin, and current landscape. Drug Discov. Today, 2012, 17(15-16), 850-860.
[http://dx.doi.org/10.1016/j.drudis.2012.03.002] [PMID: 22465171]
[25]
Dreher, M.R.; Raucher, D.; Balu, N.; Michael Colvin, O.; Ludeman, S.M.; Chilkoti, A. Evaluation of an elastin-like polypeptide-doxorubicin conjugate for cancer therapy. J. Control. Release, 2003, 91(1-2), 31-43.
[http://dx.doi.org/10.1016/S0168-3659(03)00216-5] [PMID: 12932635]
[26]
Saxena, R.; Nanjan, M.J. Elastin-like polypeptides and their applications in anticancer drug delivery systems: A review. Drug Deliv., 2015, 22(2), 156-167.
[http://dx.doi.org/10.3109/10717544.2013.853210] [PMID: 24215207]
[27]
Walker, L.; Perkins, E.; Kratz, F.; Raucher, D. Cell penetrating peptides fused to a thermally targeted biopolymer drug carrier improve the delivery and antitumor efficacy of an acid-sensitive doxorubicin derivative. Int. J. Pharm., 2012, 436(1-2), 825-832.
[http://dx.doi.org/10.1016/j.ijpharm.2012.07.043] [PMID: 22850291]
[28]
Moktan, S.; Perkins, E.; Kratz, F.; Raucher, D. Thermal targeting of an acid-sensitive doxorubicin conjugate of elastin-like polypeptide enhances the therapeutic efficacy compared with the parent compound in vivo. Mol. Cancer Ther., 2012, 11(7), 1547-1556.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0998] [PMID: 22532601]
[29]
Moktan, S.; Ryppa, C.; Kratz, F.; Raucher, D. A thermally responsive biopolymer conjugated to an acid-sensitive derivative of paclitaxel stabilizes microtubules, arrests cell cycle, and induces apoptosis. Invest. New Drugs, 2012, 30(1), 236-248.
[http://dx.doi.org/10.1007/s10637-010-9560-x] [PMID: 20938714]
[30]
Sarangthem, V.; Cho, E.A.; Bae, S.M.; Singh, T.D.; Kim, S.J.; Kim, S.; Jeon, W.B.; Lee, B.H.; Park, R.W. Construction and application of elastin like polypeptide containing IL-4 receptor targeting peptide. PLoS One, 2013, 8(12)e81891
[http://dx.doi.org/10.1371/journal.pone.0081891] [PMID: 24339977]
[31]
Hu, J.; Wang, G.; Liu, X.; Gao, W. Enhancing Pharmacokinetics, Tumor Accumulation, and Antitumor Efficacy by Elastin-Like Polypeptide Fusion of Interferon Alpha. Adv. Mater., 2015, 27(45), 7320-7324.
[http://dx.doi.org/10.1002/adma.201503440] [PMID: 26463662]
[32]
Moktan, S.; Raucher, D. Anticancer activity of proapoptotic peptides is highly improved by thermal targeting using elastin-like polypeptides. Int. J. Pept. Res. Ther., 2012, 18(3), 227-237.
[http://dx.doi.org/10.1007/s10989-012-9295-y] [PMID: 23105921]
[33]
Raucher, D.; Ryu, J.S. Cell-penetrating peptides: strategies for anticancer treatment. Trends Mol. Med., 2015, 21(9), 560-570.
[http://dx.doi.org/10.1016/j.molmed.2015.06.005] [PMID: 26186888]
[34]
Ryu, J.S.; Raucher, D. Anti-tumor efficacy of a therapeutic peptide based on thermo-responsive elastin-like polypeptide in combination with gemcitabine. Cancer Lett., 2014, 348(1-2), 177-184.
[http://dx.doi.org/10.1016/j.canlet.2014.03.021] [PMID: 24680816]
[35]
Walker, L.R.; Ryu, J.S.; Perkins, E.; McNally, L.R.; Raucher, D. Fusion of cell-penetrating peptides to thermally responsive biopolymer improves tumor accumulation of p21 peptide in a mouse model of pancreatic cancer. Drug Des. Devel. Ther., 2014, 8, 1649-1658.
[http://dx.doi.org/10.2147/DDDT.S60451] [PMID: 25336913]
[36]
Mikecin, A.M.; Walker, L.R.; Kuna, M.; Raucher, D. Thermally targeted p21 peptide enhances bortezomib cytotoxicity in androgen-independent prostate cancer cell lines. Anticancer Drugs, 2014, 25(2), 189-199.
[http://dx.doi.org/10.1097/CAD.0000000000000036] [PMID: 24113592]
[37]
Bidwell, G.L., III; Perkins, E.; Raucher, D. A thermally targeted c-Myc inhibitory polypeptide inhibits breast tumor growth. Cancer Lett., 2012, 319(2), 136-143.
[http://dx.doi.org/10.1016/j.canlet.2011.12.042] [PMID: 22261328]
[38]
Chade, A.R.; Tullos, N.A.; Harvey, T.W.; Mahdi, F.; Bidwell, G.L. III renal therapeutic angiogenesis using a bioengineered polymer-stabilized vascular endothelial growth factor construct. J. Am. Soc. Nephrol., 2016, 27(6), 1741-1752.
[http://dx.doi.org/10.1681/ASN.2015040346] [PMID: 26541349]
[39]
Verhoef, J.J.; Anchordoquy, T.J. Questioning the use of PEGylation for drug delivery. Drug Deliv. Transl. Res., 2013, 3(6), 499-503.
[http://dx.doi.org/10.1007/s13346-013-0176-5] [PMID: 24932437]
[40]
Nouri, F.S.; Wang, X.; Chen, X.; Hatefi, A. Reducing the visibility of the vector/DNA nanocomplexes to the immune system by elastin-like peptides. Pharm. Res., 2015, 32(9), 3018-3028.
[http://dx.doi.org/10.1007/s11095-015-1683-5] [PMID: 25823650]
[41]
Meikle, S.T.; Piñeiro, Y.; Bañobre López, M.; Rivas, J.; Santin, M. Surface functionalization superparamagnetic nanoparticles conjugated with thermoresponsive poly(epsilon-lysine) dendrons tethered with carboxybetaine for the mild hyperthermia-controlled delivery of VEGF. Acta Biomater., 2016, 40, 235-242.
[http://dx.doi.org/10.1016/j.actbio.2016.04.043] [PMID: 27134016]
[42]
Yatvin, M.B.; Kreutz, W.; Horwitz, B.A.; Shinitzky, M. pH-sensitive liposomes: possible clinical implications. Science, 1980, 210(4475), 1253-1255.
[http://dx.doi.org/10.1126/science.7434025] [PMID: 7434025]
[43]
Callahan, D.J.; Liu, W.; Li, X.; Dreher, M.R.; Hassouneh, W.; Kim, M.; Marszalek, P.; Chilkoti, A. Triple stimulus-responsive polypeptide nanoparticles that enhance intratumoral spatial distribution. Nano Lett., 2012, 12(4), 2165-2170.
[http://dx.doi.org/10.1021/nl300630c] [PMID: 22417133]
[44]
Han, W.; MacEwan, S.R.; Chilkoti, A.; López, G.P. Bio-inspired synthesis of hybrid silica nanoparticles templated from elastin-like polypeptide micelles. Nanoscale, 2015, 7(28), 12038-12044.
[http://dx.doi.org/10.1039/C5NR01407G] [PMID: 26114664]
[45]
Smits, F.C.; Castelijns, W.W.; van Hest, J.C. Crosslinked ELP-based nanoparticles, using the strain promoted azide–alkyne cycloaddition. Eur. Polym. J., 2015, 62, 386-393.
[http://dx.doi.org/10.1016/j.eurpolymj.2014.07.004]
[46]
Smits, F.C.; Buddingh, B.C.; van Eldijk, M.B.; van Hest, J.C. Elastin-like polypeptide based nanoparticles: design rationale toward nanomedicine. Macromol. Biosci., 2015, 15(1), 36-51.
[http://dx.doi.org/10.1002/mabi.201400419] [PMID: 25407963]
[47]
Wang, W.; Despanie, J.; Shi, P.; Edman-Woolcott, M.C.; Lin, Y-A.; Cui, H.; Heur, J.M.; Fini, M.E.; Hamm-Alvarez, S.F.; MacKay, J.A. Lacritin-mediated regeneration of the corneal epithelia by protein polymer nanoparticles. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(46), 8131-8141.
[http://dx.doi.org/10.1039/C4TB00979G] [PMID: 25530855]
[48]
Shi, P.; Aluri, S.; Lin, Y-A.; Shah, M.; Edman, M.; Dhandhukia, J.; Cui, H.; MacKay, J.A. Elastin-based protein polymer nanoparticles carrying drug at both corona and core suppress tumor growth in vivo. J. Control. Release, 2013, 171(3), 330-338.
[http://dx.doi.org/10.1016/j.jconrel.2013.05.013] [PMID: 23714121]
[49]
Nawroth, J.F.; McDaniel, J.R.; Chilkoti, A.; Jordan, R.; Luxenhofer, R. Maleimide-functionalized poly(2-oxazoline)s and their conjugation to elastin-like polypeptides. Macromol. Biosci., 2016, 16(3), 322-333.
[http://dx.doi.org/10.1002/mabi.201500376] [PMID: 26756582]
[50]
Yeboah, A.; Cohen, R.I.; Faulknor, R.; Schloss, R.; Yarmush, M.L.; Berthiaume, F. The development and characterization of SDF1α-elastin-like-peptide nanoparticles for wound healing. J. Control. Release, 2016, 232, 238-247.
[http://dx.doi.org/10.1016/j.jconrel.2016.04.020] [PMID: 27094603]
[51]
Bessa, P.C.; Machado, R.; Nürnberger, S.; Dopler, D.; Banerjee, A.; Cunha, A.M.; Rodríguez-Cabello, J.C.; Redl, H.; van Griensven, M.; Reis, R.L.; Casal, M.J. Thermoresponsive self-assembled elastin-based nanoparticles for delivery of BMPs. J. Control. Release, 2010, 142(3), 312-318.
[http://dx.doi.org/10.1016/j.jconrel.2009.11.003] [PMID: 19913578]
[52]
Johnson, T.; Koria, P. Expression and purification of neurotrophin-elastin-like peptide fusion proteins for neural regeneration. BioDrugs, 2016, 30(2), 117-127.
[http://dx.doi.org/10.1007/s40259-016-0159-4] [PMID: 26820997]
[53]
Iglesias, R.; Koria, P. Leveraging growth factor induced macropinocytosis for targeted treatment of lung cancer. Med. Oncol., 2015, 32(12), 259.
[http://dx.doi.org/10.1007/s12032-015-0708-6] [PMID: 26519258]
[54]
Sarangthem, V.; Kim, Y.; Singh, T.D.; Seo, B-Y.; Cheon, S-H.; Lee, Y-J.; Lee, B-H.; Park, R-W. Multivalent targeting based delivery of therapeutic peptide using AP1-ELP carrier for effective cancer therapy. Theranostics, 2016, 6(12), 2235-2249.
[http://dx.doi.org/10.7150/thno.16425] [PMID: 27924160]
[55]
Janib, S.M.; Gustafson, J.A.; Minea, R.O.; Swenson, S.D.; Liu, S.; Pastuszka, M.K.; Lock, L.L.; Cui, H.; Markland, F.S.; Conti, P.S.; Li, Z.; MacKay, J.A. Multimeric disintegrin protein polymer fusions that target tumor vasculature. Biomacromolecules, 2014, 15(7), 2347-2358.
[http://dx.doi.org/10.1021/bm401622y] [PMID: 24871936]
[56]
Zhao, P.; Dong, S.; Bhattacharyya, J.; Chen, M. iTEP nanoparticle-delivered salinomycin displays an enhanced toxicity to cancer stem cells in orthotopic breast tumors. Mol. Pharm., 2014, 11(8), 2703-2712.
[http://dx.doi.org/10.1021/mp5002312] [PMID: 24960465]
[57]
van Eldijk, M.B.; Schoonen, L.; Cornelissen, J.J.; Nolte, R.J.; van Hest, J.C. Metal ion-induced self-assembly of a multi-responsive block copolypeptide into well-defined nanocapsules. Small, 2016, 12(18), 2476-2483.
[http://dx.doi.org/10.1002/smll.201503889] [PMID: 27151830]
[58]
Assal, Y.; Mizuguchi, Y.; Mie, M.; Kobatake, E. Growth factor tethering to protein nanoparticles via coiled-coil formation for targeted drug delivery. Bioconjug. Chem., 2015, 26(8), 1672-1677.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00266] [PMID: 26079837]
[59]
Hu, J.; Xie, L.; Zhao, W.; Sun, M.; Liu, X.; Gao, W. Design of tumor-homing and pH-responsive polypeptide-doxorubicin nanoparticles with enhanced anticancer efficacy and reduced side effects. Chem. Commun. (Camb.), 2015, 51(57), 11405-11408.
[http://dx.doi.org/10.1039/C5CC04035C] [PMID: 26086450]
[60]
Piña, M.J.; Girotti, A.; Santos, M.; Rodríguez-Cabello, J.C.; Arias, F.J. Biocompatible ELR-based polyplexes coated with MUC1 specific aptamers and targeted for breast cancer gene therapy. Mol. Pharm., 2016, 13(3), 795-808.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00712] [PMID: 26815223]
[61]
McDaniel, J.R.; Callahan, D.J.; Chilkoti, A. Drug delivery to solid tumors by elastin-like polypeptides. Adv. Drug Deliv. Rev., 2010, 62(15), 1456-1467.
[http://dx.doi.org/10.1016/j.addr.2010.05.004] [PMID: 20546809]
[62]
Liu, W.; MacKay, J.A.; Dreher, M.R.; Chen, M.; McDaniel, J.R.; Simnick, A.J.; Callahan, D.J.; Zalutsky, M.R.; Chilkoti, A. Injectable intratumoral depot of thermally responsive polypeptide-radionuclide conjugates delays tumor progression in a mouse model. J. Control. Release, 2010, 144(1), 2-9.
[http://dx.doi.org/10.1016/j.jconrel.2010.01.032] [PMID: 20117157]
[63]
Liu, W.; McDaniel, J.; Li, X.; Asai, D.; Quiroz, F.G.; Schaal, J.; Park, J.S.; Zalutsky, M.; Chilkoti, A. Brachytherapy using injectable seeds that are self-assembled from genetically encoded polypeptides in situ. Cancer Res., 2012, 72(22), 5956-5965.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-2127] [PMID: 23155121]
[64]
Perera, M.; Krishnananthan, N.; Lindner, U.; Lawrentschuk, N. An update on focal therapy for prostate cancer. Nat. Rev. Urol., 2016, 13(11), 641-653.
[http://dx.doi.org/10.1038/nrurol.2016.177] [PMID: 27670618]
[65]
Potters, L.; Torre, T.; Fearn, P. A.; Leibel, S. A.; Kattan, M. W. Potency after permanent prostate brachytherapy for localized prostate cancer. International Journal of Radiation Oncology* Biology* Physics, 2001, 50(5), 1235-1242.
[http://dx.doi.org/10.1016/S0360-3016(01)01578-4]
[66]
Stock, R.G.; Kao, J.; Stone, N.N. Penile erectile function after permanent radioactive seed implantation for treatment of prostate cancer. J. Urol., 2001, 165(2), 436-439.
[http://dx.doi.org/10.1097/00005392-200102000-00020] [PMID: 11176391]
[67]
Qureshi, A.I.; Mendelow, A.D.; Hanley, D.F. Intracerebral haemorrhage. Lancet, 2009, 373(9675), 1632-1644.
[http://dx.doi.org/10.1016/S0140-6736(09)60371-8] [PMID: 19427958]
[68]
Schaal, J.L.; Li, X.; Mastria, E.; Bhattacharyya, J.; Zalutsky, M.R.; Chilkoti, A.; Liu, W. Injectable polypeptide micelles that form radiation crosslinked hydrogels in situ for intratumoral radiotherapy. J. Control. Release, 2016, 228, 58-66.
[http://dx.doi.org/10.1016/j.jconrel.2016.02.040] [PMID: 26928529]
[69]
Olthoff, C.M.; Schouten, J.S.; van de Borne, B.W.; Webers, C.A. Noncompliance with ocular hypotensive treatment in patients with glaucoma or ocular hypertension: an evidence-based review. Ophthalmology, 2005, 112(6), 953-961.
[http://dx.doi.org/10.1016/j.ophtha.2004.12.035] [PMID: 15885795]
[70]
Shukla, P.K.; Kumar, M.; Keshava, G.B. Mycotic keratitis: an overview of diagnosis and therapy. Mycoses, 2008, 51(3), 183-199.
[http://dx.doi.org/10.1111/j.1439-0507.2007.01480.x] [PMID: 18399899]
[71]
Karnati, R.; Laurie, D.E.; Laurie, G.W. Lacritin and the tear proteome as natural replacement therapy for dry eye. Exp. Eye Res., 2013, 117, 39-52.
[http://dx.doi.org/10.1016/j.exer.2013.05.020] [PMID: 23769845]
[72]
Wang, W.; Jashnani, A.; Aluri, S.R.; Gustafson, J.A.; Hsueh, P-Y.; Yarber, F.; McKown, R.L.; Laurie, G.W.; Hamm-Alvarez, S.F.; MacKay, J.A. A thermo-responsive protein treatment for dry eyes. J. Control. Release, 2015, 199, 156-167.
[http://dx.doi.org/10.1016/j.jconrel.2014.11.016] [PMID: 25481446]
[73]
Shamji, M.F.; Chen, J.; Friedman, A.H.; Richardson, W.J.; Chilkoti, A.; Setton, L.A. Synthesis and characterization of a thermally-responsive tumor necrosis factor antagonist. J. Control. Release, 2008, 129(3), 179-186.
[http://dx.doi.org/10.1016/j.jconrel.2008.04.021] [PMID: 18547669]
[74]
Kimmerling, K.A.; Furman, B.D.; Mangiapani, D.S.; Moverman, M.A.; Sinclair, S.M.; Huebner, J.L.; Chilkoti, A.; Kraus, V.B.; Setton, L.A.; Guilak, F.; Olson, S.A. Sustained intra-articular delivery of IL-1RA from a thermally-responsive elastin-like polypeptide as a therapy for post-traumatic arthritis. Eur. Cell. Mater., 2015, 29, 124-139.
[http://dx.doi.org/10.22203/eCM.v029a10] [PMID: 25636786]
[75]
Manandhar, B.; Ahn, J-M. Glucagon-like peptide-1 (GLP-1) analogs: recent advances, new possibilities, and therapeutic implications. J. Med. Chem., 2015, 58(3), 1020-1037.
[http://dx.doi.org/10.1021/jm500810s] [PMID: 25349901]
[76]
Amiram, M.; Luginbuhl, K.M.; Li, X.; Feinglos, M.N.; Chilkoti, A. A depot-forming glucagon-like peptide-1 fusion protein reduces blood glucose for five days with a single injection. J. Control. Release, 2013, 172(1), 144-151.
[http://dx.doi.org/10.1016/j.jconrel.2013.07.021] [PMID: 23928357]
[77]
Shamji, M.F.; Whitlatch, L.; Friedman, A.H.; Richardson, W.J.; Chilkoti, A.; Setton, L.A. An injectable and in situ-gelling biopolymer for sustained drug release following perineural administration. Spine, 2008, 33(7), 748-754.
[http://dx.doi.org/10.1097/BRS.0b013e3181695773] [PMID: 18379401]
[78]
Sinclair, S.M.; Bhattacharyya, J.; McDaniel, J.R.; Gooden, D.M.; Gopalaswamy, R.; Chilkoti, A.; Setton, L.A. A genetically engineered thermally responsive sustained release curcumin depot to treat neuroinflammation. J. Control. Release, 2013, 171(1), 38-47.
[http://dx.doi.org/10.1016/j.jconrel.2013.06.032] [PMID: 23830979]
[79]
Wang, X.; Kluge, J.A.; Leisk, G.G.; Kaplan, D.L. Sonication-induced gelation of silk fibroin for cell encapsulation. Biomaterials, 2008, 29(8), 1054-1064.
[http://dx.doi.org/10.1016/j.biomaterials.2007.11.003] [PMID: 18031805]
[80]
Drury, J.L.; Mooney, D.J. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials, 2003, 24(24), 4337-4351.
[http://dx.doi.org/10.1016/S0142-9612(03)00340-5] [PMID: 12922147]
[81]
Amruthwar, S.S.; Janorkar, A.V. Preparation and characterization of elastin-like polypeptide scaffolds for local delivery of antibiotics and proteins. J. Mater. Sci. Mater. Med., 2012, 23(12), 2903-2912.
[http://dx.doi.org/10.1007/s10856-012-4749-5] [PMID: 22926272]
[82]
Mecham, R.P.; Broekelmann, T.J.; Fliszar, C.J.; Shapiro, S.D.; Welgus, H.G.; Senior, R.M. Elastin degradation by matrix metalloproteinases. Cleavage site specificity and mechanisms of elastolysis. J. Biol. Chem., 1997, 272(29), 18071-18076.
[http://dx.doi.org/10.1074/jbc.272.29.18071] [PMID: 9218437]
[83]
Bandiera, A.; Markulin, A.; Corich, L.; Vita, F.; Borelli, V. Stimuli-induced release of compounds from elastin biomimetic matrix. Biomacromolecules, 2014, 15(1), 416-422.
[http://dx.doi.org/10.1021/bm401677n] [PMID: 24358962]
[84]
Asai, D.; Xu, D.; Liu, W.; Garcia Quiroz, F.; Callahan, D.J.; Zalutsky, M.R.; Craig, S.L.; Chilkoti, A. Protein polymer hydrogels by in situ, rapid and reversible self-gelation. Biomaterials, 2012, 33(21), 5451-5458.
[http://dx.doi.org/10.1016/j.biomaterials.2012.03.083] [PMID: 22538198]
[85]
Greish, K.; Frandsen, J.; Scharff, S.; Gustafson, J.; Cappello, J.; Li, D.; O’Malley, B.W. Jr.; Ghandehari, H. Silk-elastinlike protein polymers improve the efficacy of adenovirus thymidine kinase enzyme prodrug therapy of head and neck tumors. J. Gene Med., 2010, 12(7), 572-579.
[http://dx.doi.org/10.1002/jgm.1469] [PMID: 20603862]
[86]
Gustafson, J.; Greish, K.; Frandsen, J.; Cappello, J.; Ghandehari, H. Silk-elastinlike recombinant polymers for gene therapy of head and neck cancer: from molecular definition to controlled gene expression. J. Control. Release, 2009, 140(3), 256-261.
[http://dx.doi.org/10.1016/j.jconrel.2009.05.022] [PMID: 19470397]
[87]
Huang, W.; Rollett, A.; Kaplan, D.L. Silk-elastin-like protein biomaterials for the controlled delivery of therapeutics. Expert Opin. Drug Deliv., 2015, 12(5), 779-791.
[http://dx.doi.org/10.1517/17425247.2015.989830] [PMID: 25476201]
[88]
Fernández-Colino, A.; Quinteros, D.A.; Allemandi, D.A.; Girotti, A.; Palma, S.D.; Arias, F.J. Self-assembling elastin-like hydrogels for timolol delivery: Development of an ophthalmic formulation against glaucoma. Mol. Pharm., 2017, 14(12), 4498-4508.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00615] [PMID: 29125768]
[89]
Gustafson, J.A.; Ghandehari, H. Silk-elastinlike protein polymers for matrix-mediated cancer gene therapy. Adv. Drug Deliv. Rev., 2010, 62(15), 1509-1523.
[http://dx.doi.org/10.1016/j.addr.2010.04.006] [PMID: 20430059]
[90]
Price, R.; Poursaid, A.; Cappello, J.; Ghandehari, H. In vivo evaluation of matrix metalloproteinase responsive silk-elastinlike protein polymers for cancer gene therapy. J. Control. Release, 2015, 213, 96-102.
[http://dx.doi.org/10.1016/j.jconrel.2015.06.022] [PMID: 26095079]
[91]
Chvapil, M.; Owen, J.A.; Clark, D.S.; Koorajian, S.; Goodman, A. Effect of collagen crosslinking on the rate of resorption of implanted collagen tubing in rabbits. J. Biomed. Mater. Res., 1977, 11(2), 297-314.
[http://dx.doi.org/10.1002/jbm.820110213] [PMID: 856816]
[92]
Rosa, A.L.; de Oliveira, P.T.; Beloti, M.M. Macroporous scaffolds associated with cells to construct a hybrid biomaterial for bone tissue engineering. Expert Rev. Med. Devices, 2008, 5(6), 719-728.
[http://dx.doi.org/10.1586/17434440.5.6.719] [PMID: 19025348]
[93]
Kyle, S.; Aggeli, A.; Ingham, E.; McPherson, M.J. Production of self-assembling biomaterials for tissue engineering. Trends Biotechnol., 2009, 27(7), 423-433.
[http://dx.doi.org/10.1016/j.tibtech.2009.04.002] [PMID: 19497631]
[94]
Yannas, I.V.; Burke, J.F. Design of an artificial skin. I. Basic design principles. J. Biomed. Mater. Res., 1980, 14(1), 65-81.
[http://dx.doi.org/10.1002/jbm.820140108] [PMID: 6987234]
[95]
Amruthwar, S.S.; Puckett, A.D.; Janorkar, A.V. Preparation and characterization of novel elastin-like polypeptide-collagen composites. J. Biomed. Mater. Res. A, 2013, 101(8), 2383-2391.
[http://dx.doi.org/10.1002/jbm.a.34514] [PMID: 23427027]
[96]
Anderson, T.R.; Marquart, M.E.; Janorkar, A.V. Effective release of a broad spectrum antibiotic from elastin-like polypeptide-collagen composite. J. Biomed. Mater. Res. A, 2015, 103(2), 782-790.
[http://dx.doi.org/10.1002/jbm.a.35219] [PMID: 24825292]
[97]
Mano, J.F.; Silva, G.A.; Azevedo, H.S.; Malafaya, P.B.; Sousa, R.A.; Silva, S.S.; Boesel, L.F.; Oliveira, J.M.; Santos, T.C.; Marques, A.P.; Neves, N.M.; Reis, R.L. Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J. R. Soc. Interface, 2007, 4(17), 999-1030.
[http://dx.doi.org/10.1098/rsif.2007.0220] [PMID: 17412675]
[98]
Williams, D.J.; Sebastine, I.M. Tissue engineering and regenerative medicine: manufacturing challenges. IEE Proc., Nanobiotechnol., 2005, 152(6), 207-210.
[http://dx.doi.org/10.1049/ip-nbt:20050001] [PMID: 16441181]
[99]
Webber, M.J.; Appel, E.A.; Meijer, E.W.; Langer, R. Supramolecular biomaterials. Nat. Mater., 2016, 15(1), 13-26.
[http://dx.doi.org/10.1038/nmat4474] [PMID: 26681596]
[100]
Urry, D.W. What sustains life? Consilient mechanisms for protein-based machines and materials; Springer-Verlag: New York, 2006.
[101]
Rodríguez-Cabello, J.C.; Martín, L.; Girotti, A.; García-Arévalo, C.; Arias, F.J.; Alonso, M. Emerging applications of multifunctional elastin-like recombinamers. Nanomedicine (Lond.), 2011, 6(1), 111-122.
[http://dx.doi.org/10.2217/nnm.10.141] [PMID: 21182423]
[102]
Girotti, A.; Reguera, J.; Rodríguez-Cabello, J.C.; Arias, F.J.; Alonso, M.; Matestera, A. Design and bioproduction of a recombinant multi(bio)functional elastin-like protein polymer containing cell adhesion sequences for tissue engineering purposes. J. Mater. Sci. Mater. Med., 2004, 15(4), 479-484.
[http://dx.doi.org/10.1023/B:JMSM.0000021124.58688.7a] [PMID: 15332621]
[103]
Corich, L.; Busetti, M.; Petix, V.; Passamonti, S.; Bandiera, A. Evaluation of a biomimetic 3D substrate based on the Human Elastin-like Polypeptides (HELPs) model system for elastolytic activity detection. J. Biotechnol., 2017, 255, 57-65.
[http://dx.doi.org/10.1016/j.jbiotec.2017.06.006] [PMID: 28624377]
[104]
Li, Y.; Rodriguez-Cabello, J.C.; Aparicio, C. Intrafibrillar mineralization of self-assembled elastin-like recombinamer fibrils. ACS Appl. Mater. Interfaces, 2017, 9(7), 5838-5846.
[http://dx.doi.org/10.1021/acsami.6b15285] [PMID: 28127954]
[105]
Raphel, J.; Karlsson, J.; Galli, S.; Wennerberg, A.; Lindsay, C.; Haugh, M.G.; Pajarinen, J.; Goodman, S.B.; Jimbo, R.; Andersson, M.; Heilshorn, S.C. Engineered protein coatings to improve the osseointegration of dental and orthopaedic implants. Biomaterials, 2016, 83, 269-282.
[http://dx.doi.org/10.1016/j.biomaterials.2015.12.030] [PMID: 26790146]
[106]
González, M.; Salvagni, E.; Rodríguez-Cabello, J.C.; Rupérez, E.; Gil, F.J.; Peña, J.; Manero, J.M. A low elastic modulus Ti-Nb-Hf alloy bioactivated with an elastin-like protein-based polymer enhances osteoblast cell adhesion and spreading. J. Biomed. Mater. Res. A, 2013, 101(3), 819-826.
[http://dx.doi.org/10.1002/jbm.a.34388] [PMID: 22962002]
[107]
Ozturk, N.; Girotti, A.; Kose, G.T.; Rodríguez-Cabello, J.C.; Hasirci, V. Dynamic cell culturing and its application to micropatterned, elastin-like protein-modified poly(N-isopropylacrylamide) scaffolds. Biomaterials, 2009, 30(29), 5417-5426.
[http://dx.doi.org/10.1016/j.biomaterials.2009.06.044] [PMID: 19595451]
[108]
Betre, H.; Setton, L.A.; Meyer, D.E.; Chilkoti, A. Characterization of a genetically engineered elastin-like polypeptide for cartilaginous tissue repair. Biomacromolecules, 2002, 3(5), 910-916.
[http://dx.doi.org/10.1021/bm0255037] [PMID: 12217035]
[109]
Liu, J.C.; Heilshorn, S.C.; Tirrell, D.A. Comparative cell response to artificial extracellular matrix proteins containing the RGD and CS5 cell-binding domains. Biomacromolecules, 2004, 5(2), 497-504.
[http://dx.doi.org/10.1021/bm034340z] [PMID: 15003012]
[110]
de Torre, I.G.; Wolf, F.; Santos, M.; Rongen, L.; Alonso, M.; Jockenhoevel, S.; Rodríguez-Cabello, J.C.; Mela, P. Elastin-like recombinamer-covered stents: Towards a fully biocompatible and non-thrombogenic device for cardiovascular diseases. Acta Biomater., 2015, 12, 146-155.
[http://dx.doi.org/10.1016/j.actbio.2014.10.029] [PMID: 25448343]
[111]
Dimitriou, R.; Jones, E.; McGonagle, D.; Giannoudis, P.V. Bone regeneration: current concepts and future directions. BMC Med., 2011, 9, 66.
[http://dx.doi.org/10.1186/1741-7015-9-66] [PMID: 21627784]
[112]
Gong, T.; Xie, J.; Liao, J.; Zhang, T.; Lin, S.; Lin, Y. Nanomaterials and bone regeneration. Bone Res., 2015, 3, 15029.
[http://dx.doi.org/10.1038/boneres.2015.29] [PMID: 26558141]
[113]
Coletta, D.J.; Ibáñez-Fonseca, A.; Missana, L.R.; Jammal, M.V.; Vitelli, E.J.; Aimone, M.; Zabalza, F.; Issa, J.P.M.; Alonso, M.; Rodríguez-Cabello, J.C.; Feldman, S. Bone regeneration mediated by a bioactive and biodegradable ECM-like hydrogel based on elastin-like recombinamers. Tissue Engineering. Part A, 2017, 23(23-24), 1361-1371.
[http://dx.doi.org/10.1089/ten.TEA.2017.0047] [PMID: 28457199]
[114]
McCarthy, B.; Yuan, Y.; Koria, P. Elastin-like-polypeptide based fusion proteins for osteogenic factor delivery in bone healing. Biotechnol. Prog., 2016, 32(4), 1029-1037.
[http://dx.doi.org/10.1002/btpr.2269] [PMID: 27038196]
[115]
Vila, M.; García, A.; Girotti, A.; Alonso, M.; Rodríguez-Cabello, J.C.; González-Vázquez, A.; Planell, J.A.; Engel, E.; Buján, J.; García-Honduvilla, N.; Vallet-Regí, M. 3D silicon doped hydroxyapatite scaffolds decorated with elastin-like recombinamers for bone regenerative medicine. Acta Biomater., 2016, 45, 349-356.
[http://dx.doi.org/10.1016/j.actbio.2016.09.016] [PMID: 27639311]
[116]
Shuturminska, K.; Tarakina, N.V.; Azevedo, H.S.; Bushby, A.J.; Mata, A.; Anderson, P.; Al-Jawad, M. Elastin-like protein, with statherin derived peptide, controls fluorapatite formation and morphology. Front. Physiol., 2017, 8, 368.
[http://dx.doi.org/10.3389/fphys.2017.00368] [PMID: 28642715]
[117]
Glassman, M.J.; Avery, R.K.; Khademhosseini, A.; Olsen, B.D. Toughening of thermoresponsive arrested networks of elastin-like polypeptides to engineer cytocompatible tissue scaffolds. Biomacromolecules, 2016, 17(2), 415-426.
[http://dx.doi.org/10.1021/acs.biomac.5b01210] [PMID: 26789536]
[118]
Gurumurthy, B.; Bierdeman, P.C.; Janorkar, A.V. Spheroid model for functional osteogenic evaluation of human adipose derived stem cells. J. Biomed. Mater. Res. A, 2017, 105(4), 1230-1236.
[http://dx.doi.org/10.1002/jbm.a.35974] [PMID: 27943608]
[119]
Gurumurthy, B.; Bierdeman, P.C.; Janorkar, A.V. Composition of elastin like polypeptide-collagen composite scaffold influences in vitro osteogenic activity of human adipose derived stem cells. Dent. Mater., 2016, 32(10), 1270-1280.
[http://dx.doi.org/10.1016/j.dental.2016.07.009] [PMID: 27524229]
[120]
Fahy, N.; Alini, M.; Stoddart, M.J. Mechanical stimulation of mesenchymal stem cells: Implications for cartilage tissue engineering. J. Orthop. Res., 2018, 36(1), 52-63.
[http://dx.doi.org/10.1002/jor.23670] [PMID: 28763118]
[121]
Zhu, D.; Wang, H.; Trinh, P.; Heilshorn, S.C.; Yang, F. Elastin-like protein-hyaluronic acid (ELP-HA) hydrogels with decoupled mechanical and biochemical cues for cartilage regeneration. Biomaterials, 2017, 127, 132-140.
[http://dx.doi.org/10.1016/j.biomaterials.2017.02.010] [PMID: 28268018]
[122]
Bertassoni, L.E.; Cecconi, M.; Manoharan, V.; Nikkhah, M.; Hjortnaes, J.; Cristino, A.L.; Barabaschi, G.; Demarchi, D.; Dokmeci, M.R.; Yang, Y.; Khademhosseini, A. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip, 2014, 14(13), 2202-2211.
[http://dx.doi.org/10.1039/C4LC00030G] [PMID: 24860845]
[123]
Weber, M.; Gonzalez de Torre, I.; Moreira, R.; Frese, J.; Oedekoven, C.; Alonso, M.; Rodriguez Cabello, C.J.; Jockenhoevel, S.; Mela, P. Multiple-step injection molding for fibrin-based tissue-engineered heart valves. Tissue Eng. Part C Methods, 2015, 21(8), 832-840.
[http://dx.doi.org/10.1089/ten.tec.2014.0396] [PMID: 25654448]
[124]
Staubli, S.M.; Cerino, G.; Gonzalez De Torre, I.; Alonso, M.; Oertli, D.; Eckstein, F.; Glatz, K.; Rodríguez Cabello, J.C.; Marsano, A. Control of angiogenesis and host response by modulating the cell adhesion properties of an Elastin-Like Recombinamer-based hydrogel. Biomaterials, 2017, 135, 30-41.
[http://dx.doi.org/10.1016/j.biomaterials.2017.04.047] [PMID: 28482232]
[125]
Mahara, A.; Kiick, K.L.; Yamaoka, T. In vivo guided vascular regeneration with a non-porous elastin-like polypeptide hydrogel tubular scaffold. J. Biomed. Mater. Res. A, 2017, 105(6), 1746-1755.
[http://dx.doi.org/10.1002/jbm.a.36018] [PMID: 28130867]
[126]
Park, J.; Kim, J.Y.; Choi, S-K.; Kim, J.Y.; Kim, J.H.; Jeon, W.B.; Lee, J.E. Thermo-sensitive assembly of the biomaterial REP reduces hematoma volume following collagenase-induced intracerebral hemorrhage in rats. Nanomedicine (Lond.), 2017, 13(6), 1853-1862.
[http://dx.doi.org/10.1016/j.nano.2017.04.001] [PMID: 28412143]
[127]
Adnan, N.; Mie, M.; Haque, A.; Hossain, S.; Mashimo, Y.; Akaike, T.; Kobatake, E. Construction of a defined biomimetic matrix for long-term maintenance of mouse induced pluripotent stem cells. Bioconjug. Chem., 2016, 27(7), 1599-1605.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00141] [PMID: 27269811]
[128]
Le, D.H.T.; Tsutsui, Y.; Sugawara-Narutaki, A.; Yukawa, H.; Baba, Y.; Ohtsuki, C. Double-hydrophobic elastin-like polypeptides with added functional motifs: Self-assembly and cytocompatibility. J. Biomed. Mater. Res. A, 2017, 105(9), 2475-2484.
[http://dx.doi.org/10.1002/jbm.a.36105] [PMID: 28486777]
[129]
Brennan, M.J.; Kilbride, B.F.; Wilker, J.J.; Liu, J.C. A bioinspired elastin-based protein for a cytocompatible underwater adhesive. Biomaterials, 2017, 124, 116-125.
[http://dx.doi.org/10.1016/j.biomaterials.2017.01.034] [PMID: 28192773]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy