Review Article

多功能介孔二氧化硅纳米粒子的癌症治疗和成像。

卷 26, 期 31, 2019

页: [5745 - 5763] 页: 19

弟呕挨: 10.2174/0929867325666180501101044

价格: $65

摘要

背景:癌症是一种广泛的疾病,死亡率很高。流行的常规治疗包括化学疗法,放射线和手术切除。然而,这些治疗给患者带来许多毒性问题,这主要是由于其非选择性的性质,这引起了耐药性和严重的副作用。 目标:在这方面,纳米技术被称为是一项智能技术,可为系统提供将药物靶向特定部位的能力。随着纳米技术的使用,产生了广泛用作药物递送载体的各种纳米材料用于生物医学应用。在各种多样化的纳米载体中,介孔二氧化硅纳米颗粒(MSN)由于其结构特征,较大的表面积,可调节的孔径,良好的热稳定性和化学稳定性,出色的生物相容性以及易于表面修饰而备受关注。此外,可以通过各种刺激反应看门人系统调整从MSN释放的药物。 MSN的有序结构非常适合通过控制的递送负载大量药物分子,从而通过增强的渗透性和保留作用或表面修饰进一步靶向癌组织,它也可以被各种配体主动靶向。 方法:这篇综述文章重点介绍了MSNs在刺激反应药物递送,免疫治疗以及癌症治疗能力方面的常用合成方法和最新进展。 结论:尽管MSNs正成为用于更有效和更安全的癌症治疗的有希望的工具,但是,还需要进行更多的翻译研究以探索其在临床环境中的多功能性。

关键词: 纳米技术,介孔二氧化硅纳米颗粒,治疗,药物输送,癌症治疗,生物降解性。

[1]
Reichert, J.M.; Wenger, J.B. Development trends for new cancer therapeutics and vaccines. Drug Discov. Today, 2008, 13(1-2), 30-37.
[http://dx.doi.org/10.1016/j.drudis.2007.09.003] [PMID: 18190861]
[2]
Das, M.; Mohanty, C.; Sahoo, S.K. Ligand-based targeted therapy for cancer tissue. Expert Opin. Drug Deliv., 2009, 6(3), 285-304.
[http://dx.doi.org/10.1517/17425240902780166] [PMID: 19327045]
[3]
Gensini, G.F.; Conti, A.A.; Lippi, D. The contributions of Paul Ehrlich to infectious disease. J. Infect., 2007, 54(3), 221-224.
[http://dx.doi.org/10.1016/j.jinf.2004.05.022] [PMID: 16567000]
[4]
Sahoo, S.K.; Parveen, S.; Panda, J.J. The present and future of nanotechnology in human health care. Nanomedicine (Lond.), 2007, 3(1), 20-31.
[http://dx.doi.org/10.1016/j.nano.2006.11.008] [PMID: 17379166]
[5]
Farokhzad, O.C.; Langer, R. Impact of nanotechnology on drug delivery. ACS Nano, 2009, 3(1), 16-20.
[http://dx.doi.org/10.1021/nn900002m] [PMID: 19206243]
[6]
Sahoo, S.K.; Labhasetwar, V. Nanotech approaches to drug delivery and imaging. Drug Discov. Today, 2003, 8(24), 1112-1120.
[http://dx.doi.org/10.1016/S1359-6446(03)02903-9] [PMID: 14678737]
[7]
Liong, M.; Lu, J.; Kovochich, M.; Xia, T.; Ruehm, S.G.; Nel, A.E.; Tamanoi, F.; Zink, J.I. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano, 2008, 2(5), 889-896.
[http://dx.doi.org/10.1021/nn800072t] [PMID: 19206485]
[8]
Argyo, C.; Weiss, V.; Braeuchle, C.; Bein, T. Multifunctional mesoporous silica nanoparticles as a universal platform for drug delivery. Chem. Mater., 2014, 26, 435-451.
[http://dx.doi.org/10.1021/cm402592t]
[9]
Yuan, L.; Tang, Q.; Yang, D.; Zhang, J.Z.; Zhang, F.; Hu, J. Preparation of pH-responsive mesoporous silica nanoparticles and their application in controlled drug delivery. J. Phys. Chem. C, 2011, 115, 9926-9932.
[http://dx.doi.org/10.1021/jp201053d]
[10]
Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater., 2013, 12(11), 991-1003.
[http://dx.doi.org/10.1038/nmat3776] [PMID: 24150417]
[11]
Wicki, A.; Witzigmann, D.; Balasubramanian, V.; Huwyler, J. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J. Control. Release, 2015, 200, 138-157.
[http://dx.doi.org/10.1016/j.jconrel.2014.12.030] [PMID: 25545217]
[12]
Choi, H.; Chen, I.W. Surface-modified silica colloid for diagnostic imaging. J. Colloid Interface Sci., 2003, 258(2), 435-437.
[http://dx.doi.org/10.1016/S0021-9797(02)00130-3] [PMID: 12618117]
[13]
Liberman, A.; Mendez, N.; Trogler, W.C.; Kummel, A.C. Synthesis and surface functionalization of silica nanoparticles for nanomedicine. Surf. Sci. Rep., 2014, 69(2-3), 132-158.
[http://dx.doi.org/10.1016/j.surfrep.2014.07.001] [PMID: 25364083]
[14]
Shimura, N.; Ogawa, M. Preparation of surfactant templated nanoporous silica spherical particles by the Stöber method. Effect of solvent composition on the particle size. J. Mater. Sci., 2007, 42, 5299-5306.
[http://dx.doi.org/10.1007/s10853-007-1771-y]
[15]
Stöber, W.; Fink, A.; Bohn, E. Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range 1. J. Colloid Interface Sci., 1968, 26, 62-69.
[http://dx.doi.org/10.1016/0021-9797(68)90272-5]
[16]
Wang, X-D.; Shen, Z-X.; Sang, T.; Cheng, X-B.; Li, M-F.; Chen, L-Y.; Wang, Z-S. Preparation of spherical silica particles by Stöber process with high concentration of tetra-ethyl-orthosilicate. J. Colloid Interface Sci., 2010, 341(1), 23-29.
[http://dx.doi.org/10.1016/j.jcis.2009.09.018] [PMID: 19819463]
[17]
Cai, Q.; Lin, W-Y.; Xiao, F-S.; Pang, W-Q.; Chen, X-H.; Zou, B-S. The preparation of highly ordered MCM-41 with extremely low surfactant concentration. Microporous Mesoporous Mater., 1999, 32, 1-15.
[http://dx.doi.org/10.1016/S1387-1811(99)00082-7]
[18]
Radu, D.R.; Lai, C-Y.; Huang, J.; Shu, X.; Lin, V.S.Y. Fine-tuning the degree of organic functionalization of mesoporous silica nanosphere materials via an interfacially designed co-condensation method. Chem. Commun. (Camb.), 2005, (10), 1264-1266.
[http://dx.doi.org/10.1039/b412618a] [PMID: 15742046]
[19]
Jambhrunkar, S.; Yu, M.; Yang, J.; Zhang, J.; Shrotri, A.; Endo-Munoz, L.; Moreau, J.; Lu, G.; Yu, C. Stepwise pore size reduction of ordered nanoporous silica materials at angstrom precision. J. Am. Chem. Soc., 2013, 135(23), 8444-8447.
[http://dx.doi.org/10.1021/ja402463h] [PMID: 23668366]
[20]
Chen, Y.; Chen, H.; Guo, L.; He, Q.; Chen, F.; Zhou, J.; Feng, J.; Shi, J. Hollow/rattle-type mesoporous nanostructures by a structural difference-based selective etching strategy. ACS Nano, 2010, 4(1), 529-539.
[http://dx.doi.org/10.1021/nn901398j] [PMID: 20041633]
[21]
Sandberg, L.I.C.; Gao, T.; Jelle, B.; Gustavsen, A. Synthesis of Hollow Silica Nanospheres by Sacrificial Polystyrene Templates for Thermal Insulation Applications. Adv. Mater. Sci. Eng., 2013, 1-3.
[http://dx.doi.org/10.1155/2013/483651]
[22]
Yang, J.; Lind, J.; Trogler, W.C. Synthesis of Hollow Silica and Titania Nanospheres. Chem. Mater., 2008, 20, 2875-2877.
[http://dx.doi.org/10.1021/cm703264y]
[23]
Yang, J.; Lee, J.; Kang, J.; Lee, K.; Suh, J-S.; Yoon, H-G.; Huh, Y-M.; Haam, S. Hollow silica nanocontainers as drug delivery vehicles. Langmuir, 2008, 24(7), 3417-3421.
[http://dx.doi.org/10.1021/la701688t] [PMID: 18324841]
[24]
Trewyn, B.G.; Whitman, C.M.; Lin, V.S.Y. Morphological Control of Room-Temperature Ionic Liquid Templated Mesoporous Silica Nanoparticles for Controlled Release of Antibacterial Agents. Nano Lett., 2004, 4, 2139-2143.
[http://dx.doi.org/10.1021/nl048774r]
[25]
Rieter, W.J.; Taylor, K.M.; Lin, W. Surface modification and functionalization of nanoscale metal-organic frameworks for controlled release and luminescence sensing. J. Am. Chem. Soc., 2007, 129(32), 9852-9853.
[http://dx.doi.org/10.1021/ja073506r] [PMID: 17645339]
[26]
Meng, Q.; Xiang, S.; Zhang, K.; Wang, M.; Bu, X.; Xue, P.; Liu, L.; Sun, H.; Yang, B. A facile two-step etching method to fabricate porous hollow silica particles. J. Colloid Interface Sci., 2012, 384(1), 22-28.
[http://dx.doi.org/10.1016/j.jcis.2012.06.043] [PMID: 22818793]
[27]
Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G.H.; Chmelka, B.F.; Stucky, G.D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998, 279(5350), 548-552.
[http://dx.doi.org/10.1126/science.279.5350.548] [PMID: 9438845]
[28]
Wang, F.; Guo, C.; Yang, L.R.; Liu, C-Z. Magnetic mesoporous silica nanoparticles: fabrication and their laccase immobilization performance. Bioresour. Technol., 2010, 101(23), 8931-8935.
[http://dx.doi.org/10.1016/j.biortech.2010.06.115] [PMID: 20655206]
[29]
Tao, C.; Zhu, Y. Magnetic mesoporous silica nanoparticles for potential delivery of chemotherapeutic drugs and hyperthermia; Dalton Trasactions, 2014, p. 41.
[30]
Yu, X.; Zhu, Y. Preparation of magnetic mesoporous silica nanoparticles as a multifunctional platform for potential drug delivery and hyperthermia. Sci. Technol. Adv. Mater., 2016, 17(1), 229-238.
[http://dx.doi.org/10.1080/14686996.2016.1178055] [PMID: 27877873]
[31]
Lu, F.; Popa, A.; Zhou, S.; Zhu, J-J.; Samia, A.C.S. Iron oxide-loaded hollow mesoporous silica nanocapsules for controlled drug release and hyperthermia. Chem. Commun. (Camb.), 2013, 49(97), 11436-11438.
[http://dx.doi.org/10.1039/c3cc46658b] [PMID: 24169596]
[32]
Byrne, J.D.; Betancourt, T.; Brannon-Peppas, L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv. Drug Deliv. Rev., 2008, 60(15), 1615-1626.
[http://dx.doi.org/10.1016/j.addr.2008.08.005] [PMID: 18840489]
[33]
Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release, 2000, 65(1-2), 271-284.
[http://dx.doi.org/10.1016/S0168-3659(99)00248-5] [PMID: 10699287]
[34]
Acharya, S.; Sahoo, S.K. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv. Drug Deliv. Rev., 2011, 63(3), 170-183.
[http://dx.doi.org/10.1016/j.addr.2010.10.008] [PMID: 20965219]
[35]
Iyer, A.K.; Khaled, G.; Fang, J.; Maeda, H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today, 2006, 11(17-18), 812-818.
[http://dx.doi.org/10.1016/j.drudis.2006.07.005] [PMID: 16935749]
[36]
Bae, Y.H. Drug targeting and tumor heterogeneity. J. Control. Release, 2009, 133(1), 2-3.
[http://dx.doi.org/10.1016/j.jconrel.2008.09.074] [PMID: 18848589]
[37]
Yousaf, N.; Howard, J.C.; Williams, B.D. Targeting behavior of rat monoclonal IgG antibodies in vivo: role of antibody isotype, specificity and the target cell antigen density. Eur. J. Immunol., 1991, 21(4), 943-950.
[http://dx.doi.org/10.1002/eji.1830210413] [PMID: 2019290]
[38]
Danhier, F.; Feron, O.; Préat, V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release, 2010, 148(2), 135-146.
[http://dx.doi.org/10.1016/j.jconrel.2010.08.027] [PMID: 20797419]
[39]
Dilnawaz, F.; Sahoo, S.K. Augmented Anticancer Efficacy by si-RNA Complexed Drug-Loaded Mesoporous Silica Nanoparticles in Lung Cancer Therapy; ACS Appl. Nano Mater, 2018.
[http://dx.doi.org/10.1021/acsanm.7b00196]
[40]
Lu, J.; Liong, M.; Zink, J.I.; Tamanoi, F. Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small, 2007, 3(8), 1341-1346.
[http://dx.doi.org/10.1002/smll.200700005] [PMID: 17566138]
[41]
Song, Y.; Li, Y.; Xu, Q.; Liu, Z. Mesoporous silica nanoparticles for stimuli-responsive controlled drug delivery: advances, challenges, and outlook. Int. J. Nanomedicine, 2016, 12, 87-110.
[http://dx.doi.org/10.2147/IJN.S117495] [PMID: 28053526]
[42]
Croissant, J.; Maynadier, M.; Gallud, A.; Peindy N’dongo, H.; Nyalosaso, J.L.; Derrien, G.; Charnay, C.; Durand, J.O.; Raehm, L.; Serein-Spirau, F.; Cheminet, N.; Jarrosson, T.; Mongin, O.; Blanchard-Desce, M.; Gary-Bobo, M.; Garcia, M.; Lu, J.; Tamanoi, F.; Tarn, D.; Guardado-Alvarez, T.M.; Zink, J.I. Two-photon-triggered drug delivery in cancer cells using nanoimpellers. Angew. Chem. Int. Ed. Engl., 2013, 52(51), 13813-13817.
[http://dx.doi.org/10.1002/anie.201308647] [PMID: 24214916]
[43]
Lavon, I.; Kost, J. Mass transport enhancement by ultrasound in non-degradable polymeric controlled release systems. J. Control. Release, 1998, 54(1), 1-7.
[http://dx.doi.org/10.1016/S0168-3659(97)00112-0] [PMID: 9741898]
[44]
Tannock, I.F.; Rotin, D. Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res., 1989, 49(16), 4373-4384.
[PMID: 2545340]
[45]
Feng, W.; Zho, X.; He, C.; Qiu, K.; Nie, W.; Chen, L.; Wang, H.; Mo, X.; Zhang, Y. Polyelectrolyte multilayer functionalized mesoporous silica nanoparticles for pH-responsive drug delivery: layer thickness-dependent release profiles and biocompatibility. J. Mater. Chem. B Mater. Biol. Med., 2013, 9, 5886-5898.
[http://dx.doi.org/10.1039/c3tb21193b]
[46]
Popat, A.; Liu, J.; Lu, G.Q.; Qiao, S.Z. A pH-responsive drug delivery system based on chitosan coated mesoporous silica nanoparticles. J. Mater. Chem., 2012, 22, 11173-11178.
[http://dx.doi.org/10.1039/c2jm30501a]
[47]
Sun, J.T.; Hong, C.; Pan, C.Y. Fabrication of PDEAEMA-coated mesoporous silica nanoparticles and pH-responsive controlled release. J. Phys. Chem. C, 2010, 114, 12481-12486.
[http://dx.doi.org/10.1021/jp103982a]
[48]
Wen, H.; Guo, J.; Chang, B.; Yang, W. pH-responsive composite microspheres based on magnetic mesoporous silica nanoparticle for drug delivery. Eur. J. Pharm. Biopharm., 2013, 84(1), 91-98.
[http://dx.doi.org/10.1016/j.ejpb.2012.11.019] [PMID: 23207322]
[49]
Xing, R.; Lin, H.; Jiang, P.; Qu, F. Biofunctional mesoporous silica nanoparticles for magnetically oriented target and pH-responsive controlled release of ibuprofen. Colloids Surf. A Physicochem. Eng. Asp., 2012, 402, 7-14.
[http://dx.doi.org/10.1016/j.colsurfa.2012.03.017]
[50]
Zheng, J.; Tian, X.; Sun, Y.; Lu, D.; Yang, W. pH-sensitive poly(glutamic acid) grafted mesoporous silica nanoparticles for drug delivery. Int. J. Pharm., 2013, 450(1-2), 296-303.
[http://dx.doi.org/10.1016/j.ijpharm.2013.04.014] [PMID: 23598077]
[51]
Meng, H.; Xue, M.; Xia, T.; Zhao, Y.L.; Tamanoi, F.; Stoddart, J.F.; Zink, J.I.; Nel, A.E. Autonomous in vitro anticancer drug release from mesoporous silica nanoparticles by pH-sensitive nanovalves. J. Am. Chem. Soc., 2010, 132(36), 12690-12697.
[http://dx.doi.org/10.1021/ja104501a] [PMID: 20718462]
[52]
Liu, R.; Zhang, Y.; Zhao, X.; Agarwal, A.; Mueller, L.J.; Feng, P. pH-responsive nanogated ensemble based on gold-capped mesoporous silica through an acid-labile acetal linker. J. Am. Chem. Soc., 2010, 132(5), 1500-1501.
[http://dx.doi.org/10.1021/ja907838s] [PMID: 20085351]
[53]
Muhammad, F.; Guo, M.; Qi, W.; Sun, F.; Wang, A.; Guo, Y.; Zhu, G. pH-Triggered controlled drug release from mesoporous silica nanoparticles via intracelluar dissolution of ZnO nanolids. J. Am. Chem. Soc., 2011, 133(23), 8778-8781.
[http://dx.doi.org/10.1021/ja200328s] [PMID: 21574653]
[54]
Geng, H.; Chen, W.; Xu, Z.P.; Qian, G.; An, J.; Zhang, H. Shape-controlled hollow mesoporous silica nanoparticles with multifunctional capping for in vitro cancer treatment. Chemistry, 2017, 23(45), 10878-10885.
[http://dx.doi.org/10.1002/chem.201701806] [PMID: 28580592]
[55]
Liu, J.; Luo, Z.; Zhang, J.; Luo, T.; Zhou, J.; Zhao, X.; Cai, K. Hollow mesoporous silica nanoparticles facilitated drug delivery via cascade pH stimuli in tumor microenvironment for tumor therapy. Biomaterials, 2016, 83, 51-65.
[http://dx.doi.org/10.1016/j.biomaterials.2016.01.008] [PMID: 26773665]
[56]
Méndez, J.; Monteagudo, A.; Griebenow, K. Stimulus-responsive controlled release system by covalent immobilization of an enzyme into mesoporous silica nanoparticles. Bioconjug. Chem., 2012, 23(4), 698-704.
[http://dx.doi.org/10.1021/bc200301a] [PMID: 22375899]
[57]
Kim, H.; Kim, S.; Park, C.; Lee, H.; Park, H.J.; Kim, C. Glutathione-induced intracellular release of guests from mesoporous silica nanocontainers with cyclodextrin gatekeepers. Adv. Mater., 2010, 22(38), 4280-4283.
[http://dx.doi.org/10.1002/adma.201001417] [PMID: 20803535]
[58]
Zhang, L.; Wang, T.; Yang, L.; Liu, C.; Wang, C.; Liu, H.; Wang, Y.A.; Su, Z. Multifunctional mesoporous silica nanoparticles for cancer-targeted and controlled drug delivery. Adv. Funct. Mater., 2012, 22, 5144-5156.
[http://dx.doi.org/10.1002/adfm.201201316]
[59]
Cheng, Y.J.; Zhang, A.Q.; Hu, J.J.; He, F.; Zeng, X.; Zhang, X.Z. Multifunctional peptide-amphiphile end-capped mesoporous silica nanoparticles for tumor targeting drug delivery. ACS Appl. Mater. Interfaces, 2017, 9(3), 2093-2103.
[http://dx.doi.org/10.1021/acsami.6b12647] [PMID: 28032742]
[60]
Bernardos, A.; Mondragon, L.; Aznar, E.; Marcos, M.D.; Martinez-Mañez, R.; Sancenon, F.; Soto, J.; Barat, J.M.; Perez-Paya, E.; Guillem, C.; Amoros, P. Enzyme-responsive intracellular controlled release using nanometric silica mesoporous supports capped with “saccharides”. ACS Nano, 2010, 4(11), 6353-6368.
[http://dx.doi.org/10.1021/nn101499d] [PMID: 20958020]
[61]
van Rijt, S.H.; Bölükbas, D.A.; Argyo, C.; Datz, S.; Lindner, M.; Eickelberg, O.; Königshoff, M.; Bein, T.; Meiners, S. Protease-mediated release of chemotherapeutics from mesoporous silica nanoparticles to ex vivo human and mouse lung tumors. ACS Nano, 2015, 9(3), 2377-2389.
[http://dx.doi.org/10.1021/nn5070343] [PMID: 25703655]
[62]
Guardado-Alvarez, T.M.; Sudha Devi, L.; Russell, M.M.; Schwartz, B.J.; Zink, J.I. Activation of snap-top capped mesoporous silica nanocontainers using two near-infrared photons. J. Am. Chem. Soc., 2013, 135(38), 14000-14003.
[http://dx.doi.org/10.1021/ja407331n] [PMID: 24015927]
[63]
Zhang, L.; Li, Y.; Jin, Z.; Yu, J.C.; Chan, K.M. An NIR-triggered and thermally responsive drug delivery platform through DNA/copper sulfide gates. Nanoscale, 2015, 7(29), 12614-12624.
[http://dx.doi.org/10.1039/C5NR02767E] [PMID: 26147639]
[64]
Liu, H.; Chen, D.; Li, L.; Liu, T.; Tan, L.; Wu, X.; Tang, F. Multifunctional gold nanoshells on silica nanorattles: a platform for the combination of photothermal therapy and chemotherapy with low systemic toxicity. Angew. Chem. Int. Ed. Engl., 2011, 50(4), 891-895.
[http://dx.doi.org/10.1002/anie.201002820] [PMID: 21246685]
[65]
Fang, W.J.; Yang, J.; Gong, J.W.; Zheng, N.F. Photo- and pH-triggered release of anticancer drugs from mesoporous silica-coated Pd@Ag nanoparticles. Adv. Funct. Mater., 2012, 22, 842-848.
[http://dx.doi.org/10.1002/adfm.201101960]
[66]
Frasconi, M.; Liu, Z.; Lei, J.; Wu, Y.; Strekalova, E.; Malin, D.; Ambrogio, M.W.; Chen, X.; Botros, Y.Y.; Cryns, V.L.; Sauvage, J.P.; Stoddart, J.F. Photoexpulsion of surface-grafted ruthenium complexes and subsequent release of cytotoxic cargos to cancer cells from mesoporous silica nanoparticles. J. Am. Chem. Soc., 2013, 135(31), 11603-11613.
[http://dx.doi.org/10.1021/ja405058y] [PMID: 23815127]
[67]
Bansal, A.; Zhang, Y. Photocontrolled nanoparticle delivery systems for biomedical applications. Acc. Chem. Res., 2014, 47(10), 3052-3060.
[http://dx.doi.org/10.1021/ar500217w] [PMID: 25137555]
[68]
Chen, G.; Qiu, H.; Prasad, P.N.; Chen, X. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem. Rev., 2014, 114(10), 5161-5214.
[http://dx.doi.org/10.1021/cr400425h] [PMID: 24605868]
[69]
Lai, J.; Shah, B.P.; Zhang, Y.; Yang, L.; Lee, K.B. Real-Time Monitoring of ATP-Responsive Drug Release Using Mesoporous-Silica-Coated Multicolor Upconversion Nanoparticles. ACS Nano, 2015, 9(5), 5234-5245.
[http://dx.doi.org/10.1021/acsnano.5b00641] [PMID: 25859611]
[70]
Song, Z.; Shi, J.; Zhang, Z.; Qi, Z.; Han, S.; Cao, S. Mesoporous silica-coated gold nanorods with a thermally responsive polymeric cap for near-infrared-activated drug delivery. J. Mater. Sci., 2018, 53, 7165-7179.
[http://dx.doi.org/10.1007/s10853-018-2117-7]
[71]
Zhang, Z.; Shi, J.; Song, Z.; Zhu, X.; Zhu, Y.; Cao, S. A synergistically enhanced photothermal transition effect from mesoporous silica nanoparticles with gold nanorods wrapped in reduced graphene oxide. J. Mater. Sci., 2018, 53, 1810-1823.
[http://dx.doi.org/10.1007/s10853-017-1628-y]
[72]
Hwang, A.A.; Lu, J.; Tamanoi, F.; Zink, J.I. Functional nanovalves on protein-coated nanoparticles for in vitro and in vivo controlled drug delivery. Small, 2015, 11(3), 319-328.
[http://dx.doi.org/10.1002/smll.201400765] [PMID: 25196485]
[73]
Baeza, A.; Guisasola, E.; Ruiz-Hernandez, E.; Vallet-Regi, M. Magnetically triggered multidrug release by hybrid mesoporous silica nanoparticles. Chem. Mater., 2012, 24, 517-524.
[http://dx.doi.org/10.1021/cm203000u]
[74]
Huang, P.; Qian, X.; Chen, Y.; Yu, L.; Lin, H.; Wang, L.; Zhu, Y.; Shi, J. Metalloporphyrin-encapsulated biodegradable nanosystems for highly efficient magnetic resonance imaging-guided sonodynamic cancer therapy. J. Am. Chem. Soc., 2017, 139(3), 1275-1284.
[http://dx.doi.org/10.1021/jacs.6b11846] [PMID: 28024395]
[75]
Knezević, N.Z. Magnetic field-induced accentuation of drug release from core/shell magnetic mesoporous silica nanoparticles for anticancer treatment. J. Nanosci. Nanotechnol., 2016, 16(4), 4195-4199.
[http://dx.doi.org/10.1166/jnn.2016.11762] [PMID: 27451786]
[76]
Moorthy, M.S.; Subramanian, B.; Panchanathan, M.; Mondal, S.; Kim, H.; Dae, K.; Lee, K.D.; Oh, J. Fucoidan-coated core–shell magnetic mesoporous silica nanoparticles for chemotherapy and magnetic hyperthermia-based thermal therapy applications. New J. Chem., 2017, 41, 15334-15346.
[http://dx.doi.org/10.1039/C7NJ03211K]
[77]
Tian, Z.; Yu, X.; Ruan, Z.; Zhu, M.; Zhu, Y.; Hanagata, N. Magnetic mesoporous silica nanoparticles coated with thermo-responsive copolymer for potential chemo- and magnetic hyperthermia therapy. Microporous Mesoporous Mater., 2018, 256, 1-9.
[http://dx.doi.org/10.1016/j.micromeso.2017.07.053]
[78]
Cho, H.K.; Cho, H.J.; Lone, S.; Kim, D.D.; Yeum, J.H.; Cheong, I.W. Preparation and characterization of MRI-active gadolinium nanocomposite particles for neutron capture therapy. J. Mater. Chem., 2011, 21, 15486.
[http://dx.doi.org/10.1039/c1jm11608h]
[79]
Shao, Y.Z.; Liu, L.Z.; Song, S.Q.; Cao, R.H.; Liu, H.; Cui, C.Y.; Li, X.; Bie, M.J.; Li, L. A novel one-step synthesis of Gd3+-incorporated mesoporous SiO2 nanoparticles for use as an efficient MRI contrast agent. Contrast Media Mol. Imaging, 2011, 6(2), 110-118.
[http://dx.doi.org/10.1002/cmmi.412] [PMID: 21504064]
[80]
Paris, J.L.; Cabañas, M.V.; Manzano, M.; Vallet-Regí, M. Polymer-grafted mesoporous silica nanoparticles as ultrasound-responsive drug carriers. ACS Nano, 2015, 9(11), 11023-11033.
[http://dx.doi.org/10.1021/acsnano.5b04378] [PMID: 26456489]
[81]
Fan, W.; Lu, N.; Huang, P.; Liu, Y.; Yang, Z.; Wang, S.; Yu, G.; Liu, Y.; Hu, J.; He, Q.; Qu, J.; Wang, T.; Chen, X. Glucose-Responsive Sequential Generation of Hydrogen Peroxide and Nitric Oxide for Synergistic Cancer Starving-Like/Gas Therapy. Angew. Chem. Int. Ed. Engl., 2017, 56(5), 1229-1233.
[http://dx.doi.org/10.1002/anie.201610682] [PMID: 27936311]
[82]
Srivastava, P.; Hira, S.K.; Srivastava, D.V.; Gupta, U.; Sen, P.; Singh, R.A.; Manna, P.P. Protease-Responsive Targeted Delivery of Doxorubicin from Bilirubin-BSA-Capped Mesoporous Silica Nanoparticles against Colon Cancer. ACS Biomater. Sci. Eng,
[http://dx.doi.org/10.1021/acsbiomaterials.7b00635]]
[83]
He, X.; Zhao, Y.; He, D.; Wang, K.; Xu, F.; Tang, J. ATP-responsive controlled release system using aptamer-functionalized mesoporous silica nanoparticles. Langmuir, 2012, 28(35), 12909-12915.
[http://dx.doi.org/10.1021/la302767b] [PMID: 22889263]
[84]
Zhu, C.L.; Lu, C.H.; Song, X.Y.; Yang, H.H.; Wang, X.R. Bioresponsive controlled release using mesoporous silica nanoparticles capped with aptamer-based molecular gate. J. Am. Chem. Soc., 2011, 133(5), 1278-1281.
[http://dx.doi.org/10.1021/ja110094g] [PMID: 21214180]
[85]
Zitvogel, L.; Apetoh, L.; Ghiringhelli, F.; Kroemer, G. Immunological aspects of cancer chemotherapy. Nat. Rev. Immunol., 2008, 8(1), 59-73.
[http://dx.doi.org/10.1038/nri2216] [PMID: 18097448]
[86]
Yang, Y.; Lu, Y.; Abbaraju, P.L.; Zhang, J.; Zhang, M.; Xiang, G.; Yu, C. Multi-shelled dendritic mesoporous organosilica hollow spheres: roles of composition and architecture in cancer immunotherapy. Angew. Chem. Int. Ed. Engl., 2017, 56(29), 8446-8450.
[http://dx.doi.org/10.1002/anie.201701550] [PMID: 28467690]
[87]
Kong, M.; Tang, J.; Qiao, Q.; Wu, T.; Qi, Y.; Tan, S.; Gao, X.; Zhang, Z. Biodegradable hollow mesoporous silica nanoparticles for regulating tumor microenvironment and enhancing antitumor efficiency. Theranostics, 2017, 7(13), 3276-3292.
[http://dx.doi.org/10.7150/thno.19987] [PMID: 28900509]
[88]
Wang, X.; Li, X.; Yoshiyuki, K.; Watanabe, Y.; Sogo, Y.; Ohno, T.; Tsuji, N.M.; Ito, A. Cancer immunotherapy: comprehensive mechanism analysis of mesoporous-silica-nanoparticle-induced cancer immunotherapy (Adv. Healthcare Mater. 10/2016). Adv. Healthc. Mater., 2016, 5(10), 1246.
[http://dx.doi.org/10.1002/adhm.201670051] [PMID: 27226038]
[89]
Zheng, H.; Wen, S.; Zhang, Y.; Sun, Z. Organosilane and polyethylene glycol functionalized magnetic mesoporous silica nanoparticles as carriers for CPG immunotherapy in vitro and in vivo. PLoS One, 2015, 10(10)e0140265
[http://dx.doi.org/10.1371/journal.pone.0140265] [PMID: 26451735]
[90]
Li, X.; Wang, X.; Sogo, Y.; Ohno, T.; Onuma, K.; Ito, A. Mesoporous silica-calcium phosphate-tuberculin purified protein derivative composites as an effective adjuvant for cancer immunotherapy. Adv. Healthc. Mater., 2013, 2(6), 863-871.
[http://dx.doi.org/10.1002/adhm.201200149] [PMID: 23296515]
[91]
Zheng, D.W.; Chen, J.L.; Zhu, J.Y.; Rong, L.; Li, B.; Lei, Q.; Fan, J.X.; Zou, M.Z.; Li, C.; Cheng, S.X.; Xu, Z.; Zhang, X.Z. Highly Integrated Nano-Platform for Breaking the Barrier between Chemotherapy and Immunotherapy. Nano Lett., 2016, 16(7), 4341-4347.
[http://dx.doi.org/10.1021/acs.nanolett.6b01432] [PMID: 27327876]
[92]
Xie, J. Yang, C.; Liu, Q.; Li, J.; Liang, R.; Shen, C.; Zhang, Y.; Wang, K.; Liu, L.; Shezad, K.; Sullivan, M.; Xu, Y.; Shen, G.; Tao, J.; Zhu, J.; Zhang, Z. Encapsulation of Hydrophilic and Hydrophobic Peptides into Hollow Mesoporous Silica Nanoparticles for Enhancement of Antitumor Immune Response. Small, 2017, 13(40)
[http://dx.doi.org/10.1002/smll.201701741] [PMID: 28861951]
[93]
Hu, X.; Gao, X. Silica-polymer dual layer-encapsulated quantum dots with remarkable stability. ACS Nano, 2010, 4(10), 6080-6086.
[http://dx.doi.org/10.1021/nn1017044] [PMID: 20863118]
[94]
Idris, N.M.; Gnanasammandhan, M.K.; Zhang, J.; Ho, P.C.; Mahendran, R.; Zhang, Y. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat. Med., 2012, 18(10), 1580-1585.
[http://dx.doi.org/10.1038/nm.2933] [PMID: 22983397]
[95]
Qian, H.S.; Guo, H.C.; Ho, P.C.L.; Mahendran, R.; Zhang, Y. Mesoporous-silica-coated up-conversion fluorescent nanoparticles for photodynamic therapy. Small, 2009, 5(20), 2285-2290.
[http://dx.doi.org/10.1002/smll.200900692] [PMID: 19598161]
[96]
Croissant, J.G.; Zhang, D.; Alsaiari, S.; Lu, J.; Deng, L.; Tamanoi, F.; AlMalik, A.M.; Zink, J.I.; Khashab, N.M. Protein-gold clusters-capped mesoporous silica nanoparticles for high drug loading, autonomous gemcitabine/doxorubicin co-delivery, and in-vivo tumor imaging. J. Control. Release, 2016, 229, 183-191.
[http://dx.doi.org/10.1016/j.jconrel.2016.03.030] [PMID: 27016140]
[97]
Chen, G.; Teng, Z.; Su, X.; Liu, Y.; Lu, G. Unique biological degradation behavior of stöber mesoporous silica nanoparticles from their interiors to their exteriors. J. Biomed. Nanotechnol., 2015, 11(4), 722-729.
[http://dx.doi.org/10.1166/jbn.2015.2072] [PMID: 26310078]
[98]
Huang, P.; Chen, Y.; Lin, H.; Yu, L.; Zhang, L.; Wang, L.; Zhu, Y.; Shi, J. Molecularly organic/inorganic hybrid hollow mesoporous organosilica nanocapsules with tumor-specific biodegradability and enhanced chemotherapeutic functionality. Biomaterials, 2017, 125, 23-37.
[http://dx.doi.org/10.1016/j.biomaterials.2017.02.018] [PMID: 28226244]
[99]
Chen, H.; Zhen, Z.; Tang, W.; Todd, T.; Chuang, Y.J.; Wang, L.; Pan, Z.; Xie, J. Label-free luminescent mesoporous silica nanoparticles for imaging and drug delivery. Theranostics, 2013, 3(9), 650-657.
[http://dx.doi.org/10.7150/thno.6668] [PMID: 24052805]
[100]
Ni, D.; Jiang, D.; Ehlerding, E.B.; Huang, P.; Cai, W. Radiolabeling Silica-Based Nanoparticles via Coordination Chemistry: Basic Principles, Strategies, and Applications. Acc. Chem. Res., 2018, 51(3), 778-788.
[http://dx.doi.org/10.1021/acs.accounts.7b00635] [PMID: 29489335]
[101]
Huang, X.; Zhang, F.; Wang, H.; Niu, G.; Choi, K.Y.; Swierczewska, M.; Zhang, G.; Gao, H.; Wang, Z.; Zhu, L.; Choi, H.S.; Lee, S.; Chen, X. Mesenchymal stem cell-based cell engineering with multifunctional mesoporous silica nanoparticles for tumor delivery. Biomaterials, 2013, 34(7), 1772-1780.
[http://dx.doi.org/10.1016/j.biomaterials.2012.11.032] [PMID: 23228423]
[102]
Portilho, F.L.; Helal-Neto, E.; Cabezas, S.S.; Pinto, S.R.; Dos Santos, S.N.; Pozzo, L.; Sancenón, F.; Martínez-Máñez, R.; Santos-Oliveira, R. Magnetic core mesoporous silica nanoparticles doped with dacarbazine and labelled with 99mTc for early and differential detection of metastatic melanoma by single photon emission computed tomography. Artif. Cells Nanomed. Biotechnol, 2018. 46(sup1), 1080-1087.
[http://dx.doi.org/10.1080/21691401.2018.1443941] [PMID: 29482360]
[103]
Yuan, F.; Li, J.L.; Cheng, H.; Zeng, X.; Zhang, X.Z. A redox-responsive mesoporous silica based nanoplatform for in vitro tumor-specific fluorescence imaging and enhanced photodynamic therapy. Biomater. Sci., 2017, 6(1), 96-100.
[http://dx.doi.org/10.1039/C7BM00793K] [PMID: 29186237]
[104]
Luo, G.F.; Chen, W.H.; Lei, Q.; Qiu, W.X.; Liu, Y.X.; Cheng, Y.J.; Zhang, X.Z. A triplecollaborative strategy for high-performance tumor therapy by multifunctional mesoporous silica-coated gold nanorods. Adv. Funct. Mater., 2016, 26, 4339-4350.
[http://dx.doi.org/10.1002/adfm.201505175]
[105]
Song, Z.; Liu, Y.; Shi, J.; Ma, T.; Zhang, Z.; Ma, H.; Cao, S. Hydroxyapatite/mesoporous silica coated gold nanorods with improved degradability as a multi-responsive drug delivery platform. Mater. Sci. Eng. C, 2018, 83, 90-98.
[http://dx.doi.org/10.1016/j.msec.2017.11.012] [PMID: 29208292]
[106]
Sun, Q.; You, Q.; Wang, J.; Liu, L.; Wang, Y.; Song, Y.; Cheng, Y.; Wang, S.; Tan, F.; Li, N. Theranostic nanoplatform: triple-modal imaging-guided synergistic cancer therapy based on liposome-conjugated mesoporous silica nanoparticles. ACS Appl. Mater. Interfaces, 2018, 10(2), 1963-1975.
[http://dx.doi.org/10.1021/acsami.7b13651] [PMID: 29276824]
[107]
Shao, L.; Zhang, R.; Lu, J.; Zhao, C.; Deng, X.; Wu, Y. Mesoporous silica coated polydopamine functionalized reduced graphene oxide for synergistic targeted chemo-photothermal therapy. ACS Appl. Mater. Interfaces, 2017, 9(2), 1226-1236.
[http://dx.doi.org/10.1021/acsami.6b11209] [PMID: 28004583]
[108]
Rosenholm, J.M.; Gulin-Sarfraz, T.; Mamaeva, V.; Niemi, R.; Özliseli, E.; Desai, D.; Antfolk, D.; von Haartman, E.; Lindberg, D.; Prabhakar, N.; Näreoja, T.; Sahlgren, C. Prolonged dye release from mesoporous silica-based imaging probes facilitates long-term optical tracking of cell populations in vivo. Small, 2016, 12(12), 1578-1592.
[http://dx.doi.org/10.1002/smll.201503392] [PMID: 26807551]
[109]
Dréau, D.; Moore, L.J.; Alvarez-Berrios, M.P.; Tarannum, M.; Mukherjee, P.; Vivero-Escoto, J.L. Mucin-1-Antibody-Conjugated mesoporous silica nanoparticles for selective breast cancer detection in a Mucin-1 transgenic murine mouse model. J. Biomed. Nanotechnol., 2016, 12(12), 2172-2184.
[http://dx.doi.org/10.1166/jbn.2016.2318] [PMID: 28522938]
[110]
Sá, L.T.; Pessoa, C.; Meira, A.S.; da Silva, M.I.; Missailidis, S.; Santos-Oliveira, R. Development of nanoaptamers using a mesoporous silica model labeled with (99m)tc for cancer targeting. Oncology, 2012, 82(4), 213-217.
[http://dx.doi.org/10.1159/000337226] [PMID: 22508189]
[111]
Martin, K.R. The health benefits of a metalloid. In: Interrelations Between Essential Metal Ions and Human Diseases; Sigel, A.; Sigel, H.; & Roland, K.O., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, 2014.
[112]
Ehrlich, H.; Demadis, K.D.; Pokrovsky, O.S.; Koutsoukos, P.G. Modern views on desilicification: biosilica and abiotic silica dissolution in natural and artificial environments. Chem. Rev., 2010, 110(8), 4656-4689.
[http://dx.doi.org/10.1021/cr900334y] [PMID: 20441201]
[113]
Zhang, K.; Loong, S.L.; Connor, S.; Yu, S.W.; Tan, S.Y.; Ng, R.T.; Lee, K.M.; Canham, L.; Chow, P.K. Complete tumor response following intratumoral 32P BioSilicon on human hepatocellular and pancreatic carcinoma xenografts in nude mice. Clin. Cancer Res., 2005, 11(20), 7532-7537.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-0400] [PMID: 16243828]
[114]
Croissant, J.G.; Fatieiev, Y.; Khashab, N.M. Degradability and clearance of silicon, organosilica, silsesquioxane, silica mixed oxide, and mesoporous silica nanoparticles. Adv. Mater., 2017, 29(9), 1-51.
[http://dx.doi.org/10.1002/adma.201604634] [PMID: 28084658]
[115]
Phillips, E.; Penate-Medina, O.; Zanzonico, P.B.; Carvajal, R.D.; Mohan, P.; Ye, Y.; Humm, J.; Gönen, M.; Kalaigian, H.; Schöder, H.; Strauss, H.W.; Larson, S.M.; Wiesner, U.; Bradbury, M.S. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci. Transl. Med., 2014, 6(260)260ra149
[http://dx.doi.org/10.1126/scitranslmed.3009524] [PMID: 25355699]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy